National Cranberry Cooperative (Abridged)

On February 14, 1981, Hugo Schaeffer, vice president of operations at the National Cranberry Cooperative (NCC), called his assistant, Mel O'Brien, into his office and said:

Mel, I spent all day yesterday reviewing last fall's process fruit operations at receiving plant \#1 [RP1] with Will Walliston, the superintendent, and talking with the co-op members [growers] in that area. It's obvious to me that we haven't solved our problems at that plant, yet. Even though we spent $\$ 100,000$ last winter for a fifth Kiwanee dumper at RP1, our overtime costs were still out of control this fall, and the growers are still upset that their trucks and drivers had to spend so much time waiting to unload process fruit into the receiving plant. I can't blame them for being upset. They are the owners of this cooperative, and they resent having to lease trucks and hire drivers to get the berries out of the field and then watch them stand idle, waiting to unload.

Walliston thinks that the way to avoid these problems next fall is to buy and install two new dryers [$\$ 40,000$ each], and to convert our dry berry holding bins so that they can be used to store either water-harvested or dry berries [$\$ 7,500$ per bin]. I want you to go out there and take a hard look at that operation and find out what we need to do to improve operations before the 1981 crop comes in. We're going to have to move quickly if we are going to order new dryers, since the equipment and installation lead times are in excess of six months. By the way, the growers in that region indicated that they plan on about the same size crop this year as last. But it looks like the percentage of water-harvested berries this year will increase to 70% of total process fruit from last year's 58%.

NCC and the Cranberry Industry

NCC was an organization formed and owned by growers of cranberries to process and market their berries. In recent years 99% of all sales of cranberries were made by the various cooperatives active in the cranberry industry. NCC was one of the larger cooperatives and had operations in all the principal growing areas of North America: Massachusetts, New Jersey, Wisconsin, Washington, Oregon, British Columbia, and Nova Scotia. Table A contains industry data for U.S. production and sales of cranberries.

[^0]Table A Data on U.S. Cranberry Harvest

Crop Year	Production/Utilization (in barrels) ${ }^{\text {a }}$				Process	Average Price (all uses, \$ per barrel) ${ }^{\text {b }}$
	Acreage Harvested	Barrels per Acre	Production	Fresh Sales		
Five-Year Average						
1945-1949	26,022	23.7	615,000	466,844	148,256	11.06
1950-1954	25,434	24.9	643,300	380,965	253,335	15.50
1955-1959	26,205	31.3	822,580	381,320	436,060	17.15
1960-1964	24,842	39.8	983,660	439,170	532,070	11.71
1965-1969	21,448	51.2	1,096,160	427,520	543,860	10.77
1970-1974	20,778	62.6	1,300,120	468,340	755,750	12.00
1975-1979	20,988	73.7	1,546,120	327,980	1,169,360	19.12
Annual						
1975	20,640	69.6	1,436,800	389,600	1,033,200	15.50
1976	20,760	77.0	1,598,600	328,000	1,249,600	17.16
1977	21,220	66.2	1,404,300	278,300	1,034,900	18.60
1978	21,135	69.4	1,467,800	301,900	1,111,200	20.62
1979	21,185	86.1	1,823,100	342,100	1,417,900	21.10
1980°	21,445	95.1	2,038,600	367,000	1,418,600	18.05

Source: Annual reports of Crop Reporting Board, Statistical Service, USDA.
Note: Data gathered on five states-Massachusetts, New Jersey, Oregon, Washington, and Wisconsin.
${ }^{\text {a }}$ Differences between production and utilization (fresh sales and process) represent economic abandonment.
b Beginning in 1949 the series represents equivalent returns at first receiving station, fresh and processing combined. Years prior to 1949 represent season average prices received by growers for all methods of sale, fresh and processing combined.
${ }^{\text {c }}$ Preliminary figures for 1980.

Some significant trends are observable in Table A. Probably the most important trend was the growing surplus of cranberries produced over those utilized. This surplus was serious enough by 1978 for the growers to resort to the Agriculture Marketing Agreement Act of 1937. Under this act, growers can regulate and control the size of an agricultural crop if the federal government and more than two-thirds of the growers agree to a plan for crop restriction. In 1978 this act was used to create the Cranberry Marketing Order of 1978, which stipulated that no new acreage was to be developed over the next six years and that each grower would have a maximum allotment at the end of six years equal to the average of the grower's best two years from 1978 through 1983. Eighty-seven percent of all growers voted in favor of the order, making it binding on all cranberry growers.

In 1980 the growers resorted to the Agriculture Marketing Agreement Act once again. Under the Cranberry Marketing Order of 1980, the growers and the government agreed that 10% of the 1980 crop should be set aside. The set aside berries (berries that are either destroyed or used in a way that will not influence the market price) amounted to more than 200,000 bbls. (A barrel of cranberries weighs 100 lbs .) Handlers physically set aside 10% of the berries before harvesting, under the supervision of a committee of growers and representatives from the Department of Agriculture.

Another important trend was the increasing mechanization of cranberry harvesting. Water harvesting, in particular, was developing rapidly in the vicinity of receiving plant No. 1. Under the traditional dry harvesting, berries were hand-picked from the bushes. In water harvesting, the bogs were flooded, the berries were mechanically shaken from the bushes, and the berries then were collected easily since they floated to the surface of the water. Water harvesting could result in yields up to 20% greater than those obtained via dry harvesting, but it caused some damage and it shortened the time that harvested fruit could be held prior to either its use or freezing for long-term storage. Water harvesting had developed at a remarkable rate in some areas. Receiving plant No. 1 received 25,000 bbls. of water-harvested fruit in 1978, 125,000 bbls. in 1979, and 350,000 bbls, in 1980.

Water harvesting was not the preferred harvesting method for fruit that was to be sold fresh, since fresh fruit must be undamaged and have as long a shelf life as possible. It was also necessary to ship fruit that was to be sold fresh to receiving plants in field boxes that contain about $1 / 3 \mathrm{bbl}$. of berries rather than in bulk (trucks holding up to 400 bbls.) to avoid damage. Fresh fruit was inspected berry by berry prior to packaging. Altogether, fresh fruit production remained a very labor-intensive process.

Receiving Plant No. 1 (RP1)

RP1 received both fresh fruit and process fruit during a season that usually started early in September and was effectively finished by early December (see Figure A). The fresh fruit operation was completely separate from the process fruit operation and took the fruit from receiving through packaging. This operation involved more than 400 workers during the peak of the season, most of whom inspected berries as they moved by on teflon-coated conveyors. Packaged fresh fruit was shipped from RP1 directly to market by truck. No problems had been experienced in fresh fruit processing in the past.

Figure A Daily Delivery of Both Fresh and Process Berries to RP1

The handling of process fruit at RP1 was highly mechanized. The process could be classified into several operations: receiving and testing, dumping, temporary holding, destoning, ${ }^{1}$ dechaffing, ${ }^{2}$ drying, separation, and bulking and bagging. The objective of the total process was to gather bulk berries and prepare them for storage and processing into frozen fresh berries, sauce, and juice.

Process Fruit Receiving

Bulk trucks carrying process berries arrived at RP1 loaded with anywhere from 20 to 400 bbls. These trucks arrived randomly throughout the day as shown in Exhibit 1. The average truck delivery was 75 bbls. When the trucks arrived at RP1 they were weighed and the gross weight and the tare (empty) weight were recorded. Prior to unloading, a sample of about 30 lbs . of fruit was taken from the truck. Later, this sample would be run through a small version of the cleaning and drying process used in the plant. By comparing the before and after weight of this sample, it was possible to estimate the percentage of the truck's net weight made up of clean, dry berries. At the same time, another sample was taken to determine the percentage of unusable berries (poor, smaller, and frosted berries) in the truck. The grower was credited for the estimated weight of the clean, dry, usable berries. In 1980, on the average, the growers were credited for 94% of the scale weight of dry deliveries and 85% of the scale weight of wet deliveries. (See Exhibit 2 for total 1980 deliveries of process berries.)

At the time the truck was weighed, the truckload of berries was graded according to color. Using color pictures as a guide, the chief berry receiver classified the berries as Nos. 1, 2A, 2B, or 3, from poorest color (No. 1) to best (No. 3). There was a premium of 75 cents per bbl. paid for No. 3 berries, since color was considered to be a very important attribute of both juice products and whole sauce. Whenever there was any question about whether or not a truckload was No. 2B or No. 3 berries, the chief berry receiver usually chose No. 3. In 1980 the 75 -cent premium was paid on about $450,000 \mathrm{bbls}$. of berries. When these berries were used, however, it was found that only about half of them were No. 3's.

To improve this yield, Schaeffer was considering the installation of a light meter system for color grading. This system was projected to cost $\$ 20,000$ and would require a full-time skilled operator at the same pay grade as the chief berry receiver.

Temporary Holding

After a truckload of process berries had been weighed, sampled, and color graded, the truck moved to one of the five Kiwanee dumpers. The truck was backed onto the dumper platform which then tilted until the contents of the truck dumped onto one of five rapidly moving belt conveyors. Each of the five conveyors took the berries to the second level of the plant and deposited them on other conveyors capable of running the berries into any one of 27 temporary holding bins. Bins numbered 1-24 held 250 bbls. of berries each. Bins 25,26 , and 27 held 400 bbls. each. All of the conveyors were controlled from a central control panel.

[^1]It usually took from 5 to 10 minutes to back a truck onto a Kiwanee dumper, empty its contents, and leave the platform. At times some trucks had to wait up to 3 hours, however, before they could empty their contents. These waits occurred when the holding bins became full and there was no place in the receiving plant to temporarily store berries before further operations.

The holding bins emptied onto conveyors on the first level of the plant. Once the bins were opened, the berries flowed onto the conveyors and started their way through the destoning (dry berries only), dechaffing, drying (water-harvested berries only), quality grading, and either bulk loading or bagging operations.

Destoning, Dechaffing, and Drying

Holding bins 25-27 were for wet (water-harvested) berries only. Holding bins 17-24 could be used for either wet or dry berries. Wet berries from these bins were taken directly to one of the three dechaffing units (destoning was unnecessary with water-harvested berries) which could process up to 1,500 bbls. per hour each. After dechaffing, these wet berries were taken to one of the three drying units where they were dried at rates up to 200 bbls. per hour per dryer.

Holding bins 1-16 were for dry berries only. Berries from these bins were routed through one of three destoning units, each of which could process up to 1,500 bbls. of berries per hour, before going through a dechaffing unit. Frequently, both wet and dry berries were processed at the same time though the system. The wet berries would be processed through the part of the system that included the dryers, while the dry berries were processed through the area containing the destoning units. National Cranberry's current plant layout had two dechaffing units dedicated to wet berries, and one to dry berries.

Quality Grading

After destoning, dechaffing, and drying, berries were transported to one of three large take-away conveyors that moved berries from the first level of the receiving building to the third level of the adjoining separator building. Here these same conveyors were called feed conveyors as they were now feeding berries into the jumbo separators (see Figure B). There were nine jumbo separators along each of the three feed conveyors. The jumbo separators identified three classes of berries-first quality berries, potential second-quality berries, and unacceptable berries. The separation process was a simple one that was based on the fact that good cranberries will bounce higher than poor cranberries (see Figure C for a drawing of the separation process). The first-quality berries went directly onto one of three take-away conveyors on the second level and were transported to the shipping area. The unacceptable berries fell through waste chutes into water-filled waste flumes on the first level and were floated off to the disposal area. The potential second-quality berries fell into the Bailey mills on the second level of the building. The Bailey mills separated the stream of incoming berries into second-quality berries and unacceptable berries. The Bailey mills operated on the same principle as the jumbo separators. Over the years the percentage of second-quality berries had consistently been close to 12%.

Each of the three separator lines could process up to 450 bbls. per hour, but the rate of processing declined as the percentage of bad fruit increased. It was estimated that the average effective capacity was probably slightly less than 400 bbls. per hour for each line.

Bulking and Bagging

Six conveyors carried berries from the separator building into the shipping building-three from the jumbo separators and three from the Bailey mills. Each of those six conveyors could feed berries onto any one of the three main flexible conveyors in the shipping area. Each of the three conveyors in the shipping area could be moved to feed berries into any one of four bagging stations, any one of four bulk bin stations, or any one of two bulk truck stations. The berries left RP1 in bulk trucks for shipment directly to the finish processing plant, in bins for storage at freezers with bulk storage capability, or for storage in freezers that could handle only bagged berries, while others could receive either bulk or bagged berries.

Figure B RP1 Separator Building

Figure C Separator Operation

Scheduling the Work Force

During the harvest season-September 1 to December 15-the process fruit side of RP1 was operated seven days a week with either a 27 -member work force or a 53 -member work force, depending on the relative volume of berry receipts. Figure \mathbf{D} shows the planned daily staffing schedule for the low-volume periods which were anticipated before the 1980 harvest season began, and Figure E shows the planned daily work schedule for the high-volume periods anticipated at RP1 before the 1980 harvest season began.

There were 27 employees at RP1 who were employed for the entire year; all others were hired for the season only. The 27 non-seasonal employees were all members of the Teamsters Union, as were 15 seasonal workers. Seasonal workers could work only between the dates of August 15 and December 25 by agreement with the union. Most seasonal workers were employed via a state employment agency that set up operations each fall. The employment agency helped in placing seasonal workers in the receiving plant and in harvesting jobs with the local growers. The pay rate for seasonal workers in the process fruit section was $\$ 4.00$ per hour. They were paid the overtime rate of 1-1/2 times their straight-time rate for anything over 40 hours per week. The straight-time pay rate for the full-year employees averaged $\$ 6.50$ per hour.

Figure D Schedule for 27 Workers, Low-Volume Period

Figure E Schedule for 53 Workers, High-Volume Period

The amount of overtime used in a day or week depended on how effectively workers could be scheduled. If it was known, for instance, that the plant would have to run beyond the normal 11 p.m. shutdown time, then it would be desirable to have some workers report for work at 6 p.m. or later, but it was not always possible to find workers who would do this. There was also the problem of absenteeism, which caused Walliston to carry more employees on the payroll than he really needed. He had to have 20 on the payroll to be reasonably sure he'd have 15 on hand. Higher than expected absenteeism, of course, often resulted in overtime for those who were there. For the 1980 season, the process fruit operation at RP1 utilized about 22,000 labor-hours of straight-time direct labor and about 12,000 labor-hours of overtime.

When it was necessary to work beyond 11 p.m., a crew of only eight or nine workers was required to run the holding bins empty and do bulk loading. Although dry fruit could be held in the bins overnight, it was considered undesirable to hold wet fruit any longer than necessary, so wet fruit was always run out before shutting down. The plant never ran more than 22 hours a day, since at least 2 hours were required for cleaning and maintenance work. (Downtime due to unscheduled maintenance was very small; said Walliston: "We ran 350,000 bbls. through the wet system in 1980 and we were down a total of less than 8 hours.")

Exhibit 1 Log of Total Deliveries on September 23, 1980

Time	Color	Wet/Dry	Weight	Time	Color	Wet/Dry	Weight	Time	Color	Wet/Dry	Weight
411	3	\square	33947	673	3	0	3600	949	2	W	11540
413	3	n	9980	674	2	W	7280	954	3	W	12580
416	3	0	10020	636	3	W	9240	057	3	0	11040
428	1	0	12200	6?8	3	W	12700	959	3	D	7740
470	3	0	8980	E40	3	W	28780	OF1	7	W	12500
445	3	0	$75 ? 0$	545	2	0	18000	-62	3	n	7000
446	2	0	4140	648	\%	0	8240	968	3	0	7340
448	3	0	11720	650	3	W	13820	969	3	0	4260
451	$?$	0	6520	651	$?$	W	11280	975	3	Ó	1667
456	3	n	1480	E 55	3	D	1280	977	3	0	4980
459	3	W	12660	6E0	3	0	500	980	3	W	12640
$4 \in 0$	3	0	31640	6E 3	2	0	29560	922	3	0	6420
$4 E 2$	3	W	11920	Ef4	2	0	9720	$\bigcirc{ }^{0} 4$	3	0	11200
4F3	2	n	2060	655	3	W	8090	906	,	n	11927
$4 \mathrm{F8}$	3	0	6020	EEG	3	\cdots	24640	1000	3	W	12.20
471	3	W	12640	671	3	0	1890	1005	7	W	8850
$47 ?$	3	0	3040	673	2	W	12760	1008	2	W	7140
477	3	n	6067	674	3	0	9980	1010	3	0	7180
490	3	0	4665	677	3	W	12980	1711	2	n	11220
482	3	0	1880	678	2	0	7860	1012	?	0	6840
495	3	0	7250	691	2	W	11480	1072	2	0	a 600
405	3	0	4960	$6{ }_{64}$	3	0	12680	1740	3	n	11100
498	2	\square	3160	FO8	2	n	5640	1043	2	H	11090
400	2	0	3320	780	\%	0	2220	1046	1	W	$110 ? 0$
510	3	0	17R20	760	?	W	11500	1747	1	W	11240
57%	7	n	3360	$7{ }^{7} 1$	3	W	9460	1050	3	0	35060
511	3	n	10470	793	3	W	12660	1051	3	W	? 1580
512	$?$	D	5780	819	2	W	56? 0	1056	2	n	7420
513	3	W	5500	- 11	2	0	2540	1051	3	0	4500
515	3	!	$8 \mathrm{8RO}$	817	3	n	11750	1064	,	0	5790
519	3	0	17997	818	$?$	0	7720	10 F 8	3	n	4047
52?	3	D	1580	823	$?$	W	7 780	1073	?	0	2470
574	3	0	6440	A25	2	W	20400	1979	3	0	0440
577	3	W	7850	R38	3	n	12270	1091	2	0	11620
E? ${ }^{\text {P }}$	3	W	? 3720	841	2	0	7420	1092	7	0	8360
533	$?$	W	11340	842	$?$	W	3140	1094	3	n	10500
574	2	0	6480	343	3	0	13740	1085	3	0	3240
525	3	0	5280	245	3	n	2840	1090	3	W	10280
578	3	\square	11640	846	3	0	15240	1091	3	0	2140
543	2	W	11180	848	2	0	11540	1092	$?$	W	2440
551	3	n	2010	850	2	W	? 1460	1095	3	0	13720
560	3	0	3581	855	3	W	9300	1103	3	W	43180
5E5	z	0	8400	AF2	3	0	4580	1111	2	H	13420
567	3	0	3920	874	3	N	11280	1116	3	0	7400
570	3	0	1200	876	$?$	W	12720	1126	3	D	7250
572	3	n	3490	977	$?$	D	14140	1177	3	0	6240
577	3	0	3580	978	3	n	26700	1129	2	W	12120
580	3	W	8440	879	3	\cdots	11820	1132	3	0	8747
$5 \% 1$	3	n	2500	882	3	0	12800	1134	3	0	6160
594	2	0	7560	P87	?	n	7980	1140	3	0	9020
5 A6	3	n	4540	895	3	D	8900	1140	3	\square	9020
597	3	n	9040	297	3	D	11490	1140	3	W	9240
5\%月	2	D	3360	000	3	W	7160	1140	2	0	7660
591	3	0	2890	0 O 4	3	0	17680	1140	3	0	3960
594	3	W	13500	916	3	0	8780	1140	3	0	$417!$
597	3	W	11560	$9 ? 2$	3	0	$3 \in 60$	1140	$?$	W	11 RGO
509	3	n	10340	974	\%	H	14840	1140	3	D	11460
				$0 \geq 7$	3		9160	1140		\mathbf{N}	11240
$6{ }_{64}$	3	n	9600	942	3	H	15960	1140	3	0	1980
ano	3	\mathbf{N}	13020	945	3	0	1280	1140	3	D	10490
625	2	ก	$26 ? 7$	947			10300	1140	2	0	11600
670		W	11460								
Cranberries Delivered											
Wet			768,600								
Dry			1,065,420		Note: All weights are in pounds. The time recorded was minutes after 12:00 A.m. For example, the recorded time of 411 was equivalent to 6:51 A.M.						
Color \#1			34,460								
Color \# 2			401,080								
Color \#3			1,398,480								
Total pour	nds		1,834,020								
Total n	nber of	rucks	243								

Exhibit 2 Deliveries of Process Berries 1980

Day	Total Deliveries (scale weight in bbls.)	Delivered Wet	Color No. 1	Color No. 2	Color No. 3
9/1-9/19	44,176	54\%	6\%	72\%	22\%
9/20	16,014	31	0	44	56
9/21	17,024	39	0	35	65
9/22	16,550	39	0	22	78
9/23	18,340	42	2	22	76
9/24	18,879	41	0	21	79
9/25	18,257	36	0	14	86
9/26	17,905	45	0	10	90
9/27	16,281	42	0	18	82
9/28	13,343	38	0	15	85
9/29	18,717	43	1	11	88
9/30	18,063	59	1	9	90
10/1	18,018	69	1	11	88
10/2	15,195	60	2	18	80
10/3	15,816	60	3	12	85
10/4	16,536	57	5	21	74
10/5	17,304	55	2	26	72
10/6	14,793	46	7	32	61
10/7	13,862	61	3	39	58
10/8	11,786	56	0	36	64
10/9	14,913	54	0	33	67
10/10-12/10	238,413	75	0	$\underline{22}$	78
Total barrels	610,185	58	1	25	74

[^0]: This case represents a major revision of the case "American Cranberry Cooperative" written by J. Tucker. Certain dates and financial data have been disguised. HBS cases are developed solely as the basis for class discussion. Cases are not intended to serve as endorsements, sources of primary data, or illustrations of effective or ineffective management.

 Copyright © 1988 President and Fellows of Harvard College. To order copies or request permission to reproduce materials, call 1-800-545-7685, write Harvard Business School Publishing, Boston, MA 02163, or go to http://www.hbsp.harvard.edu. No part of this publication may be reproduced, stored in a retrieval system, used in a spreadsheet, or transmitted in any form or by any means-electronic, mechanical, photocopying, recording, or otherwise-without the permission of Harvard Business School.

[^1]: ${ }^{1}$ Destoning was the separation of foreign materials, such as small stones, that might be mixed in with the berries.
 ${ }^{2}$ Dechaffing was the removal of stems, leaves, and so forth that might still be attached to the berries.

