Tutorial SLIDE

Es recomendable que sigan pasa a paso las instrucciones

Dibujar un talud o una ladera

Deben ir a Boundaries \rightarrow Add Bounday, como se muestra en la figura 1. El puntero se transformará en una cruz con la cual pueden trazar los bordes de la ladera o talud.

Figura 1: Dibujar ladera

Para controlar las dimensiones de la figura, se puede utilizar el recuadro que se encuentra en la parte inferior derecha de la pantalla (elipse roja en figura 1) donde pueden ingresar los vértices del talud (horizontal, vertical). Otra opción es integrar una grilla, para eso deben ir a View \rightarrow Grid, como lo muestra la figura 2, donde tienen la opción de elegir el espaciamiento de la grilla.

 S	ilide		Slic	el																
Ł.	File		Edit	(View	Analysis	Boundaries	Loading	Su	ppor	: S	urfa	ces	Prop	ertie	is V	Vind	ow	Help	
D	2	•		3	L	imits				1		b	æ	۹	Q	đ	Q	Qt		4
<u>i</u> 9	V	2	3	靓.	4	.00m			<u> </u>											
8-					<u> </u>	ir <u>a</u> yscale														
					20	isplay Optio	ons	Ctrl+D		- ·										
					S	how <u>C</u> oordi	inates			- ·										
:					D)ata <u>T</u> ips			۲	÷ •						• •				
:					S	nap				· ·										
K-					• 🤇	grid				11										
					V R	tuler														
-																				
					þ	mage			۲											
- 1																				

Figura 2: Grilla

El talud que realicen tiene que ser una un polígono cerrado como lo muestra la figura 3.

Figura 3: Ladera o talud

Limite de los distintos tipos de materiales

Una vez que ya tengan dibujado su talud, éste puede tener distintos tipos de materiales. Para definir estos límites tienen que ir a Boundaries \rightarrow Add Material Boundary, como se muestra en la figura 4.

Slide - [Slide1.sli*]			
🚰 File Edit View Analysis	Boundaries Loading Support	Surfaces Properties Statistics V	/indow Help
D 🗳 + 日 🖪 🎒 🍣	🕼 Add E <u>x</u> ternal Boundary	🔜 🗟 ଷ୍ଟ୍ର୍ଟ୍ 🗟 ୧୯ ୧	2 🗠 🗠 📲
	Add Material Boundary		
	Expand/Shrink External		
8-	Add <u>W</u> ater Table Add <u>P</u> iezometric Line Water Pressure <u>G</u> rid		
8-	Add Tension Crack	,	

Figura 4: Limite de distintos materiales

Luego de definir estos límites quedará una imagen similar a la figura 5.

Figura 5: Limites de distintos materiales

Definir propiedades de los materiales

Para definir las propiedades de los distintos tipos de materiales que existen en el talud deben ir a Properties \rightarrow Define Materials (figura 6), se abrirá un cuadro (Figura 7) en donde pueden ingresar el peso específico, la cohesión y el ángulo de fricción de los distintos materiales.

Además pueden definir el nombre, el color y la forma como se mostrará estos materiales en la

Properties Statistics Window Hel	p
Define <u>M</u> aterials	هي ا
Define Support	
Pefine Tension Crack	
🕬 Assign Properties	Ctrl+A
Assign Water Surface	
Reset Material Assignments	
3	Properties Statistics Window Hel Define Materials Define Support Assign Properties Assign Water Surface Best Material Assignments

Figura 6: Definir propiedades de los materiales

Define Material Properties
□ Material 1 □ Material 2 □ Material 3 □ Material 4 □ M ▲ ▶ Name: Material 1 □ Colour: ▼ Hatch: ▼ Unit Weight: 20 kN/m3 □ Saturated U.W. 20 kN/m3
Strength Type: Mohr-Coulomb \checkmark $\tau = c' + \sigma'_n \tan \phi'$ Strength Parameters Image: Cohesion Image: Cohesion Cohesion: 8 kN/m2 Phi 20 degrees
Water Parameters Water Surface: None Hit: Custom 1
Copy To Statistics OK Cancel

Figura 7: Definir propiedades de los materiales

Asignación de los materiales

figura.

Para asignar los distintos materiales al talud deben ir a Properties \rightarrow Assign Properties (Figura 8), se abrirá un cuadro como se muestra en la figura 9. Con el índice deben hacer click en el material que deseen y luego hacer otro click en la ladera donde quieran asignarlo.

😸 Slide - [Slide1.sli*]	
😓 File Edit View Analysis Boundaries Loading Support Surfaces	Properties Statistics Window Help
	Define <u>Materials</u> Define <u>Support</u> Define <u>Tension Crack</u>
	Assign Properties Ctrl+A Assign Water Surface
	Reset Material Assignments

Figura 8: Asignación de materiales

Figura 9: Asignación de materiales

Opciones de la superficie

Deben ir a Surfaces \rightarrow Surface Options (Figura 10), se abrirá un recuadro como en la figura 11.

🔄 File Edit View Analysis Boundaries Loading Support 🏾	Surfaces Properties Statistics Windo	w Help
🗅 🖆 📲 🖪 🎒 💐 🗠 🗸 이 기 🗈 🔟 🕂 🏄 (Surface <u>O</u> ptions	- 12
≌ № Ľ .	Auto Grid Add <u>G</u> rid	
7	ൽ Add Surface (three points) 🏂 Add Surface (center, radius)	
	<u>F</u> ocus Search Slope <u>L</u> imits	•
8-	Edit	•

Figura 10: Opciones de superficie

En este recuadro solo deben preocuparse que la opción
"Search Method" debe ser Slope Search, lo demás
déjenlo en defaul.

Surface Options		? <mark>×</mark>
Surface Type © Circular O Non-Circular	Search Method	•
Slope Search Options Number of Surfaces: 50 Initial Angle at Toe Upper Angle: 45	000	
Composite Surfaces	for reverse curvature	
Surface Filter	m 🗖 Min. Depth	0 m
Арріу	OK	Cancel

Figura 11: Opciones de superficie

Características del análisis

Para definir las características del análisis deben ir a Analysis \rightarrow Project Settings (figura 12), se abrirá un cuadro como el de la figura 13.

Slide - [Slide1.sli*]				
🔛 File Edit View	Analysis Boundaries Loading	Support	Surfaces Properties Statistics	Window Help
D 🗃 🚽 🖬 🖪 🤅	N Project Settings		📐 ଇଇଇଟାୟର	🔍 🖾 🛥 + 🎍
Ra 💕 🛤 🦛	🕍 Info <u>V</u> iewer		_	
	🚾 <u>C</u> ompute	Ctrl+T		
	Market Interpret			
8-	Switch to Groundwater	Ctrl+G		
			_	
-				

Figura 12: Características del análisis

	Project Settings
En la pestaña "General" asegúrense de que la	General Methods Groundwater Statistics Random Numbers
dirección de la ladera sea la misma que la dirección a	Project Title
deslizar (Failure Direction). En la pestaña "Methods"	SLIDE - An Intelactive Slope Stability Program
pueden usar los métodos Bishop simplificado, Janbu	Units of Measurement Data Output Metric C Imperial
simplificado y GLE/Morgenstern-Price. En la	Failure Direction Maximum Number of Properties
pestaña "Statistics" usen el análisis probabilístico	C Left to Right Support: 20-
(Monte-Carlo). Lo demás déjenlo en default.	
	OK Cancel

Figura 13: Características del análisis

Análisis probabilístico

Deben ir a Properties \rightarrow Define Materials y en el recuadro que se abrirá deben hacer click en Statistics (Figura 14). Luego en el nuevo recuadro clickeen en Add (figura 15). En el siguiente recuadro seleccionen los materiales que están en análisis y hacen click en next (Figura 16). Continúan eligiendo las propiedades de los materiales que quieran que sean parte del análisis probabilístico (Figura 17) y hacen click en next. Seleccionan la distribución normal y terminan (Figura 18). Finalmente en el recuadro de la figura 19 ingresan los valores de la desviación estándar, Rel. Min. y Rel. Max. según los requisitos de la tarea.

Define Material Properties
Sueb 1 Sueb 2 Sueb 3 Material 4 Material 4 Name: Sueb 1 Colour:
Strength Parameters <u>EX</u> Cohesion: <u>8</u> kN/m2 Phi <u>20</u> degrees
−Water Parameters Water Surface: None ▼ Hi⊄ Cuntom ▼ 1
Copy To Statistics DK Cancel

Figura 14: Análisis probabilístico

Figura 16: Análisis probabilístico

Figura 18: Análisis probabilístico

Figura 15: Análisis probabilístico

2 Select Proper Select mate variables.	ies ial properties that you wish to define as r	ando
 ✔ Cohesion ✔ Phi ✔ Unit Weight 	Select All	
	<< Back Next>>> C	ancel

Figura 17: Análisis probabilístico

#	Material Name	Property	Distribution	Mean	Std. Dev.	Rel. Min	Rel. Max
1	Suelo 1	Cohesion	∧ Normal	1	0	0	0
2	Suelo 1	Phi	∧ Normal	35	0	0	0
3	Suelo 1	Unit Weight	∧ Normal	20	0	0	0
4	Suelo 2	Cohesion	∧ Normal	1	0	0	0
5	Suelo 2	Phi	∧ Normal	35	0	0	0
6	Suelo 2	Unit Weight	∧ Normal	20	0	0	0
7	Suelo 3	Cohesion	∧ Normal	1	0	0	0
8	🔲 Suelo 3	Phi	∧ Normal	35	0	0	0
9	Suelo 3	Unit Weight	∧ Normal	20	0	0	0
				2			-

Figura 19: Análisis probabilístico

Correr el programa

Deben ir a Analysis \rightarrow Compute (Figura 20) y luego a Analysis \rightarrow Interpret (Figura 21).

Slide - [Slide1.sli*]			🐰 Slide - [Slide1.sli]				
File Edit View	Analysis Boundaries Loading Su	pport Surfaces Properties Statistics Window Help	🔛 File Edit View	Analysis Boundaries Loadin	g Support Su	urfaces Properties	Statistics Window Help
	1 Project Settings	🕨 🕀 ଭ୍ର୍ଟ୍ ଷ୍ଠ୍ର୍ 🖉 🚽 🗸	🗅 😂 🕶 🖬 🗖 💩	Project Settings		🌭 🕀 ବ୍ର୍ଟ୍	ଶା ଷ ପ୍ ର 🖾 🖬 📲
	Mage Info Viewer		🌇 📝 🎮 🖛	M Into Viewer			
	Compute	Ctrl+T		- 🔜 Compute	Ctrl+T		
-	Interpret			Marterpret			
	D- Switch to Groundwater	Ctrl+G	<u>_</u> :	Switch to Groundwater	Ctrl+G		
4-	1000						
			1 1				

Figura 20: correr el programa

Figura 21: correr el programa

<u>SlideInterpret</u>

Luego de hacer click en "interpret" aparecerá una **nueva pantalla SlideInterpret** que entrega el Factor de seguridad (FS), Probabilidad de Falla (PF) y el radio (RI) asociado a la superficie de falla con el **menor** valor de FS, como se observa en la figura 22. En la parte superior de esta pantalla (donde muestra elipse roja) pueden cambiar el método de análisis.

Figura 22: SlideInterpret

En forma alternativa si van a Data \rightarrow Filter Surfaces (figura 23) aparecerá un recuadro (figura 24), donde pueden ver todas las superficies analizadas o las 10 superficies con menor FS, entre otras opciones.

Figura 23: Filtro

Figura 24: Filtro

Para guardar la imagen de SlideInterpret, tienen que ir a File \rightarrow Export \rightarrow Image (figura 25)

Figura 25: Exportar imagen