Stephen M. Rowland, Ernest M. Duehendorfer,and lisa M. Schiefelbein

STRUGTURAL ANALYSIS &
SYTH ES | S QTLF?JgGUTRl?IIEFEEEﬂnL”U%SYE }THRI] EDITION

' -5 ) » SO e
“}‘ | o MG tr‘ : :b‘-_




Structural Analysis and Synthesis



A well-armed field party, mapping the geology of Weathertop, in the southeastern Bree Greek Quadrangle. The view is
toward the north along the intrusive contact between the Cretaceous Dark Tower Granodiorite, on the right, and the
cliff-forming Devonian Lonely Mountain Quartzite, on the left.
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Dedication

This edition is lovingly dedicated to the memory of artist Nathan E Stout (1948-2005), our friend and
colleague, who drafted all of the numbered figures. Nate spent his career as the Geoscience Department
illustrator at UNLV. He hung on just long enough to complete this project, and then he slipped away. If you
find any of his artwork especially attractive or helpful, think about Nate. He drew them just for you.
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This book is intended for use in the laboratory
portion of a first course in structural geology.
Structural geology, like all courses, is taught dif-
ferently by different people. We have tried to strike
a balance between an orderly sequence of topics
and a collection of independent chapters that can
be flexibly shuffled about to suit the instructor.
Chapter § on stereographic projection, for ex-
ample, may be moved up by those instructors
who like to engage their students with stereonets
as early as possible, and Chapter 12 on rheologic
models may be moved up by those who start with
an introduction to stress and strain.

There is, however, an underlying strategy and
continuity in the organization of the material. As
is explicit in the title, this book is concerned with
both the analysis and synthesis of structural fea-
tures. There is a strong emphasis on geologic maps
throughout, and most of the first 10 chapters in-
volve some interaction with a contrived geologic
map of the mythical Bree Creek Quadrangle. The
folded Bree Creek map will be found in an envel-
ope at the back of the book. Before beginning
work on Chapter 3 the student is asked to color
the Bree Creek Quadrangle map. More than mere
busy work, this map coloring requires the student
to look carefully at the distribution of each rock
unit. The Bree Creek Quadrangle becomes the
student’s “map area” for the remainder of the
course. Various aspects of the map are analyzed
in Chapters 2 through 10 (except for Chapter 6);
in Chapter 11 these are synthesized into a written
summary of the structural history of the quadran-
gle. Some instructors will choose to skip this syn-

Preface

thesis, but we hope that most do not—students
need all the writing practice they can get. We
have placed the synthesis report in Chapter 11 so
that it would not be at the very end of the semester,
to allow some writing time. Chapters 12 through
17, in any case, contain material that is less con-
ducive to this teaching approach.

We have written each chapter with a 3-hour la-
boratory period in mind. In probably every case,
however, all but the rarest of students will require
additional time to complete all of the problems. The
instructor must, of course, exercise judgment in de-
ciding which problems to assign, and many instruct-
ors will have their own favorite laboratory or field
exercises to intersperse with those in this book. To
facilitate field exercises, we have included an appen-
dix on the use of the Brunton compass.

No instructor assigns all 17 chapters of this
book within a first course in structural geology.
But our feedback from instructors has informed us
that each of the chapters is important to some
subset of instructors. Some chapters that cannot
be explored in detail in the available laboratory
time can still be profitably studied by the student.
For the student who is frustrated about not having
sufficient time to complete all of the chapters, we
suggest that you consider proposing to your in-
structor that you enroll for a credit-hour or two
of independent study next semester or quarter, and
complete them at that time, perhaps in conjunc-
tion with a field project.

An instructor’s manual is available from the
publisher to assist the laboratory instructor in the
use of this book.



The third edition represents a thorough revision
of the book, beginning with the addition of a new
co-author, Ilsa Schiefelbein, who took a fresh look
at our approach. We scrutinized every line of every
chapter, and we made many changes that had been
suggested by students and lab instructors. In add-
ition, all of the figures were redrafted to maximize
clarity. Then, having completed a draft that we
thought was nearly perfect, we subjected it to the
critical eyes of reviewers Rick Allmendinger and
Terry Naumann, who suggested many more ways
of improving the presentation. We gratefully ac-
knowledge their efforts; we incorporated as many
of their suggestions as we possibly could, and the
book is significantly better because of them.

In addition to many small improvements
throughout, we made two format changes that
will make the book easier to use for the student.
The first of these concerns the placement of tear-
out maps and exercises. In earlier editions these
tear-out sheets were interspersed throughout each
chapter. For this edition we have moved them all
to Appendix G, which will reduce the clutter
within the chapters. The second change is in the
format of the Bree Creek Quadrangle map. In
previous editions of the book, the Bree Creek
map consisted of six separate sheets that the stu-
dent was obliged to cut out and tape together.
Furthermore, some of the edges did not match
perfectly. For this edition we have gone to a single,
large, folded-map format, which eliminates those
pesky map problems.

Serendipitously, cultural events beyond our con-
trol conspired to make the Bree Creek map even
more engaging than it might have been in the past.
To many of the students who used earlier editions
of this book, the names Gollum, Baggins, Dark
Tower, and Helm’s Deep, among many others
that appear on the map, carried no particular sig-
nificance. Nearly all students will now recognize
the source of these names. We hope that this adds
an additional measure of enjoyment to the use of
this book.

It is our pleasure to acknowledge some people
who played important roles in the development of
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previous editions of this book. The core of the
book was strongly influenced by courses taught
by Edward A. Hay, Othmar Tobisch, Edward C.
Beutner, and James Dietrich. Several of the map
exercises in Chapter 3 were originally developed
by geology instructor extraordinaire Edward A.
Hay, now retired from De Anza College. The
multiply deformed roof pendant on the Bree
Creek map is adapted from an exercise presented
to his students by USGS geologist James Dietrich,
when he taught one quarter at U.C. Santa Cruz.
And rock samples that appear in the exercises of
Chapter 14 were photographed from the collec-
tion of U.C. Santa Cruz professor Othmar
Tobisch, who kindly made them available for our
use. The “plate game” of Chapter 17 was inspired
by a similar exercise developed by the late Peter
Coney of the University of Arizona.

We will not repeat here the long list of people
who contributed in various important but smaller
ways to the first and second editions; we hope it
will suffice to say that their contributions are still
valued, and we hope that they can share in the
satisfaction of seeing that the book has lived on to
help another generation of students explore the
basic principles of structural geology.

Finally, we are sincerely pleased to acknowledge
our partners at Blackwell Publishing: Tan Francis,
Delia Sandford, Rosie Hayden, and copyeditor
Jane Andrew. They helped us muster the energy
and enthusiasm to take on the task of preparing a
third edition, in the face of competing commit-
ments, and they patiently worked with us through
every step of the process.

S.M.R., EIM.D., and L.M.S

A Note to Faculty

To request your Instructor’s Resource CD-ROM
please send an email to this address: artworkcd@
bos.blackwellpublishing.com



You are about to begin a detailed investigation of
the basic techniques of analyzing the structural
history of the earth’s crust. Structural geology, in
our view, is the single most important course in the
undergraduate curriculum (with the possible ex-
ception of field geology). There is no such thing as
a good geologist who is not comfortable with the
basics of structural geology. This book is designed
to help you become comfortable with the basics—
to help you make the transition from naive curios-
ity to perceptive self-confidence.

Because self-confidence is built upon experi-
ence, in an ideal world you should learn structural
geology with real rocks and structures, in the
field. The field area in this laboratory manual is
the Bree Creek Quadrangle. The geologic map of
this quadrangle is located in an envelope at the
back of the book. This map will provide continu-
ity from one chapter to the next, so that the course
will be more than a series of disconnected
exercises.

Most of the things that you will do in this la-
boratory course are of the type that, once done,
the details are soon forgotten. A year or two from
now, therefore, you will remember what kinds of
questions can be asked, but you probably will not
remember exactly how to get the answers. A quick
review of your own solved problems, however,
will allow you to recall the procedure. If your
solutions are neat, well labeled, and not crowded
together on the paper they will be a valuable arch-
ive throughout your geologic career.

In most of the chapters, we have inserted the
problems immediately after the relevant text, ra-

Read This First

ther than putting them all at the end of the chapter.
The idea is to get you to become engaged with
certain concepts—and master them—before mov-
ing on to the next concepts. We all learn best that
way. Appendix G contains pages that are intended
to be removed from the book and turned into your
lab instructor as part of a particular problem’s
solution. We recommend that you place all of
your completed lab exercises in a three-ring binder
after they have been graded by your instructor and
returned to you.

You will need the equipment listed below. A
zippered plastic binder bag is a convenient way
to keep all of this in one place.

Colored pencils (at least 15)

Ruler (centimeters and inches)
Straightedge

Graph paper (10 squares per inch)
Tracing paper

Protractor

Drawing compass

Masking tape

Transparent tape

4H or 5H pencils with cap eraser
Thumbtack (store it in one of the erasers)
Drawing pen (e.g., Rapidograph or Mars)
Black drawing ink

Calculator with trigonometric functions.

If structural geology is the most important
course in the curriculum, it should also be the
most exciting, challenging, and meaningful. Our
sincere hope is that this book will help to make
it so.
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Attitudes of Lines and Planes

alignment diagrams.

Cross sections.

Objectives
e Solve apparent-dip problems using orthographic projection, trigonometry, and

e Become familiar with the azimuth and quadrant methods for defining the
orientations of planes, lines, and lines within planes.

You will use one or more of these techniques later in the course to construct geological

/

This chapter is concerned with the orientations of
lines and planes. The structural elements that we
measure in the field are mostly lines and planes,
and manipulating these elements on paper or on a
computer screen helps us visualize and analyze
geologic structures in three dimensions. In this
chapter we will examine several graphical and
mathematical techniques for solving apparent-dip
problems. Each technique is appropriate in certain
circumstances. The examination of various ap-
proaches to solving such problems serves as a
good introduction to the techniques of solving
structural problems in general. Finally, many of
these problems are designed to help you visualize
structural relations in three dimensions, a critical
skill for the structural geologist.

The following terms are used to describe the
orientations of lines and planes. All of these are
measured in degrees, so values must be followed
by the ° symbol.

Attitude The orientation in space of a line or
plane. By convention, the attitude of a plane is

expressed as its strike and dip; the attitude of a
line is expressed as trend and plunge.

Bearing The horizontal angle between a line and
a specified coordinate direction, usually true
north or south; the compass direction or azi-
muth.

Strike The bearing of a horizontal line contained
within an inclined plane (Fig. 1.1). The strike is
a line of equal elevation on a plane. There are an
infinite number of parallel strike lines for any
inclined plane.

Dip The vertical angle between an inclined plane
and a horizontal line perpendicular to its strike.
The direction of dip can be thought of as the direc-
tion water would run down the plane (Fig. 1.1).

Trend The bearing (compass direction) of a line
(Fig. 1.2). Non-horizontal lines trend in the
down-plunge direction.

Plunge The vertical angle between a line and the
horizontal (Fig. 1.2).

Pitch The angle measured within an inclined
plane between a horizontal line and the line in
question (Fig. 1.3). Also called rake.
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Fig. 1.1 Strike and dip of a plane.
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Fig. 1.3 Pitch (or rake) of a line in an inclined

plane.

Azimuth

Apparent dip The vertical angle between an in-
clined plane and a horizontal line that is not
perpendicular to the strike of the plane
(Fig. 1.2). For any inclined plane (except a ver-
tical one), the true dip is always greater than
any apparent dip. Note that an apparent dip
may be defined by its trend and plunge or by
its pitch within a plane.

There are two ways of expressing the strikes of
planes and the trends of lines (Fig. 1.4). The azimuth
method is based on a 360° clockwise circle; the
quadrant method is based on four 90° quadrants.
A plane that strikes northwest—southeast and dips
50° southwest could be described as 315°, 50°SW
(azimuth) or N45°W, 50°SW (quadrant). Similarly,
a line that trends due west and plunges 30° may be
described as 30°, 270° (sometimes written as 30° —
270°) or 30°, N90°W. For azimuth notation, always
use three digits (e.g., 008°, 065°, 255°) so that a
bearing cannot be confused with a dip (one or two
digits). In this book, the strike is given before the dip,
and the plunge is given before the trend. To ensure
that you become comfortable with both azimuth
and quadrant notation, some examples and prob-
lems use azimuth and some use quadrant. However,
we strongly recommend that you use the azimuth
convention in your own work. It is much easier to
make errors reading a bearing in quadrant notation
(two letters and a number) than in azimuth notation
(a single number). In addition, when entering orien-
tation data into a computer program or spreadsheet
file, it is much faster to enter azimuth notation be-
cause there are fewer characters to enter.

Notice that because the strike is a horizontal
line, either direction may be used to describe it.
Thus a strike of N45°W (315°) is exactly the same
as S45°E (135°). In quadrant notation, the strike is

S

Quadrant

Fig. 1.4 Azimuth and quadrant methods of expressing compass directions.



commonly given in reference to north (N45°W
rather than S45°E). In azimuth notation the
“right-hand rule” is commonly followed. The
right-hand rule states that you choose the strike
azimuth such that the surface dips to your right.
For example, the attitude of a plane expressed as
040°, 65°NW could be written as 220°, 65° using
the right-hand rule convention because the
65°NW dip direction would lie to the right of the
220° strike bearing.

The dip, on the other hand, is usually not a
horizontal line, so the down-dip direction must
somehow be specified. The safest way is to record
the compass direction of the dip. Because the dir-
ection of dip is always perpendicular to the strike,
the exact bearing is not needed; the dip direction is
approximated by giving the quadrant in which it
lies or the cardinal point (north, south, east, or
west) to which it most nearly points. If the right-
hand rule is strictly followed, it is possible to
specify the dip direction without actually writing
down the direction of dip.

Solve Problems 1.1, 1.2, and 1.3.

Apparent-dip problems

There are many situations in which the true dip of
a plane cannot be measured accurately in the field

CAltitudes u/ 'Lines and Planes

h) 270°
N55°E i) 083°
i) N3°W

Problem 1.2
Circle those attitudes that are impossible (i.e., a bed
with the indicated strike cannot possibly dip in the
direction indicated).
a) 314°, 49°NW f) 333°, I5°SE

/ Problem 1.1
Translate the azimuth convention into the quadrant
convention, or vice versa.
a) NI2°E f)y N37°W
b) 298° g) 233°

~

b) 086°, 43°W g) 089°, 43°N
NI5°W, 87°NW h) 065°, 36°SW
345°, 62°NE i) N65°W, 54°SE
062°, 32°S

-

(o oo
ceo

or cannot be drawn on a cross-section view. Any
cross section not drawn perpendicular to strike
displays an apparent dip rather than the true dip
of a plane (except for horizontal and vertical
planes).

/ Problem 1.3

Fault surfaces sometimes contain overprinted slip lineations (fault striae). Such slip lineations can be used to
determine the orientation of slip on a fault, and, therefore, whether the motion on the fault was strike-slip, dip-
slip, or oblique-slip. A geology student who was just learning to use a Brunton compass recorded the orientations of
five slip lineations on one fault surface. The strike and dip of the fault surface is 320°, 47°NE. The student’s five
recorded lineation orientations are recorded in the table below.

Determine which lineation orientations are feasible and which ones must represent a mistake on the part of the
student because the given orientation does not lie within the fault plane. Give a brief explanation for each of your five
answers. For the valid lineation orientations, indicate which type of fault motion is indicated.

Type of motion indicated
(strike-slip, dip-slip, or
oblique-slip)

Feasible?
(yes or no)

Lineation

(plunge and trend) Explanation

a) 34°, due north

)

b) 0°, 140°

c) 33°, N66°W
)
e)

d) 47°, 050°

75°, due north

8
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Apparent-dip problems involve determining the
attitude of a plane from the attitude of one or more
apparent dips, or vice versa. The strike and dip of a
plane may be determined from either: (1) the strike
of the plane and the attitude of one apparent dip, or
(2) the attitudes of two apparent dips.

There are four major techniques for solving ap-
parent-dip problems. These are: (1) orthographic
projection, (2) trigonometry, (3) alignment dia-
grams (nomograms), and (4) stereographic projec-
tion. Stereographic projection is described in
Chapter 5. The other three techniques are discussed
in this chapter.

Throughout this and subsequent chapters the
following symbols will be used:

a (alpha) = plunge of apparent dip

B (beta) = angle between the strike of a plane and
the trend of an apparent dip

d (delta) = plunge of true dip

0 (theta) = direction (trend) of apparent dip.

N25°E

Orthographic projection

One way to solve apparent-dip problems is to
carefully draw a layout diagram of the situation.
This technique, called orthographic projection, is
more time-consuming than the other approaches,
but it helps you to develop the ability to visualize
in three dimensions and to draw precisely.

Example 1.1: Determine true dip from strike plus
attitude of one apparent dip

Suppose that a quarry wall faces due north and
exposes a quartzite bed with an apparent dip of
40°, N90°W. Near the quarry the quartzite can be
seen to strike N25°E. What is the true dip?

Before attempting a solution, it is crucial that
you visualize the problem. If you cannot draw it,
then you probably do not understand it. Figure
1.5a shows the elements of this problem.

&
s
g

<
*\:;)

§
Direction of apparent/‘
S

N

E
dip

Direction of apparent dip

Fig. 1.5 Solution of Example 1.1. The dashed lines are fold lines. (a) Block diagram. (b) Step 1 of orthographic
solution. (c) Block diagram looking north. (d) Orthographic projection of step 2. (e) Block diagram of step 3.
(f) Orthographic projection of step 3. (g) Block diagram of step 4. (h) Orthographic projection of step 4.
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Solution

1 Carefully draw the strike line and the direction
of the apparent dip in plan (map) view
(Fig. 1.5b).

2 Addaline for the direction of true dip. This can
be drawn anywhere perpendicular to the strike
line but not through the intersection between
the strike and apparent-dip lines (Fig. 1.5¢,d).

3 Now we have a right triangle, the hypotenuse
of which is the apparent-dip direction. Im-
agine that you are looking down from space
and that this hypotenuse is the top edge of the
quarry wall. Now imagine folding the quarry
wall up into the horizontal plane. This is done
graphically by drawing another right triangle
adjacent to the first (Fig. 1.5e,f). The appar-
ent-dip angle, known to be 40° in this prob-
lem, is measured and drawn directly adjacent

Fold line

oty |,

g

Fig. 1.5 (Continued)

to the direction of the apparent-dip line. Since
the apparent dip is to the west, the angle opens
to the west on the drawing. The line opposite
angle a is of length d and represents the depth
to the layer of interest at point P (Fig. 1.5f).

4  Finally, the direction of true dip is used as a
fold line, and another line of length d is drawn
perpendicular to it (Fig. 1.5g,h). The true dip
angle 3 is then formed by connecting the end
of this new line to the strike line. Because the
true dip is to the northwest, angle & opens
toward the northwest. Angle & is measured
directly off the drawing to be 43°.

If you have trouble visualizing this process,
make a photocopy of Fig. 1.5h, fold the paper
along the fold lines, and reread the solution to
this problem.

Solve Problems 1.4 and 1.5.

Fold line

)
X

3
[}
d 8( IS
~ Lo,
Yy ,.
e

Y

Truedip § ) = 43°
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Example 1.2: Determine strike and dip from two

Problem 1.4 apparent dips
Along a railroad cut, a bed has an apparent dip of 20° Suppose that a fault trace is exposed in two adja-
in a direction of N62°W. The bed strikes N67°E. cent cliff faces. In one wall the apparent dip is 157,

Using orthographic projection, find the true dip. ] %51?;15’1 :?}?eirslt;}illfeoatlizr clitl libs gfg:ﬂffisifggﬁgﬁa)'
u !

Solution

I Visualize the problem as shown in Fig. 1.6b.
We will use the two trend lines, OA and OC,
as fold lines. As in Example 1.1, we will use a
vertical line of arbitrary length d. Draw the
two trend lines in plan view (Fig. 1.6¢).

2 From the junction of these two lines (point O)
draw angles a1 and «; (Fig. 1.6d). It does not

Problem 1.5

A fault has the following attitude: 080°, 48°S. Using
orthographic projection, determine the apparent dip
of this fault in a vertical cross section striking 295°.

Fig. 1.6 Solution of Example 1.2. (a) Block diagram. (b) Block diagram showing triangles involved in orthographic
projection and trigonometric solutions. (c) Step 1 of orthographic solution. (d) Step 2. (e) Step 3. (f) Step 4. (g) Steps 5 and 6.



really matter on which side of the trend lines
you draw your angles, but drawing them
outside the angle between the trend lines
minimizes the clutter on your final diagram.
Draw a line of length d perpendicular to each
of the trend lines to form the triangles COZ
and AOX (Fig. 1.6e). Find these points on
Fig. 1.6b. The value of d is not important,
but it must always be drawn exactly the
same length because it represents the depth
to the layer along any strike line.

Figure 1.6e shows triangles COZ and AOX
folded up into plan view with the two appar-
ent-dip trend lines used as fold lines. As shown
in Fig. 1.6b, line AC is horizontal and parallel
to the fault plane; therefore it defines the
fault’s strike. We may therefore draw line AC
on the diagram and measure its trend to deter-
mine the strike (Fig. 1.6f); it turns out to be
N22°W.

Line OB is then added perpendicular to line
AC; it represents the direction of true dip
(Fig. 1.6g).

Using line OB as a fold line, triangle BOY (as
shown in Fig. 1.6b) can be projected into the
horizontal plane, again using length d to set
the position of point Y (Fig. 1.6g). The true

CAltitudes u/ 'Lines and Planes

dip 8 can now be measured directly off the
diagram to be 30°.

Solve Problems 1.6 and 1.7.

Problem 1.6

A fault plane is intersected by two mine adits. In one
adit the plunge and trend of the apparent dip is 20°,
N10°W, and in the other it is 32°, N85°W. Use
orthographic projection to determine the attitude of
the fault plane.

Problem 1.7

A bed strikes 065° and dips 40° to the south. Two
vertical cross sections need to be drawn through this
bed, one oriented north—-south and the other
oriented east-west. By orthographic projection de-
termine the apparent dip on each cross section.

Fig. 1.6 (Continued)
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Trigonometric solutions

Apparent-dip problems can be done much faster and
more precisely trigonometrically, especially with a
calculator. This method is particularly suitable when
very small dip angles are involved. Even when the
angles are not drawn orthographically, however,
you should sketch a block diagram in order clearly
to visualize the problem. Programs to solve appar-
ent-dip problems on programmable calculators are
discussed by De Jong (1975).
Refer to Fig. 1.6b for the following derivation:

AX =BY
AX BY
tan AOX = ﬁ = ﬁ
BY
AOX = —————
tan AO OB(sec AOB)
_ OB(tan BOY)
tan AOX = G p e AOB)
_tan BOY
~ sec AOB

= tan BOY cos AOB
or, using symbols,

tana = (tand)( cos angle between true-

1.1
and apparent-dip directions) (1.1)
or
tans tan o
and =
cos angle between true- and
apparent-dip directions (1.2)
or
t
tand — o0& (1.3)
sin 3

Example 1.3: Determine true dip from strike plus
attitude of one apparent dip

Example 1.1 is a convenient problem of this type to
solve trigonometrically. The strike of a bed is known
to be 025° but we do not know the dip. An apparent
dip is 40°,270°, and angle B (between the strike of the
bed and the trend of the apparent dip) is 65° (Fig. 1.5b).

a =40°,tan40° = 0.839
B =65°sin65" =0.906

Solution
From equation 1.3,
tana  0.839
tan8 = Sin B = m = 0926
5 =42.8°

Example 1.4: Determine strike and dip from two
apparent dips

Because two apparent dips with trend 0 are in-
volved, they will be labeled 6, and 6,, which cor-
respond to the two apparent-dip angles o and ;.
81 should represent the more gently dipping of the
two apparent dips.

This type of problem has two steps. The first
step is to determine the angle between the true-dip
direction and 6;. The relevant trigonometric rela-
tionships are as follows:

tan angle between®;  (csc angle between

01 and 60,)
[(cotay)(tanay) — (cos

and true-dip direction

angle between 6; and 6,)]
(1.4)

Using Example 1.2, we have the situation shown
in Fig. 1.6¢,d.

0, = 130°(SS0°E) oy = 15°
0, = 45°(N45°E)  ap = 28°

angle between 61 and 6, = 85°

Solution
From equation 1.4,

tan angle between 6; and true-dip direction

= (csc 85°)[(cot 15°)(tan28°) — (cos 85°)]

= 1.004[(3.732)(0.532) — (0.087)]

= 1.004[1.985 — 0.087] = 1.91

angle between 61 and true-dip direction = 62.3°

This angle is measured from 6, in the direction of
0,. In this case the computed angle (62.3°) is less
than the angle between 61 and 6, (85°). The true-
dip direction, therefore, lies between 6; and 0,.
0, is 130° (SS50°E) so the direction of true
dip is 130° — 62° = 68° (N68°E). Examination
of Fig. 1.6b shows that this is a reasonable dip



direction. A dip direction of N68°E corresponds to
a strike of N22°W, which agrees with our ortho-
graphic projection solution.

If the angle between 6, and the true-dip direc-
tion is determined to be greater than the angle
between 61 and 6, then the angle is measured
from 6; toward and beyond 6,.

Once the true-dip direction (and therefore the
strike direction) has been determined, equation
1.3 is used to determine 3:

a=15° tana =0.268
B = angle between 130°(S50°E)
and 158°(S22°E) = 28°

sin3 = 0.469
0.268
tan6 = m = 0571
5 =30°
Problem 1.8

Solve Problem 1.4 using trigonometry.

Problem 1.9

Solve Problem 1.5 using trigonometry.

/ Problem 1.10

A mining company is planning to construct an
underground coal mine within a thin coal seam that
dips 2° due east. You are the mine engineer, and it is
your task to make sure that the mine adits do not fill
with water. This requires that each adit has a slope of
no less than 1°. In what directions may adits be
oriented within the coal seam such that their slope
is 1° or steeper?

CAltitudes u/‘i;'/ml and Planes

f Problem 1.11

The apparent dip of a fault plane is measured in two
trenches. In one trench the apparent dip is 4°
toward the southwest in a trench wall that has a
bearing of 220°. In the second trench the apparent
dip is 7° toward the east in a trench wall that has a
bearing of 100°. Trigonometrically determine the
Qrection and angle of true dip.

Alignment diagrams

Alignment diagrams (nomograms) usually in-
volve three variables that have a simple math-
ematical relationship with one another. A
straight line connects points on three scales. Fig-
ure 1.7 is an alignment diagram for 8, o, and .
If any two of these variables are known, the
third may be quickly determined. This technique
is particularly convenient for determining appar-
ent-dip angles on geologic structure sections that

are not perpendicular to strike, as discussed in
Chapter 4.

Problem 1.12

Solve Problems 1.4 and 1.5 using the alignment
diagram (Fig. 1.7).
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Fig. 1.7 Alignment diagram (nomogram) for use in solving apparent-dip problems. Place a straight edge on the two
known values to determine the unknown value. As shown on the diagram, if the true dip of a plane is 43° and the angle
between the strike and the apparent dip direction is 35°, then the apparent dip is 28°. After Palmer (1918).
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Outcrop Patterns and Structure Contours

-~

Objectives )
Determine the general attitude of a plane from its outcrop pattern.
Draw structure-contour maps.
Solve three-point problems.
Determine the outcrop patterns of planar and folded layers from attitudes at
isolated outcrops.
/

Because the earth’s surface is irregular, planar fea-
tures such as contacts between beds, dikes, and faults
typically form irregular outcrop patterns. In situ-
ations where strike and dip symbols are not provided
(such as on regional, small-scale maps), outcrop pat-
terns can serve as clues to the orientations of the
planes. Following are seven generalized cases show-
ing the relationships between topography and the
outcrop patterns of planes as seen on a map. As
you examine Figs 2.1 through 2.7, cover the block
diagram (parts a) and try to visualize the orientation
of the bed from its outcrop pattern in map view (parts
b). Note the symbols that indicate attitude.

1 Horizontal planes appear parallel to contour
lines and “V” upstream (Fig. 2.1).

2 Vertical planes are not deflected at all by val-
leys and ridges (Fig. 2.2).

3 Inclined planes “V” updip as they cross ridges
(Fig. 2.3).

4 Planes that dip upstream “V” upstream
(Fig. 2.4).

5 Planes that dip downstream at the same gra-
dient as the stream appear parallel to the
stream bed (Fig. 2.5).

6 Planes that dip downstream at a gentler gradi-
ent than the stream “V” upstream (Fig. 2.6).

7 DPlanes that dip downstream at a steeper gra-
dient than the stream bed (the usual case) “V”
downstream (Fig. 2.7).

/ Problem 2.1

On the geologic map in Fig. G-1 (Appendix G) draw
the correct strike and dip symbol in each circle to
indicate the attitude of Formation B and each dike.
To verify your attitude symbols, Fig. G-2 can be cut out
and folded to form a block model of this map. Appen-

@x F shows standard symbols for geologic maps. I
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Fig. 2.1 Horizontal plane in a stream valley. (a) Block diagram. (b) Map view.
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Fig. 2.3 Inclined plane crossing a ridge. (a) Block diagram. (b) Map view.
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Fig. 2.4 Inclined plane dipping upstream. (a) Block diagram. (b) Map view.

Fig. 2.5 Plane dipping parallel to stream gradient. (a) Block diagram. (b) Map view.

Fig. 2.6 DPlane dipping downstream more gently than the stream gradient. (a) Block diagram. (b) Map view.
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Fig. 2.7 Plane dipping downstream more steeply than the stream gradient. (a) Block diagram. (b) Map view.

Structure contours

A contour line is one that connects points of equal
value. On a topographic map, each contour line
connects points of equal elevation on the earth’s
surface. A structure contour is a line that connects
points of equal elevation on a structural surface,
such as the top of a formation.

Structure-contour maps are most commonly
constructed from drill-hole data. See Fig. 2.8, for
example, which shows a faulted dome. Notice
that, unlike topographic contours, structure con-
tours sometimes terminate abruptly. Gaps in the

~200"
Lo Surface

~Sea LeVe]

a

map indicate normal faults, and overlaps indicate
reverse faults.

Structure-contour maps help geologists recog-
nize structures in the subsurface. They are used
extensively in petroleum exploration to identify
structural traps and in hydrology to characterize
the subsurface configurations of aquifers. The ob-
jective here will be to introduce you to structure-
contour maps so that you are generally familiar
with them and can use them to determine outcrop
patterns later in the chapter.

Figure G-3 (Appendix G) is a map showing the
elevation (in feet) of the top of a formation in 26

Surface trace
of fault

Fig. 2.8 Block diagram (a) and structure-contour map (b) of a faulted dome. D, down; U, up.



drill holes. This area is in the northeastern corner
of the Bree Creek Quadrangle, and the formation
involved is the Bree Conglomerate. The geologic
map of the Bree Creek Quadrangle may be found
in an envelope at the back of this book. As
explained later in this chapter, you will use it
often as you work through the following chapters.
There are various techniques for contouring
numerical data such as the elevations in Fig. G-3.
In the case of geologic structure contours, there
are usually not enough data to produce an un-
equivocal map, so experienced interpretation be-
comes extremely valuable. Although there are
computer programs that will draw contour lines
between data points, such a program cannot sub-
stitute for the judgment of an experienced geolo-
gist. For example, if four structure contours must
pass between two elevation points, a computer
program may space these contours at equal inter-
vals. If the geologist has independent evidence that
the surface to be contoured steepens toward one of
the elevation points, he or she can draw the struc-
ture contours accordingly (i.e., progressively
closer together) to depict the steepening surface.

/ Problem 2.2

Draw structure contours on Fig. G-3. Use a 400-ft
contour interval (including 0, 400, 800, 1200, etc.).
Assume that, unlike the example in Fig. 2.8, this
surface is not broken by faults, so your structure
contours should be continuous.

If you do not know how to begin, here is a sugges-
tion. Find a point, such as the 799-ft point, with an
elevation that is close to the elevation of one of the
contour lines. You know that the 800-ft contour passes
very close to this point, but where does it go from
there? To the east and northeast are two points with
elevations of 1013 ft and 516 ft; 800 lies between
these two elevations, so the 800-ft contour must pass
between these two points, closer to the 1013-ft point
than to the 516-ft point. Once you have a few lines
drawn, the rest will fall into place. Your structure con-
tours should be smooth, subparallel lines. Use a pencil;
this is a trial-and-error operation. Be sure to label the
elevation of each structure contour as you draw it.

When you are finished you should be able to recog-
nize some folds. Using the symbols in Appendix F,
draw appropriate fold symbols on your structure-con-
tour map. Also draw a few strike-and-dip symbols on

t\he map, but without specifying the amount of dip. }
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The three-point problem

In many geologic situations, a bedding plane
or fault surface may crop out at several localities.
If the surface is planar and the elevations of three
points on the surface are known, then the classic
“three-point” problem can be used to determine
the attitude of the plane. Consider Fig. 2.9a, which
shows three points (A, B, C) on a topographic
map. These three points lie on the upper
surface of a sandstone layer. The problem is
to determine the attitude of the layer. We will solve
this problem in two different ways, using first a
structure-contour approach, then a two-apparent-
dip approach.

Solution 1

1 Place a piece of tracing paper over the map,
and label the three known points and their
elevations. On the tracing paper draw a line
connecting the highest of the three points with
the lowest. Take the tracing paper off the map.
Now find the point on this line that is equal
in elevation to the intermediate point. In
Fig. 2.9b, point B has an elevation of
160 ft, so point B’, the point on the AC line
that is equal in elevation to point B, lies 6/10
of the way from point A (100 ft) to point C
(200 ft).

2 The bed in question is assumed to be planar,
so B" must lie in the plane. We now have
two points, B and B, of equal elevation lying
in the plane of the bed, which define the
strike of the plane. The structure-contour
line B-B’ is drawn, and the strike is meas-
ured with a protractor to be N48°E
(Fig. 2.9¢).

3 The direction and amount of dip are deter-
mined by drawing a perpendicular line to the
strike line from point A, the lowest of the three
known outcrop points (Fig. 2.9d). The
amount of dip can be determined trigonome-
trically as shown:

. . /
change in elevation _ ﬂ —057

tand = =104

map distance

0.57 = tan 30°, & = 30°
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Fig. 2.9 Solution of a three-point problem using a combination of graphical and trigonometric techniques. (a) Three
coplanar points (A, B, and C) on a topographic map. (b) Location of a fourth point, B, at the same elevation as point B.
(c) Line B-B’ defines the strike of the plane. (d) Dip-direction line perpendicular to the line B-B'.

Solution 2

Another approach to solving a three-point prob-
lem is to convert it into a two-apparent-dip prob-
lem, as follows:

1 Draw lines from the lowest of the three points
to each of the other two points (Fig. 2.10a).
These two lines represent apparent-dip direc-
tions from B to A and from C to A.

2  Measure the bearing and length of lines CA
and BA on the map (Fig. 2.10b), and deter-
mine their plunges:

0, = 80°, 6, = 107°

diff. in elevation 60’

= = =0.303
fana map distance 198
100/
tano) = m =0.490

3 Use equation 1.4 to find the true-dip direction,
and then use equation 1.3 to find the amount of
dip.

/ Problem 2.3

Points A, B, and C in Fig. G-4 are oil wells drilled on a
level plain, and all of the wells tap the same oil-
bearing sandstone. The depth (not the elevation!) of
the top of this sandstone in each well is as follows: A
= 5115 ft, B = 6135 ft, and C = 5485 ft.

I Determine the attitude of the sandstone.

2 If a well is drilled at point D, at what depth

\ would it hit the top of the sandstone?

Determining outcrop patterns with structure
contours

Earlier we discussed structure-contour maps de-
rived from drill-hole data. Structure-contour
maps may also be constructed from surface data.
Suppose, for example, that an important horizon
is exposed in three places on a topographic map,
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Fig. 2.10 Three-point problem converted to a two-ap-
parent-dip problem. (a) Three coplanar points. Lines are
drawn to the lowest of the three points from the other two
points. (b) Apparent-dip directions 61 and 6,.

as in Fig. 2.9a. If this horizon is planar we can
determine its outcrop pattern on the map by the
following technique.

1 On a piece of tracing paper draw the structure
contour that passes through the middle eleva-
tion point (Fig. 2.9b,¢).

2 Find the true dip as described above under the
three-point problem.

3 Draw structure contours parallel to the line B—
B’ (Fig. 2.9¢). In order to determine the out-
crop pattern, these structure contours must
have a contour interval equal to (or a multiple
of) the contour interval on the topographic
map. They also must represent the same ele-
vations. Because the surface we are dealing
with in this example is assumed to be planar,
the structure contours will be a series of
straight, equidistant, parallel, lines. The spa-
cing can be determined trigonometrically:

contour interval

map distance = an’d

In this example the spacing turns out to be
17.5 ft in plan view (Fig. 2.11a). Point B is at
an elevation of 160 ft, which is conveniently
also the elevation of a topographic contour.
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Points on the bedding plane with known ele-
vations (points A and C in this problem)
should serve as control points; that is, lay the
tracing paper over the map and make sure that
the elevations of known outcrop points match
their elevations on the structure-contour map.
If the surface is not quite planar but changes
dip slightly, adjustments can constantly be
made on the structure-contour map. Figure
2.11b shows the completed structure-contour
map for this example.

4 Superimpose the structure-contour map and
the topographic map (Fig. 2.11c). Every
point where a structure contour crosses a
topographic contour of equal elevation is a
surface outcrop point. The outcrop line of
the plane is made by placing the structure-
contour map beneath the topographic map
and marking each point where contours of
the same elevation cross. A light table may
be necessary to see through the topographic
map. Connect the points of intersection to
display the outcrop pattern on the topo-
graphic map (Fig. 2.11d).

This same technique can be used to locate a second
surface that is parallel to the first. Suppose that the
contact shown in Fig. 2.11d is the top of a bed,
and we wish to determine the outcrop pattern of
the bottom as well. If a single outcrop point on the
topographic map is known, then the outcrop pat-
tern can easily be found using the structure-con-
tour map already constructed for the bed’s upper
surface as follows:

1 Position the structure-contour map beneath
the topographic map such that the bottom
surface outcrop point (or points) lies (lie) at
the proper elevation on the structure-contour
map. With the structure contours parallel to
their former position, proceed as before. In
Fig. 2.12a, point Z, at an elevation of 200 ft,
is a known outcrop point of the bottom of the
bed. The structure-contour map has been
moved so that the 200-ft structure contour
passes through point Z, and the predicted out-
crop points have been located as before.

2 Once the upper and lower contacts are drawn
on the topographic map, the outcrop pattern of
the bed can be shaded or colored (Fig. 2.12b).

This technique for locating the intersection of a
geologic surface with the surface of the earth may
be used even when the surface is not a plane, as
long as a structure-contour map can be con-
structed. In Fig. 2.13a, for example, three attitudes
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Outcrop pattern of a plane on a topographic map.

Determination of outcrop pattern using structure contours. (a) Three structure contours on a base map
(from Fig. 2.9¢). (b) Structure-contour map. (c) Structure-contour map superimposed on a topographic map. (d)

B

a

Fig. 2.12

Fig. 2.9a. (b) Outcrop pattern of this layer, which dips 30° to the southeast.

(a) Structure-contour map from Fig. 2.11 shifted such that the 200-ft structure contour lies on point Z. Point
Z is a point where the bottom of a layer is exposed. The top of this same layer is exposed at points A, B, and C from
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Fig. 2.13 Determination of outcrop pattern of a gently folded surface using structure contours. (a) Attitude of a gently
folded marker bed at three points on a topographic map. (b) Interpolation of elevations between points of known
elevation. (c) Structure-contour map of a gently folded bed. (d) Structure-contour map superimposed on topographic

base. (e) Inferred outcrop pattern of marker bed.
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of a marker bed are mapped, and all are different.
If we assume a constant slope and a gradual
change in dip between outcrop points, a struc-
ture-contour map may easily be constructed as
follows:

1  Arithmetically interpolate between the known
elevation points to locate the necessary eleva-
tion points on the surface (Fig. 2.13b).

2 Draw smooth parallel structure contours par-
allel to the strikes at the outcrop points
(Fig. 2.13¢).

3 Superimpose the structure contour map and
the topographic map, and mark the points
where contours of equal elevation intersect
(Fig. 2.13d).

4 Connect these intersection points to produce
the outcrop map (Fig. 2.13e).

K Problem 2.4

Figure G-5 is a topographic map. Points A, B, and C
are outcrop points of the upper surface of a planar
coal seam. Point Z is an outcrop point of the base of
the coal seam.
I Determine the attitude of the coal seam.
2 Draw the outcrop pattern of the coal seam.

3 Determine the thickness of the coal seam. Attach
\ any drawings and computations you use. }

Bree Creek Quadrangle map

Beginning in Chapter 3, many of the exercises in
this book will deal with the structures of the
mythical Bree Creek Quadrangle. A geologic
map of this quadrangle, copied from the original
map that Aragorn smuggled out of the Mines of
Moria, is found in the back of this structure man-
ual. This map records a variety of structures and
structural relationships, and it will provide you
with problems of appropriate complexity
throughout the course. Before continuing on to
Chapter 3, lightly color the Bree Creek Quadran-
gle map. More than mere busywork, coloring a
map forces you to look closely at the distribution
of various rock units. For maximum contrast,
avoid using similar colors, such as red and or-
ange, for rock units that consistently occur adja-
cent to one another on the map. Because you will
be using this map often, it is important that you
treat it carefully.
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Interpretation of Geologic Maps

Construct a stratigraphic column.

Objectives

Determine the exact attitude of a plane from its outcrop pattern.
Determine stratigraphic thickness from outcrop pattern.
Determine the nature of contacts from outcrop patterns and attitudes.

Every geologic project relies on the geologic maps
available at the time of the investigation. You may
be asked to check a geologic map for accuracy or
to map an area in greater detail. Even if your
particular project does not involve direct field-
work, it is essential that you have the skills neces-
sary to interpret published geologic maps.

Geologic maps are drawn primarily from obser-
vations made on the earth’s surface, often with
reference to topographic maps, aerial photo-
graphs, or satellite images. The purposes of a
geologic map are to show the surface distributions
of rock units, the locations of the interfaces or
contacts between adjacent rock units, the loca-
tions of faults, and the orientations of various
planar and linear elements. Standard geologic
symbols used on geologic maps are shown in
Appendix F.

Some aspects of constructing a geologic map,
such as the defining of rock units, are quite sub-
jective and are done on the basis of the geologist’s
interpretations of how certain rocks formed. This
being the case, many neatly inked, multicolored
maps belie the uncertainty that went into their
construction.

Accompanying this manual is a geologic map of
the Bree Creek Quadrangle. An important teach-
ing strategy of this book is to have you analyze the
map in detail throughout the course, one step at a
time, and then to have you synthesize it all into
a cohesive structural history. The analysis begins
with this chapter; the synthesis will come in
Chapter 11.

It is important to keep in mind that topographic
and geologic maps are projections onto a horizon-
tal surface. Therefore, distances measured on
maps are horizontal distances (“as the crow
flies”), not actual ground distances.

Determining exact attitudes from outcrop
patterns

Because the strike of a plane is a horizontal line,
any line drawn between points of equal elevation
on a plane defines the plane’s strike. Figure 3.1a
is a geologic map with two rock units, Formation
M and Formation X. The contact between these
two rock units crosses several topographic con-
tours. To find the strike of the contact, a straight
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Fig. 3.1 Technique for determining the attitude of a plane from its outcrop pattern. (a) Contact between Formation M

and Formation X. (b) The line connecting points of equal elevation defines strike. (c) A perpendicular is drawn to a
point of contact at a different elevation. (d) Dip angle 8 is found from tan & = v/h.

line is drawn from the intersection of the contact
with the 1920-ft contour on the west side of the
map to the intersection of the contact with the
1920-ft contour on the east side of the map
(Fig. 3.1b). The strike of this contact is thus
determined to be 079°, as measured directly on
the geologic map.

Remembering the rules of Vs from Chapter 2, it
should be clear to you from the outcrop pattern in
Fig. 3.1a that the beds dip toward the south. To
determine the exact dip, draw a line that is per-
pendicular to the strike line from another point of
known elevation on the contact. In Fig. 3.1¢, a line
has been drawn from the strike line to a point
where the contact crosses the 1680-ft contour.
The length of this line (b) and the change in eleva-
tion (v) from the strike line to this point yield the
dip 8 with the following equation (Fig. 3.1d):

v
tand = —

h

The solution to this example is:

v 240
tand —E—m— 0.08
5=35°

This method for determining attitudes from outcrop
patterns can be used only if the rocks are not folded.

Figure 3.2 shows the Neogene (Miocene and Plio-
cene) units of the northeastern block of the Bree
Creek Quadrangle. Straight lines have been drawn

connecting points of known elevation on the bot-
tom contact of the Rohan Tuff, unit Tr. The strike,
measured directly on the map with a protractor, is
344°, and the dip is 11°NE as determined by:

Fig. 3.2 Neogene units in the northeastern portion of
the Bree Creek Quadrangle. Tg, Gondor Conglomerate;
Thd, Helm’s Deep Sandstone; Tr, Rohan Tuff.
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/ Problem 3.1

On the Bree Creek Quadrangle map determine the exact strike and dip of the Miocene and Pliocene units and label the
map accordingly with the appropriate symbol. List each attitude in the space below as well as on your map. Use the
lower contact of each unit, because the upper contact may have been eroded.

After determining the strike and dip of each formation, try to visualize the geology in three dimensions. Make sure
that the attitude you determined is in agreement with the outcrop pattern. (A page for you to write your answers to
Problems 3.1, 3.2, and 3.3 is provided on Fig. G-6, Appendix G.)

Thd

Tr Tg

Northeastern fault block
Northern exposures
Southern exposures
Central fault block
Northern area
Galadriel’s Ridge
Southwestern area
Western fault block
Gandalf's Knob

Southern exposures

tnB—U— 400 _
A== 2000

d=11°

But what is the attitude of the southern outcrop
of the Rohan Tuff? Even though no two points of
equal elevation can be found on the bottom con-
tact, notice that the points of known elevation lie
on the same straight lines drawn for the northern
outcrop. This is strong evidence that the attitude
of the southern outcrop of Rohan Tuff is exactly
the same as that for the northern one. This kind of
reasoning is typical of what must become routine
when interpreting geologic maps. But become
careful! This approach assumes that the base of
the Rohan Tuff is planar. Many sedimentary and
volcanic deposits have non-planar bases.

Solve Problem 3.1.

Determining stratigraphic thickness in flat
terrain

If the attitude of a rock unit is known, it is usually
possible to determine its approximate strati-
graphic thickness from a geologic map. If a unit
is steeply dipping, and if its upper and lower con-
tacts are exposed on flat or nearly flat terrain, then
the thickness is determined from the trigonometric
relationships shown in Fig. 3.3.

t=hsind

o/

X

t=hsind

Fig. 3.3 Trigonometric relationships used for deter-
mining stratigraphic thickness # in flat terrain from dip
d and map width A.

where ¢ is stratigraphic thickness, 4 is horizontal
thickness (width in map view), and 8 is dip.
Solve Problem 3.2.

Determining stratigraphic thickness on slopes

The thickness of layers exposed on slopes may be
determined trigonometrically if, in addition to dip &
and map width b, the vertical distance v (i.e., differ-
ence in elevation) from the base to the top of the layer
is known. Figure 3.4a shows a situation in which the
layer and the slope are dipping in the same direction.
Relevant angles have been added in Fig. 3.4b, from
which the following derivation is made:
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The Paleogene (Paleocene through Oligocene) units
of the Bree Creek Quadrangle were folded and then
eroded nearly flat. Determine the approximate strati-
graphic thickness of each of these Paleogene units.
To do this, for each unit find a place that is not in the
hinge zone of a fold, where the topography is nearly
flat, where both the upper and lower contacts are
exposed, and where the dip is fairly constant. The
horizontal distance h must be measured perpendicu-
lar to the strike. A good place to measure the Bree
Conglomerate, for example, is where Galadriel’s
Creek crosses it in the southwestern corner of the
map. In places where the dip is not completely
consistent you may have to use an average dip.
(Because of the large contour interval on this map
and the absence of completely flat terrain, thickness
determinations will be somewhat variable.)

Problem 3.2

Tmm (NE corner at 1600-ft contour)

Tm (W of Galadriel’s Ridge at 36°W dip)

Tts (NE corner at 2000- and 2400-ft
contours)

Tb (at Galadriel's Creek)

\C
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Fig. 3.4 Determining stratigraphic thickness ¢ on
slopes. (a) Lengths # and v and dip angle & are needed
to derive . (b) Geometry of derivation.

This relationship applies to situations where bedding
dips more steeply than topography and both dip in the
same direction (right-hand example in Fig. 3.5). Similar
trigonometric derivations can be used to show that
in situations where bedding dips more gently than top-
ography and both dip in the same direction (left-hand
example in Fig. 3.5), the equation becomes:

t =vcosd — hsind
Where bedding and topography dip in opposite
directions (middle example of Fig. 3.5) the equa-

tion becomes:

t=hsind +vcosd

_———
- -~

=hsind+ vcosd

t=hsnd-vcosd

Fig. 3.5 Three combinations of sloping topography and dipping layers, with the appropriate formula for each.



Determining stratigraphic thickness by
orthographic projection

In some situations the preceding trigonometric
techniques for determining stratigraphic thickness
cannot be used. On the Bree Creek map, for ex-
ample, the 400-ft contour interval does not allow
the difference in elevation from the base to the top
of a unit to be precisely determined. In such cases
orthographic projection can be used to determine
stratigraphic thickness.

Suppose you want to determine the thickness of
the Gondor Conglomerate (Tg) at Galadriel’s
Ridge in the Bree Creek Quadrangle. Begin by find-
ing two points of equal elevation at the same strati-
graphic level. A line between such points defines
the strike (as discussed above). In Fig. 3.6a one such
line is drawn through the top of Tg at 4800 ft, and
another is drawn through the top of Tg at 4400 ft.

4400-foot
structure
contour

o]p _It_op surface

\/
4800-foot

structure contour
OP top surface

W

-
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The object of this construction is to draw a vertical
cross-section view perpendicular to strike. This
view will be folded up into the horizontal plane.
Line AB is drawn perpendicular to the two strike
lines (Fig. 3.6a). This will represent the 4800-ft
elevation line in the orthographic projection. A
second line, CD, is now drawn, also perpendicular
to the two strike lines. Line CD represents the
4400-ft elevation line. The distance between lines
AB and CD is taken directly off the map legend.
Next we draw line AD, which represents the east-
ward-dipping top of Tg in orthographic projection.
Repeating this same procedure with the bottom
contact of Tg results in points W, X, Y, and Z
(Fig. 3.6b). Line WZ represents the base of Tg in
orthographic projection, and the thickness can be
measured directly off the diagram. The precision is
primarily limited by the scale of the map. In this
example Tgcan be measured to be about 100 ftthick.

Tr

4400-foot
structure
contour

on bottom
surface of Tg

4800-foot
structure
contour

on bottom
surface of Tg

Fig. 3.6 Technique for determining stratigraphic thickness by orthographic projection. (a) Plotting top surface. (b)

Plotting bottom surface and deriving the thickness.
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determine the range of thicknesses.)

Problem 3.3

Determine the approximate thickness of the Neogene units in the areas indicated. (Both the Helm’s Deep Sandstone
and the Rohan Tuff have quite variable thicknesses. The Rohan Tuff was tilted and partly eroded prior to the
deposition of the Helm’s Deep Sandstone, and the Helm’s Deep Sandstone has no upper contact. Where appropriate,

Thd

Tr Tg

Gollum Ridge
Gandalf’'s Knob
Galadriel's Ridge
Mirkwood Creek
North of Edoras Creek

S

Determining the nature of contacts

A contact is the surface between two contiguous rock
units. There are three basic types of contacts: (1)
depositional, (2) fault, and (3) intrusive. It is import-
ant to be able to interpret the nature of contacts from
geologic maps whenever possible. Following are a
few map characteristics of each type of contact.

Where sedimentary or volcanic rocks have been
deposited on top of other rocks, the contact is said
to be depositional. If adjacent rock units have
attitudes parallel to one another, and there is no
evidence of erosion on the contact, then the con-
tact is a conformable depositional contact. On the
map, conformable contacts display no abrupt
change in attitude across the contact. In Fig. 3.7,
for example, although the dips in Formation X are
steeper than those in Formation Y, there is a grad-
ual steepening across the contact. A cross-section
view is shown below the map view.

If a demonstrable surface of erosion or non-
deposition separates two rock units then the con-
tact is an unconformity — a buried erosion sur-
face. There are three basic types of unconformities
(Fig. 3.8): (1) nonconformities (sediments depos-
ited on crystalline rock), (2) angular unconformi-
ties (sediments deposited on deformed and eroded
older sediments), and (3) disconformities (sedi-
ments deposited on eroded but undeformed older
sediments). Notice that a disconformity would be
indistinguishable from a conformable contact on a
geologic map because in both cases the beds are
parallel across the contact. Disconformities can
only be recognized in the field. In the case of a
nonconformity, the strike of the sedimentary lay-
ers is parallel to the contact (Fig. 3.9a). In angular
unconformities the layers overlying the uncon-
formity are always parallel to the contact, while
those beneath it are not (Fig. 3.9b).

Fault contacts are best diagnosed in the field on
the basis of fault gouge, slickensides, offset beds,
and geomorphic features. On geologic maps,
faults are often conspicuous because of the rock
units that are truncated. Figure 3.10 shows a con-
tact that is best interpreted as a fault because of
the strong discordance of strike and the fact that

neither unit strikes parallel to the contact.

Fm.Y Fm. X

o0
f-s0

Fig. 3.7 Conformable depositonal contact. Map view

above and vertical structure section below.
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Three types of unconformities: (a) nonconformity, (b) angular unconformity, and (c) disconformity.
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Fig. 3.9 (a) Nonconformity and (b) angular unconformity in map view.

Fig. 3.10 Fault contact in map view.
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Intrusive contacts are obvious where the intru-
sive rocks have clearly been injected into the coun-
try rock. As in the case of faults, this is best
determined in the field. Figure 3.11 shows an un-
equivocal intrusive contact, but sometimes intru-
sive contacts are not so jagged and cannot be
easily distinguished from faults. Intrusions such
as sills may even be parallel to the bedding of the
country rock, making the contact appear to be a
nonconformity.

While the nature of a contact may not always be
clear in map view, a geologist drawing a structure
section (cross-section view) must show the nature
of the contact. In Fig. 3.12a, a geologic map is
shown with two possible structure sections. Figure
3.12b interprets the contact between the gabbro
and Formation M as an unconformity, while
Fig. 3.12c¢ interprets the same contact as a fault.
The fact that the strike of the beds in Formation M
exactly parallels the contact makes the unconform-
ity the preferred interpretation. A fault, or even an
intrusive contact, cannot be ruled out, however,
without examining the contact in the field.

-

Figure G-7 consists of three geologic maps, each of
which has two topographic profiles below it. For
each map there are at least two possible interpret-
ations for the contact. Sketch two geologically plaus-
ible structure sections for each map, as was done in
Fig. 3.12. In the space provided below each set of
diagrams, indicate which of your two structure sec-
tions you consider most likely to be correct, and
briefly give your reasons.

These structure sections should be quick sketches that
show relationships between adjacent rock units. You do
not need to be concerned with each apparent dip; merely
@proximate the dips freehand.

Problem 3.4

Constructing a stratigraphic column

A stratigraphic column is a thumbnail sketch of
the stratigraphy of an area, showing the relation-
ships between rock units and thicknesses of strata.
It is usually a composite of several stratigraphic
sections measured at different locations. Strati-
graphic columns are extremely useful tools for
summarizing the history of deposition and erosion
of an area and for comparing the geology of one
area with that of other areas. A stratigraphic col-
umn does not summarize the structural history of
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Fig. 3.11 Intrusive contact in map view.
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Fig. 3.12 Geologic map with two alternative structure-

section interpretations. (a) Geologic map. (b) Uncon-
formity interpretation. (c) Fault interpretation.



an area because folds and faults are not shown. It
is, nonetheless, a first step in understanding an
area’s structural history. For your work with the
Bree Creek Quadrangle, a stratigraphic column
will be very handy.

Figure 3.13 contains a geologic map (Fig. 3.13a),
an accompanying structure section (Fig. 3.13b),
and a stratigraphic column (Fig. 3.13c). The con-
struction of structure sections is discussed in
detail in Chapter 4. Notice that the structure sec-
tion shows the structural and stratigraphic
relationships in a specific locality, line A-A’.
The stratigraphic column, on the other hand,
shows the generalized stratigraphic relationships
over a larger area. For example, even though
the Antelope Basalt lies unconformably on the
Jerome Schist in the eastern part of the map,

Snlesporetation of Geologic AMapis 29

in the stratigraphic column the Antelope Basalt
appears overlying the Waterford Shale, the young-
est unit it overlies in the area. If you have
trouble seeing how the map, structure section,
and stratigraphic column relate to one another,
try coloring one or more of the units on all three
diagrams.

Problem 3.5

On a piece of graph paper construct a stratigraphic
column for the Cenozoic and Mesozoic units of the
Bree Creek Quadrangle. Choose a scale that allows
your column to fit comfortably on a single sheet of

paper.
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Jerome Schist

(a) Geologic map, (b) corresponding structure section, and (c) stratigraphic column.
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Geologic Structure Sections

Objective

e Learn to draw geologic structure sections through folded and faulted terrain.

A geologic map is a two-dimensional representa-
tion of geologic features on the earth’s surface. In
order to provide a third dimension, it is standard
practice to draw one or more vertical structure
sections. These are vertical cross sections of the
earth showing rock units, folds, and faults. Struc-
ture sections are widely used as the basis for geo-
logic interpretations in petroleum and mineral
exploration, hydrological studies, assessment of
geologic hazards, and in basic research. By con-
vention, structure sections are usually drawn with
the west on the left. Structure sections oriented
exactly north-south are usually drawn with the
north on the left.

Under the best of circumstances, drill core and
geophysical data are available to help the geologist
“see” into the earth, but many structure sections
are based solely on a geologic map. Geologists use
their understanding of the geometry and kinemat-
ics of structures to project the mapped geology
into the subsurface, but this is still inferential. As
such, structure sections must be regarded as inter-
pretations that are subject to change with the ap-
pearance of new information.

By way of example, examine the geologic map
in Fig. 4.1a and the two structure sections based
on it. The map shows three groups of rocks: Meso-
zoic metabasalt, serpentinite, and Tertiary sand-

stone. The serpentinite occurs as a continuous
band between the metabasalt and the sandstone
in the southwestern part of the map and as a small
patch within the sandstone in the northern part of
the map. The original interpretation (Fig. 4.1b)
accounts for the northern outcrop of serpentinite
as occurring in the core of a partially eroded anti-
cline. However, additional fieldwork revealed
that the northern patch of serpentinite is more
likely a large landslide block that long ago slid
off the southern serpentinite mass (Fig. 4.1c). Far
from being a trivial difference, these two interpret-
ations imply rather different styles of folding as
well as predicting completely different stability
and permeability characteristics for the entire
length of the anticlinal axial trace.

When you are drawing a structure section, re-
member that, in general, it should be geometrically
possible to unfold the folds and recover the fault
slip in order to reconstruct an earlier, less
deformed or undeformed state. In other words,
your structure section should be retrodeformable.
Structure sections in which great care is taken
concerning retrodeformation are called balanced
structure sections. An introduction to the con-
struction and retrodeformation of balanced struc-
ture sections is presented in Chapter 15. For many
situations, if you make sure that sedimentary units



22 Seologic Sruc

o Cleclions

hq .

Tertiary h
sandstone (e g

Serpentinite

Serpentini;e dlide block

~ A

Fig. 4.1 Geologic map with two contrasting interpretations of structure section A-A’. Generalized from Dibblee
(1966). (a) Geologic map. (b) Original structure section in which the northern serpentinite block is interpreted as the
exposed core of an anticline. (c) Revised structure section in which the northern exposure of serpentinite is interpreted

as a landslide block.

maintain a constant thickness (unless you have
evidence to the contrary) and that the hanging
walls of faults match the footwalls, you will be
on the right track. In some structurally complex
regions, particularly where faulting has moved
rocks into or out of the plane of the structure
section, it may not be possible to draw a strictly
balanced structure section.

Structure sections of folded layers

The geometry of folds is discussed in Chapter 6. In
this chapter we are concerned with the mechanics
of drawing structure sections through folded beds,
not with the mechanics or kinematics of the
folding.

The simplest structure sections to draw are those
that are perpendicular to the strike of the bedding.
Figure 4.2 shows a geologic map with all beds strik-
ing north—south. Section A-A’ is drawn east—west,
perpendicular to the strike. Each bedding attitude
and each contact is merely projected parallel to the
fold axis to the topographic profile oriented parallel
to the section line. On the topographic profile each
measured dip is drawn with the aid of a protractor.
Using these dip lines on the topographic profile
as guides, contacts are drawn as smooth, parallel
lines. Dashed lines are used to show eroded struc-
tures. Show as much depth below the earth’s surface
as the data permit.

Problem 4.1

Draw structure section A—A’ on Fig. G-8 (Appendix
G).

In very few cases are the strikes of the beds all
parallel, as they are in Fig. 4.2. The section line,
therefore, rarely can be perpendicular to all of the
strikes. When the section line intersects the strike
of a plane at an angle other than 90°, the dip of the
plane as it appears in the structure section will be
an apparent dip. Recall that the apparent dip is
always less than the true dip.

The quickest way to determine the correct ap-
parent dip to draw on the structure section is to
use the nomogram in Fig. 1.7. Figure 4.3 shows a
geologic map in which the strike of Formation B
has been projected along the strike to line X-X’
and then perpendicular to X-X' to the topographic
profile. The angle between the strike and the sec-
tion line is 35°, the true dip is 43°, and the appar-
ent dip is revealed by the alignment diagram to be
28°, which is the angle drawn on the structure
section.

Some rock units have highly variable strikes, and
judgment must be exercised in projecting attitudes
to the section line. Attitudes close to the section line
should be used whenever possible. If the dip is vari-
able, the dip of the contact may have to be taken as
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Fig. 4.2 Basic technique for drawing a geologic structure section perpendicular to the strike of the bedding. Arrows
show transfer of attitudes from map to section. Dashed lines represent beds that have been eroded away.

the mean of the dips near the section line. The atti- that must appear on your structure section may not

tudes should be projected parallel to the fold axis, be exposed along the line of section.

which in the case of plunging folds will not be par-

allel to the contacts. In all cases, it is important to

study the entire geologic map to aid in the construc- Structure sections of intrusive bodies

tion of structure sections. Critical field relationships

Tabular intrusive bodies, such as dikes and sills,

present no special problem. Irregular plutons,

however, are problematic because in the absence

of drill-hole or geophysical data it is impossible to

o know the shape of the body in the subsurface.

Q & < Such plutons are usually drawn somewhat sche-

<« @ <« matically in structure sections, displaying the pre-
<<‘°350 p sumed nature of the body without pretending to

show its exact shape. For an example, see Fig. 4.4.

Geologic Map

X\
—Z

Problem 4.2

A x Draw structure section A-A’ on Fig. G-9. Determine
~— each apparent dip, using either the alignment dia-
gram in Fig. 1.7 or trigonometry.

Structure
section

The arc method

A more precise, but not necessarily more accurate,
Fig. 4.3 Geologic map and corresponding structure technique than freehand sketching for drawing
section drawn at an angle to strike. Dip on map becomes structure sections is called the arc (or Busk) method.
an apparent dip on the structure section. It has proved to be particularly useful in regions of
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Fig. 4.4 Example of a structure section with intrusive
bodies. After Huber and Rinehart (1965).

basins and domes or gently folded areas where beds
have been folded by flexural slip and retain a con-
stant thickness. Such folds are sometimes called con-
centric folds, for reasons that will become clear.

The arc method is based on the following two
premises: (1) the transition from one dip to the
next is smooth, and (2) bed thickness is constant.
“Volume problems” (loss of volume) at the cusps of
folds are completely ignored, which is why this tech-
nique is only appropriate for gently folded layers.

Consider the map and topographic profile in
Fig. 4.5. Each attitude on the map has been pro-
jected to the topographic profile. Instead of
sketching freehand, however, a drawing compass
is used to interpolate dips between the measured
points. The steps are as follows.

1 With the aid of a protractor, draw lines per-
pendicular to each dip on the topographic
profile. Such lines have been drawn in
Fig. 4.5b perpendicular to dips a, b, and c.
Extend them until they intersect.

2 Each point of intersection of the lines perpen-
dicular to two adjacent dips serves as the
center of a set of concentric arcs drawn with
a drawing compass. Point 1 on Fig. 4.5¢ is the
center of a set of arcs between the perpendicu-
lars to dips a and b. Point 2 serves as the center
from which each arc is continued between the
perpendiculars to dips b and c.

3 The process is continued until the structure
section is completed. Figure 4.5d shows
the completed structure section. Notice that

some arcs were drawn with unlikely sharp
corners in order for thicknesses to remain
constant.

/ Problem 4.3

An exploration oil well was drilled at the point
shown on Fig. G-10 and the units encountered are
shown on the structure section. The oil-bearing Eagle
Bluff Limestone was encountered at a depth of
7200 ft. Using the arc method, draw a structure
section. Indicate the point on the map where you,
as a consulting geologist, would recommend drilling
for oil. How deep must a well be drilled at this point
to penetrate the upper surface of the Eagle Bluff

Limestone? j

Drawing a topographic profile

Up to this point in this chapter, in all of the
examples and problems, a topographic profile has
been provided. Topographic profiles show the re-
lief at the earth’s surface along the top of the struc-
ture section. Usually you will have to construct
your own topograhic profile. The technique for
drawing a topographic profile one is as follows:

1 Draw the section line on the map (Fig. 4.6a).

2 Laytheedge of a piece of paper along the section
line, and mark and label on the paper each
contour, stream, and ridge crest (Fig. 4.6b).

3 Scale off and label the appropriate elevations on
a piece of graph paper (Fig. 4.6¢). Graph paper
with 10 or 20 squares per inch is ideal for 7.5-
minute quadrangle maps because the scale is
1 inch = 2000 ft. Notice that the map scales
on Fig. 4.6a and 4.6b are the same as the
vertical scale on Fig. 4.6¢ and 4.6d. It is very
important that the vertical and horizontal scales
are the same on structure sections. This is a very
common oversight. If the scale of the structure
section is not the same as the scale of the map
then the dips cannot be drawn at their nominal
angle.

4 Lay the labeled paper on the graph paper and
transfer each contour, stream, and ridge crest
point to the proper elevation on the graph
paper (Fig. 4.6¢).

5 Connect the points (Fig. 4.6d).
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Fig. 4.5 Arc method for drawing structure sections of folded beds. (a) Geologic map. (b) Topographic profile with
beginning arcs. (¢) Completion of arcs. (d) Completed structure section.
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Box 4.1 A note about vertical exaggeration

For routine structure sections, including all that
you draw for exercises in this book, be sure that
the vertical and horizontal scales are exactly the
same. This means that there is no vertical exag-
geration. However, there are circumstances
under which vertical exaggeration is desired.
For example, suppose you are preparing a struc-
ture section for an interpretive display at a state
park; you might want to exaggerate the vertical
scale to emphasize topographic features in the
park. In such cases, use Appendix D to deter-
mine the adjusted dip of beds in the structure
section, and be sure to indicate the amount of
vertical exaggeration on the drawing (e.g., “4 x
vertical exaggeration”). If there is no vertical
exaggeration on a structure section, write “No
vertical exaggeration” or “V: H =1 : 1” be-
neath the section.
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Structure-section format

Formal structure sections should include the fol-

lo

1
2

wing characteristics:

A descriptive title.

Named geographical all and geologic features
such as rivers, peaks, faults, and folds should
be labeled.

The section should be bordered with vertical
lines on which elevations are labeled.

All rock units should be labeled with appro-
priate symbols.

Standard lithologic patterns should be used to
indicate rock type.

A legend should be included that identifies
symbols and scale.

Vertical exaggeration, if any, should be indi-
cated; if none, indicate “no vertical exagger-
ation”.

b
Feet
25004
2400, Feet
2300 2300
2200 12200
21001 12100
2000 12000
1900/ 1900
18001 1800
1700 1700
1600 1600
1500/ 1500
1400 1400
d

Fig. 4.6 Technique for drawing a topographic profile. (a) Draw section line on map. (b) Transfer contour crossings,
streams, and other features to another sheet of paper. (c) Transfer points to proper elevation on cross-section sheet. (d)
Connect points in a way that reflects the topographic subtleties recorded on the map.



8 Depositional and intrusive contacts should
be thin dark lines; faults should be thicker
dark lines.

9 Construction lines should be erased.

10 Rock units should be colored as they are on
the map.

f Problem 4.4

Draw topographic profiles and structure sections
A-A" and B-B’ on the Bree Creek Quadrangle map.
Draw them as neatly and accurately as possible, and
color each unit on the structure sections as it is
colored on your map. Because the map shows that
the Tertiary section rests on a Cretaceous crystalline
basement, you must show the crystalline basement
beneath the Tertiary rocks on your structure section.
These structure sections will later become part of
your synthesis of the structural history of the Bree
Creek Quadrangle.

(59;9(1/1/(71}* Shructure Soctions

Use your thickness measurements from Problems
3.2 and 3.3. Units should maintain a constant thick-
ness in your structure section unless you have evi-
dence to the contrary.

Remember that structure sections involve a great
deal of interpretation and that, until someone drills a
hole, there is no single correct answer. But your
structure section must make sense and be compatible
with the geology shown on the map. As in all
scientific interpretations, the best solution is the
simplest one that is compatible with the available
data.

In the northeastern part of the map area, someone did
drill holes. Problem 2.2 (Fig. G-3) involved the drawing of
a structure contour map on the upper surface of the Bree
Conglomerate. Use your completed structure contour
map to determine the depth of the Bree Conglomerate
in the eastern half of structure section A-A".

Be sure that your structure sections have all of the
Q) features listed above.
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Stereographic Projection

Objective

e Use stereographic projection to quantitatively represent three-dimensional,
orientation data (such as the attitudes of lines and planes) on a two-dimensional

piece of paper.

An extremely useful technique for solving many
structural problems is stereographic projection.
This involves the plotting of planes and lines on
a circular grid or net. Many computer programs
are available, both commercially and as freeware,
that will plot and manipulate structural data on
stereonets in different and powerful ways. How-
ever, in this chapter we introduce you to some of
these techniques and encourage you to complete
the problems in the traditional way—by hand.
Plotting and manipulating structural data by
hand forces you to visualize the connection be-
tween the orientations of structures in the field or
on a map and the sometimes complex patterns of
lines plotted on the stereonet. Your ability to cor-
rectly interpret stereograms, regardless of how
they are generated, will be severely limited if you
are not adept at plotting and manipulating struc-
tural data by hand.

Two types of nets are in common use in geology.
The net in Fig. 5.1a is called a stereographic net; it
is also called a Wulff net, after G. V. Wulff, who
adapted the net to crystallographic use. The net in
Fig. 5.1b is called a Lambert equal-area net, or
Schmidt net. In common geologic parlance, both
of these nets are referred to as stereonets.

The two nets are constructed somewhat differ-
ently. On the equal-area net, equal areas on the
reference sphere remain equal on the projection.
This is not the case with the stereographic net. The
situation is similar to map projections of the earth;
some projections sacrifice accuracy of area to pre-
serve spatial relationships, while others do the
opposite. In preserving area, the equal-area net
does not preserve angular relationships. The con-
struction of the equal-area net does allow the cor-
rect measurement of angles, however, and this net
may reliably be used even when angular relation-
ships are involved. In structural geology the rela-
tive density of data points is often important, so
most structural geologists use the equal-area net.
In crystallography, angular relationships are espe-
cially important, so crystallographers use the
Wulff net. In this book, we will use the equal-
area net exclusively.

The equal-area net is arranged rather like a globe
of the earth, with north—south lines that are analo-
gous to meridians of longitude and east-west lines
that are analogous to parallels of latitude. The
north-south lines are called great circles and the
east—west lines are called small circles. The perim-
eter of the net is called the primitive circle (Fig. 5.2);
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Fig. 5.1 Nets used for stereographic projection. (a) Stereographic net or Wulff net. (b) Lambert equal-area net or

Schmidt net.

here “primitive” has the mathematical sense of
“fundamental.”

Unlike crystallographers, who use the net as if it
were an upper hemisphere, structural geologists
use it as a lower hemisphere. To visualize how
elements are projected onto the net, imagine look-
ing down into a large bowl in which a cardboard
half-circle has been snugly fitted at an angle. The
exposed diameter of the half-circle is a straight
line, and the curved part of the half-circle de-
scribes a curve on the bottom of the bowl. Figure
5.3a is an oblique view of a plane within a bowl;
the plane strikes north-south and dips 50°W. Fig-
ure 5.3b is an equal-area projection of the same
plane. Notice that the dip of the plane, 50° in this
case, is measured from the perimeter of the net.
The great circles on the net represent a set of
planes having the same strike and all possible
dips. The primitive circle represents a horizontal
plane. Although north and south poles are labeled
in Figs 5.2 and 5.3, geographic coordinates are
actually attached to the data on the tracing paper
that you will lay over your net, rather than to the
underlying net. By rotating the tracing paper, a
great circle corresponding to any plane may be
drawn. Similarly, we will refer to the straight line
that corresponds to the equator in Figs 5.2 and 5.3
as the “east-west line,” even though it has no fixed
geographic orientation.

Figure G-11 (Appendix G) is an equal-area net
for use in this and succeeding chapters. You will
project lines and planes onto the net by placing a
piece of tracing paper over the net and rotating the
tracing paper on a thumbtack located at the center

of the net. Your net will be heavily used, so it is a
good idea to tape it to a piece of thin cardboard to
protect it and to ensure that the thumbtack hole
does not get larger. Place a rubber eraser on the
thumbtack when your net is not in use, to avoid
impaling yourself.

Following are several examples of stereographic
projection. Work through each of them on your
own net.

Great
circles

Primitive circle

Small
circles

S

Fig. 5.2 Main elements of the equal-area projection.
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Fig. 5.3 Oblique lower-hemisphere view of the projection of a plane striking north—-south and dipping 50° west.

(a) Oblique view. (b) Equal-area projection.

A plane

Suppose a plane has an attitude of 315°, 60°SW. It
is plotted on the equal-area net as follows:

1 Stick a thumbtack through the center of the
net from the back, and place a piece of tracing
paper over the net such that the tracing paper
will rotate on the thumbtack. A small piece
of clear tape in the center of the paper will
prevent the hole from getting larger with
use.

2 Trace the primitive circle on the tracing paper
(this step may be eliminated later), and mark
the north and south poles.

3 Find 315° on the primitive circle, mark it with
a small tick mark on the tracing paper and
label it 315° (Fig. 5.4a).

4 Rotate the tracing paper so that the N45°W
mark is at the north pole of the net (Fig. 5.4b).

5 Southwest is now on the left-hand side of the
tracing paper, so count 60° inward from the
primitive circle along the east-west line of the
net and put a mark on that point.

6 Without rotating the tracing paper, draw the
great circle that passes through that point
(Fig. 5.4b).

7  Finally, rotate the paper back to its original
position (Fig. 5.4c).

A line

While a plane intersects the hemisphere as a line, a
line intersects the hemisphere as a single point.
Figure 5.5a is an oblique view of a line that trends
due west and plunges 30°, and Fig. 5.5b is an
equal-area net projection of this line. Imagine
this line passing through the center of the sphere
and piercing the lower hemisphere.

Consider a line that has an attitude of 32°, S20°E.
Here is how such a line projects onto the net:

1 Mark the north pole and S20°E on the tracing
paper.

2 Rotate the S20°E point to the bottom
(“south”) point on the net. (The north, west,
or east points work just as well. Only from
one of these four points on the net may the
plunge of a line be measured.)

3 Count 32° from the primitive circle inward,
and mark that point (Fig. 5.6).

4 Rotate the paper back to its original orienta-
tion.
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315°
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Fig. 5.4 Projection of a plane striking 315° and dipping
60°SW. (a) Plotting of strike. (b) Projection of plane
with tracing paper rotated so that the strike is at the
top of the net. (c) Tracing paper rotated back to original
position.

b

Fig. 5.5 Projection of a line that plunges 30° due west.
(a) Oblique view. (b) Equal-area projection.

S S20°E

Fig. 5.6 Projection of a line that plunges 32°, S20°E.
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Pole of a plane

By plotting the pole to a plane it is possible to
describe the plane’s orientation with a single
point on the net. The pole to a plane is the
straight line perpendicular to the plane, 90° across
the stereonet from the great circle that represents
the plane. If a plane strikes north-south and
dips 40° west, its pole plunges 50° due east
(Fig. 5.7).

Suppose a plane has an attitude of N74°E,
80°N. Its pole is plotted as follows:

1 Mark the point on the tracing paper that
corresponds to N74°E. Then rotate the tracing
paper so that this point lies at the north pole
of the net, as if you were going to plot the
plane itself. The great circle representing
this plane is shown by the dashed line
in Fig. 5.8.

2 Find the point on the east-west line of the net
where the great circle for this plane passes,
and count 90° in a straight line across the
net. This point is the pole to the plane. Mark
this point, record the plunge, and also make
a tick mark where the east-west line meets the
primitive circle. Then rotate the tracing paper
back to its original position and determine the
direction of plunge. As shown in Fig. 5.8, the
pole to this plane plunges 10°, S16°E.

In this way the orientation of numerous planes
may be displayed on one diagram without clutter-
ing it up with a lot of lines.

Line of intersection of two planes

Many structural problems involve finding the
orientation of a line common to two intersecting
planes. Suppose we wish to find the line of inter-
section of a plane 322°, 65°SW with another plane
060°, 78°NW. This line is located as follows:

1 Draw the great circle for each plane (Fig. 5.9).

2 Rotate the tracing paper so that the point of
intersection lies on the east-west line of the
net. Mark the primitive circle at the closest
end of the east-west line.

3 Before rotating the tracing paper back, count
the number of degrees on the east-west line
from the primitive circle to the point of inter-
section; this is the plunge of the line of inter-
section.

. W((l/l?(‘ Lo

Fig. 5.7 Projection of a plane (N-S, 40°W) and the
pole to the plane. (a) Oblique view. (b) Equal-area
projection.

Pole plunges
10° S16°E

6%

Fig. 5.8 Projection of a pole to a plane.
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4 Rotate the tracing paper back to its original
orientation. Find the bearing of the mark
made on the primitive circle in step 2. This is
the trend of the line of intersection. The line of
intersection for this example plunges 61°,
264°, as seen in Fig. 5.9.

'b'iﬁ

264°

Fig. 5.9 Projection of the line of intersection of two
planes. The attitude of the line of intersection is indi-
cated.

Angles within a plane

Angles within a plane are measured along the
great circle of the plane. In Fig. 5.10, for example,
each of the two points represents a line in a plane
that strikes north—south and dips S0°E. The angle
between these two lines is 40°, measured directly
along the plane’s great circle.

The more common need is to plot the pitch of a
line within a plane. Plotting pitches may be useful
when working with rocks containing lineations.
The lineations must be measured in whatever out-
crop plane (e.g., foliation or fault surface) they
occur. Suppose, for example, that a fault surface
of N52°W, 20°NE contains a slickenside lineation
with a pitch of 43° to the east (Fig. 5.11a). Figure
5.11b shows the lineation plotted on the equal-
area net.
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Fig. 5.10 Measuring the angle between two lines in a
plane.

Fig. 5.11 Pitch of a line in a plane. (a) Block diagram.
(b) Equal-area projection.
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True dip from strike and apparent dip

Two intersecting lines define a plane, so if the
strike of a plane is known, along with the trend
and plunge of an apparent dip, then these two
lines may be used to determine the complete orien-
tation of the plane.

Suppose a fault is known to strike 010°, and
an apparent dip of the fault plane is measured
to have a trend of 154° and a plunge of 35°.
The true dip of the fault is determined as
follows:

1 Draw a line representing the strike line of the
plane. This will be a straight line across the
center of the net, intersecting the primitive
circle at the strike bearing (Fig. 5.12a).

2 Make a pencil mark on the primitive circle
representing the trend of the apparent dip
(Fig. 5.12a).

3 Rotate the tracing paper so that the point
marking the apparent-dip trend lies on the
east-west line of the net. Count the number
of degrees of plunge toward the center of the
net and mark that point. This point represents
the apparent-dip line.

4 We now have two points on the primitive
circle (the two ends of the strike line) and
one point not on the primitive circle (the ap-
parent-dip point), all three of which lie on the
fault plane. Turn the tracing paper so that the
strike line lies on the north—south line of the
net, and draw the great circle that passes
through these three points.

N O10°

Trend of
apparent dip

Nt

5 Before rotating the tracing paper back,
measure the true dip along the east-west line
of the net. As shown in Fig. 5.12b, the true dip
is 50°.

Strike and dip from two apparent dips

Even if the strike of a plane is not known, two
apparent dips are sufficient to find the complete
attitude. Suppose two apparent dips of a bed are
13°, S18°E and 19°, S52°W. The attitude of the
plane may be determined as follows:

1 Plot points representing the two apparent-dip
lines (Fig. 5.13a).

2 Rotate the tracing paper until both points lie
on the same great circle. This great circle rep-
resents the plane of the bed, and the strike and
dip are thus revealed. As shown in Fig. 5.13b,
the attitude of the plane in this problem is
NS7°W, 20°SW.

Use stereographic projection to solve the following
problems, using a separate piece of tracing paper
for each problem.

Problem 5.1

Along a vertical railroad cut a bed has an apparent
dip of 20°, 298°. The bed strikes 067°. What is the
true dip?

Fig. 5.12 Determination of true dip from strike and apparent dip. (a) Draw the strike line and trend of apparent dip.
(b) Completed diagram showing the direction and degrees of the true dip.
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Fig. 5.13 Determination of strike and dip from two
apparent dips. (a) Apparent dips plotted as points on
the net. (b) Completed diagram showing the strike and
true dip.

Problem 5.2

In a mine, a fault has an apparent dip of 14°, N90°W
in one adit and 25°, SI1°E in another. What is the
attitude of the fault plane?

/ Problem 5.3

A fault strikes due north and dips 70°E. A limestone

bed with an attitude of 325°, 25°SW s cut by the

fault. Hydrothermal alteration along the fault has

resulted in an ore shoot at the intersection of the

two planes.

I  What is the orientation of the ore shoot?

2 What is the pitch of the ore shoot in the plane
of the fault?

3  What is the pitch of the ore shoot in the plane

\ of the limestone bed?

Problem 5.4

One limb of a fold has an attitude of 061°, 48°SE and
other limb 028°, 55°NW. What is the orientation of
the fold axis?

/ Problem 5.5

A coal bed with an attitude of N68°E, 40°S is ex-
posed near the bottom of a hill. One adit is to be
driven westward along the bottom of the bed from
the east side of the hill, and a second adit is to be
driven eastward along the bottom of the bed from
the west side of the hill. To facilitate drainage of
water, as well as the ease of movement of full ore
carts out of the mine, each adit is to have a slope of
@O. Determine the bearing of each of the two adits.

/ Problem 5.6

You are mapping metamorphic rocks and you notice
a lineation within the rocks. At five different outcrops
you measure the pitch of the lineation on an exposed
planar rock surface (not necessarily the same struc-
tural surface at each outcrop). The table below lists
the attitude of each exposed surface and the pitch of
the lineation on that surface.

Attitude of
Outcrop no. surface Pitch of lineation
| 300°, 84°NE 76°E
2 3507, 30°E 50°N
3 040°, 70°SE 63°SW
4 33779, 30°W 50°S
5 272°, 45°N 59°E

You hypothesize that this lineation represents a
planar fabric within the rock. Test this idea by de-
termining whether these five lineation orientations
Qre coplanar. If so, what is the attitude of the plane?

/ Problem 5.7

Two intersecting shear zones have the following

attitudes: N80°E, 75°S and N60°E, 52°NW.

I What is the orientation of the line of intersection?

2 Whatis the orientation of the plane perpendicular
to the line of intersection?

3  What is the obtuse angle between the shear
zones within this plane?

4 What is the orientation of the plane that bisects
the obtuse angle?

5 A mining adit is to be driven to the line of
intersection of the two shear zones. For max-
imum stability the adit is to bisect the obtuse
angle between the two shear zones and intersect
the line of intersection perpendicularly. What
should the trend and plunge of the adit be?

6 If the adit is to approach the line of intersection
from the southeast, will the full ore carts be going

\ uphill or downhill as they come out of the mine?
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Rotation of lines

Some types of problems involve the rotation of
lines or planes on the stereonet. Imagine three
lines—A, B, and C—with plunges of 30°, 60°,
and 90°, respectively, all lying within a vertical,
north-south-striking plane. Figure 5.14a is an
oblique view of these lines intersecting a lower
hemisphere, and Fig. 5.14b shows the same three
lines projected on the equal-area net.

As the originally vertical, north-south-oriented
plane rotates around the horizontal north-south
axis of the net, the projection points of lines within
the plane move along the small circles. Figure
5.14c shows points A, B, and C moving in unison
40° to points A’, B’, and C' as the plane rotates 40°
to the east. As the plane rotates 90° to a horizontal
position, the projected points A”, B”, and C"” lie on
the primitive circle. Notice on Fig. 5.14c that
when the plane is horizontal each line is repre-

& @w{z/er/éo%

sented by two points 180° apart on the primitive
circle, one in the northeast quadrant and one in
the southwest quadrant.

As the plane continues to rotate, A and B leave
the northern half of the hemisphere and reappear
in the southern half. In other words, when you
rotate lines beyond the primitive circle you change
from plotting the “head” of the line to plotting its
“tail.” This occurs because only the lower hemi-
sphere of the stereonet is used for plotting data.
Figure 5.14d shows the projection points of the
three lines as the plane in which they lie rotates
180° from its original orientation in Fig. 5.14a.
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Fig. 5.14 Rotation of three coplanar lines. (a) Oblique view. (b) Projection of lines on the equal-area net. (c) Projection
of lines rotated 40° (A’, B’, C') and 90° (A", B”, C"). (d) Projection of lines rotated 180° from their original positions.
(e) Oblique view of the final positions of lines rotated 180°. Lines A, B, and C lie in a north-south-striking vertical plane.
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Although in this example the lines being rotated
are coplanar, this need not be the case. Lines repre-
senting the poles of several variously oriented
planes, for example, can be rotated together. The
only requirement is that all points must move the
same number of degrees along their respective
small circles.

The two-tilt problem

It is not uncommon to find rocks that have under-
gone more than one episode of deformation. In
such situations it is sometimes useful to remove
the effects of a later deformation in order to study
an earlier one.

Consider the block diagram in Fig. 5.15a.
An angular unconformity separates Formation
Y (N60°W, 35°NE) from Formation O (N50°E,
70°SE). Formation O was evidently tilted and
eroded prior to the deposition of Formation Y,
then tilted again. In order to unravel the structural
history of this area we need to know the attitude
of Formation O at the time Formation Y was
being deposited. This problem is solved as follows:

1 Plot the poles of the two formations on the
equal-area net (Fig. 5.15b).

2 We want to return Formation Y to horizontal
and measure the attitude of Formation O. The
pole of a horizontal bed is vertical, so if we
move the Y pole point to the center of the net,
Formation Y will be horizontal. Rotate the
tracing paper so that Y lies on the east-west
line of the net.

3 The Y pole can now be moved along the
east—-west line to the center of the net
(Fig. 5.15¢). This involves 35° of movement.

47

The O pole, therefore, must also be moved
35° along the small circle on which it lies, to
O’ (Fig. 5.15¢).

O’ is the pole of Formation O prior to the last
episode of tilting. As shown in Fig. 5.15d, the
attitude of Formation O at that time was
NS58°E, 86°SE.

Attitude of
Fm. O prior to
tilting of Fm. Y

Fig. 5.15 Two-tilt problem. (a) Block diagram. (b) Plot of attitudes and poles of Formations O and Y. (c) Untilting of
Formation Y. (d) Plot of attitude of Formation O prior to tilting of Formation Y.
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Problem 5.8

The beds below an angular unconformity have an
attitude of 334°, 74°W, and those above 030°E,
54°NW. What was the attitude of the older beds
while the younger beds were being deposited?

/ Problem 5.9

[ron-bearing minerals in volcanic rocks contain mag-
netic fields that were acquired when the magma
flowed out onto the earth’s surface and cooled.
These magnetic fields can be measured to determine
the orientation of the lines of force of the earth’s
magnetic field at the time of cooling. If the north-
seeking paleomagnetic attitude in a basalt is 32°,
N67°E, and the flow has been tilted to NI12°W,
40°W, what was the attitude (plunge and trend) of
the pretilt paleomagnetic orientation?

e

/ Problem 5.10

The dip direction of cross-beds in sandstone can be
used to determine the direction that the current was
flowing when the sand was deposited. A sandstone
bed strikes 320° and dips 57°SW. Cross-beds within
this tilted bed indicate a paleocurrent direction of
090°. Rotate the bed to its pretilted orientation and

\determine the actual paleocurrent direction. I
/ Problem 5.11

In the northeastern fault block of the Bree Creek
Quadrangle there is a hill that is capped by Helm’s
Deep Sandstone overlying Rohan Tuff. In Problem
3.1 you determined the attitudes of these two units
at this locality. Use stereographic projection to deter-
mine the amount and direction of the tilting experi-
enced by this fault block after deposition of the
Rohan Tuff but before deposition of the Helm’s
\Deep Sandstone.

Cones: the drill-hole problem

In certain problems it is necessary to project a
cone onto the net. Suppose, for a simple example,
that a hole has been drilled horizontally due
north into a cliff. The drill core is shown in
Fig. 5.16a. The rock is layered, and the angle
between the core axis and the bedding plane is
30°. The angle between the pole to the bedding
plane and the core axis is 60°, the complement
of 30°.

The core rotated as it was extracted from the
hole, so the exact orientation of the bedding plane
cannot be determined. However, a locus of pos-
sible orientations can be defined. Figure 5.16b is
an oblique view of the situation, showing a cone
with its axis horizontal and trending north-south.
The cone represents all possible lines 30° from the
axis. Lines perpendicular to the sides of the cone,
representing poles to the bedding plane, pass
through the center of the sphere and intersect the
lower hemisphere as two half-circles. As shown in
Fig. 5.16c, the equal-area plot of the possible poles
to bedding consists of two small circles, each 60°
from a pole. If a second hole is drilled, oriented
differently from the first, two more small circles
can be drawn. The second set of circles will
have two, three, or four points in common with
the first pair of small circles. A third hole results
in a unique solution, establishing the pole to
bedding.

Consider the following data from three drill
holes:

Angle Angle
between axis between axis
Plunge and  of core and  and pole to
Hole no. trend of hole bedding bedding
1 74°, N80°W 17° 73°
2 70°, S30°E 18° 72°
3 62°, N67°E 51° 39°

What is the attitude of the beds? The solution
involves consideration of the holes in pairs. In part
A we will consider holes 1 and 2 together, and in
part B holes 1 and 3 together. The two parts should
be drawn on separate pieces of tracing paper.

A1 Plot each hole (Fig. 5.17a).

A2 Rotate the tracing paper so that both points
lie on the same great circle, which places
them in a common plane. In this example
the plane dips 82°SW.
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Fig. 5.16 Dirill-hole problem. (a) Drill core. (b) Oblique view of the projection of all possible poles to bedding of the
drill core. (c) Equal-area projection of all possible poles to bedding of the drill core.
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A3

A4

AS

Rotate the common plane to horizontal.
This step moves points 1 and 2 along their
respective small circles 82° to points 1’ and
2’ on the primitive circle (Fig. 5.17b).
Rotate the tracing paper so that point 1’ lies at
a pole of the net. In this position, hole 1 has
effectively been oriented horizontal and
north—south, similar to the core shown in
Fig. 5.16a. The angle between the axis of
hole 1 and the pole to bedding is 73°, so two
small circles, each 73° from a pole, describe
all of the possible pole orientations. Figure
5.17¢ shows these two small circles.

Now rotate the tracing paper so that point 2/
is at a pole of the net. The angle between the
axis of hole 2 and the pole to bedding is 72°,
so two small circles, each 72° from a pole,
describe the possible orientations of the pole
to bedding. As shown in Fig. 5.17d, the two
sets of small circles cross at points A and B.
Depending on the orientations of the two
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cores, there may be from one to four points
of intersection.

The points of intersection have been deter-
mined with the cores in a horizontal plane.
The cores must be returned to their proper
orientation for the orientations of the
points of intersection to be determined. To
do this, rotate the tracing paper so that
points 1 and 2 again lie on a common
great circle, as in step A2. Points 1’ and
2’ are imagined to move 82° back to 1 and
2, and points A and B move 82° along
small circles in the same direction to points
A’ and B, as shown in Fig. 5.17e. Notice
that point A, after moving 72°, encounters
the primitive circle. In order to complete
its 82° excursion it reappears 180° around
the primitive circle and travels an add-
itional 10°. Points A’ and B’, thus located,
are both possible poles to bedding in this
problem.

Fig. 5.17 Part A of drill-hole solution. (a) Plot of orientations of holes 1 and 2. (b) Location of the plane that is
common to both drill-hole orientations and rotation of this plane so that it is horizontal. (c) Plot of small circles that
together represent the cone of the possible bedding-plane poles relative to hole 1. (d) Same for hole 2. Points A and B are
points common to both pairs of small circles. (€) Determination of orientation of poles A and B by rotating them back
to their original orientations. A third hole must be analyzed to determine which pole is the correct one.
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B1 Holes1and 3 will now be considered together
on a separate piece of tracing paper. Figure
5.18a shows cores 1 and 3 plotted, rotated to
a common great circle, and moved to the
primitive circle as 1’ and 3’. Notice that 1’
hereisina differentlocation than 1'instep A3.

B2  Small circles 73° and 39° from points 1’ and
3/, respectively, are drawn, as shown in
Fig. 5.18b. The intersection of the two pairs
of small circles are points C and D.

B3 As points 1’ and 3’ travel 83° back to their
original positions as points 1 and 3, points
C and D also travel 83° on small circles
(Fig. 5.18¢).

a

o Projection 57

Either C' or D’ should be in the same
position on the net as A’ or B’. In this example,
points B’ and D’ turn out to be the same point,
with an orientation of 26°, N41°E. This is the
pole to the bedding plane, thus establishing
a bedding attitude of N50°W, 64°SW. A third
solution could be done, with points 2 and 3
considered together, for further confirmation. If
no two points are coincident, then either a mis-
take has been made or the attitude is not consist-
ent from one hole to the next.

3

b c

Fig. 5.18 Part B of drill-hole solution. (a) Plot of orientations of holes 1 and 3, and rotation of the common plane
to horizontal. (b) Plot of cones of the possible poles to bedding planes relative to holes 1 and 3. (c) Determination
of orientations of common poles C and D. Pole D’ coincides with pole B’ (Fig. 5.17¢) and is therefore the correct

solution.

K Problem 5.12

Using the data from the three drill holes shown below, determine the attitude of bedding.

Angle Angle
between between
Plunge and axis of core axis and pole

Hole no trend of hole and bedding to bedding

[ 70°, N20°W 40° 50°

2 76°, N8O°E 65° 25°

3 68°, S30°W 54° 36°

NG







Folds

Objectives

o Describe the orientation and geometry of folds.

e Classify folds on the basis of dip isogons.

Chapters 1 through 5 have been devoted to vari-
ous techniques of structural analysis. Now it is
time to use some of these techniques to describe
and analyze folded and faulted rocks. In Chapter 4
you learned techniques for drawing vertical struc-
ture sections of folded and faulted rocks, but the
emphasis was on the mechanics of drawing the
structure sections rather than on the structures
themselves. Chapters 6 to 10 are devoted to tech-
niques for analyzing folds and faults.

An understanding of the formation of geologic
structures begins with a precise description of the
structures themselves. Listed below are the princi-
pal terms used to describe the geometric elements
and characteristics of folds. Most of the concepts
and techniques discussed in Chapters 6 and 7
apply only to cylindrical folds (see below).

Hinge point The point of minimum radius of
curvature on a fold (Figs 6.la, 6.2a).

Hinge line The locus of hinge points on a folded
surface (Fig. 6.1b).

Inflection point The point on a fold where the
rate of change of slope is zero, usually chosen as
the midpoint (Fig. 6.1a).

Line of inflection The locus of inflection points
of a folded surface (Fig. 6.1b).

Median surface The surface that joins the suc-
cessive lines of inflection of a folded surface
(Fig. 6.1b).

Crest and trough The high and low points, re-
spectively, of a fold, usually in reference to folds
with gently plunging hinge lines (Fig. 6.2a).

Hinge
V/\/ points \o—y

ges

Inflection
a points

Hinge
'/\/ lines " Line of_
inflection

7 / \Vj
b

Fig. 6.1 Some terms for describing the geometry of
folds. (a) Profile view. (b) Block diagram.
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Crestal trace in

Hinge horizontal plane
point Crestal
_ surface
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a surface

Trough trace
in profile plane

b

Fig. 6.2 More terms for describing the geometry of folds.

(a) Profile view. (b) Block diagram.

Crestal surface and trough surface The surfaces
joining the crests and troughs, respectively, of
nested folds (Fig. 6.2b).

Crestal trace and trough trace The lines repre-
senting the intersections of the crestal and
trough surfaces, respectively, with another sur-
face, usually the surface of the earth (Fig. 6.2b).

Cylindrical fold A fold generated by a straight
line moving parallel to itself in space (Fig. 6.3a).

Noncylindrical fold A fold that cannot be gener-
ated by a straight line moving parallel to itself in
space (Fig. 6.3b).

Fold axis The straight line that generates a cylin-
drical fold. Unlike the hinge line, the fold axis is
not a specific line but rather a hypothetical line
defined by its attitude. Only cylindrical folds, or
cylindrical segments of folds, have fold axes.

Symmetric folds Folds that meet the following
criteria: (1) the median surface is planar, (2)
the axial plane is perpendicular to the median
surface, and (3) the folds are bilaterally symmet-
rical about their axial planes (Fig. 6.4a).

a b

Fig. 6.3 (a) Cylindrical folds. (b) Noncylindrical folds.

Asymmetric folds Folds that are not symmetric
(Fig. 6.4b). Limbs of asymmetric folds are of
unequal length.

Kink fold A fold characterized by long, relatively
straight limbs and narrow, sharp, angular hinges.

Profile plane A plane perpendicular to the fold
axis (Fig. 6.5).

Axial surface The surface joining the hinge lines
of a set of nested folds (Fig. 6.5). Whether or not
the folds are cylindrical, the axial surface may
or may not be planar.

Axial plane A planar axial surface (see Fig. 6.8).

Axial trace The line representing the intersection
of the axial surface and another surface (Fig. 6.5).

Synform A fold that closes downward (Fig. 6.6).

Ao e ag
VV M

Fig. 6.4 (a) Symmetric and (b) nonsymmetric folds
with Varymg amplitudes.

Axial trace in
profile plane

Fig. 6.5 Profile plane and the axial surface of folds.

Fig. 6.6 Block diagram showing a synform and anti-
form.
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Fig. 6.7 Block diagrams showing (a) synclines and anticlines, and (b) how they can differ from synforms and

antiforms.

Antiform A fold that closes upward (Fig. 6.6).

Syncline A fold with younger rocks in its core
(Fig. 6.7).

Anticline A fold with older rocks in its core
(Fig. 6.7).

Overturned fold A fold in which one limb, and
only one limb, has been tilted more than 90°,
resulting in both limbs dipping in the same dir-
ection (Fig. 6.8).

Vertical fold A fold in which the hinge line is
vertical or nearly so (Fig. 6.9a).

Reclined fold An overturned fold in which the
axial surface is inclined and the hinge line
plunges down the dip of the axial surface
(Fig. 6.9b).

Recumbent fold An overturned fold in which the
axial surface is horizontal or nearly so (Fig. 6.9¢).

Interlimb angle The angle between adjacent fold
limbs. Figure 6.10 shows the terms used to
describe folds with various interlimb angles.

-

Figure G-12 (Appendix G) is a block model to be cut
out and folded into a three-dimensional block. The
surface with the north arrow represents a horizontal
surface. You may want to color some of the beds
before assembling the block, to enhance the defin-
ition of the folds. After you have assembled your
block, draw and label the crestal, trough, and axial
traces of all of the folds. Then describe the folds in
the block. Your description should consist of two or
three complete sentences. Be sure to include whether
the folds are cylindrical or noncylindrical, symmetric
or asymmetric, the attitude of the fold axis and the
Qxial surface, and the interlimb angle.

Problem 6.1

Overturned
antiform T4 r plae

Overturned synform

Fig. 6.8 Block diagram showing overturned folds.

/‘ Reclined
a  Vertical b
[ 7
|
c Recumbent
Fig. 6.9 (a) Vertical, (b) reclined, and (¢) recumbent

folds.
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Gentle
(120° - 180°)

Folds

Open
(70° P 120°)

Fig. 6.10 Terms used to describe interlimb angles of folds.

Fold classification based on dip isogons

Our discussion of folds and folding begins with
the geometric description of folds. A widely used
geometric classification of folds is based on dip
isogons (Ramsay, 1967).

Dip isogons are lines that connect points of
equal dip on adjacent folded surfaces. They are
constructed as shown in Fig. 6.11. The axial
trace is drawn on a profile view of the fold, and
another line is drawn perpendicular to the axial
trace. With a protractor, points along adjacent
folded surfaces are located such that tangents to
the fold surfaces intersect the perpendicular line at
a predetermined angle (Fig. 6.11a). Dip isogons

Perpendicular

to axial trace

Axial trace

a

Fig. 6.11

Close
(30° - 70°)

ight
%)

T
e

Isoclinal

©°-29)

are lines that connect corresponding points on
adjacent folded surfaces (Fig. 6.11b).

From the characteristics of the dip isogons struc-
tural geologists have defined three classes of folds
(Fig. 6.12). Class 1 folds are those in which the dip
isogons converge toward the core of the fold.
Class 2 folds are those in which the dip isogons
are parallel to the axial trace. And Class 3 folds
are those in which the dip isogons diverge in the
direction of the core of the fold. Class 1 folds may
be subdivided further into class 1A (those with
strongly convergent isogons), class 1B (those
with moderately convergent isogons), and class
1C (those with weakly convergent isogons)
(Fig. 6.12). Folds in which dip isogons are every-

609 609

Axial trace

b

Construction of dip isogons. (a) Drawing tangents at a predetermined angle. (b) A dip isogon connects points

where parallel tangent lines intersect points on adjacent folded surfaces.



Class 1, convergent isogons
1A
/ ; ; \ Class 3, divergent isogons
1B ("paralle" fold)

A N

Fig. 6.12 Classification of folds based on the charac-
teristics of dip isogons. After Ramsay (1967).

Class 2, parallel isogons

A

(‘similar” fold)

where perpendicular to the bedding are classified
as parallel folds (class 1B); folds in which dip
isogons are parallel to each other are called similar
folds (class 2). One drawback to the dip isogon
method is that it does not work for kink folds
(folds with planar limbs and sharp hinges), which
are quite common.

It is important to keep in mind that different
types of rock respond differently to fold-
generating processes in the earth’s crust. For this
reason, two strata that are nested together in the
same fold do not necessarily belong to the same
fold class.

/ Problem 6.2

Figure G-13 is a sketch of the profile view of a set of
folds exposed in the face of a cliff. First try to
visualize the orientations of dip isogons on these
folds. Then draw dip isogons at 10° intervals for
each of the three layers. Indicate the fold class of

@ch layer.

57

/ Problem 6.3

Figure G-14 contains photographs of four rock slabs.
First, examine each photograph and try to visualize
dip isogons on the folds. Write a description of the
class or classes of folds you can visualize in each
slab. Then tape a piece of tracing paper over the
photographs, and outline at least two layers in each
photo. Draw some dip isogons on each folded layer.
Finally, for each slab, discuss any new insights you

@ined by drawing the isogons. }

Outcrop patterns of folds

Figures 6.13 and 6.14 show sets of folds in which
the outcrop patterns are identical, but the folds
plunge in opposite directions. Clearly, outcrop
pattern alone is not sufficient to determine the
orientation of a fold. The direction and amount
of dip of the axial surface and plunge of the fold
axis must also be determined. The outcrop pattern
of beds in symmetric folds with vertical axial sur-
faces, such as those in Figs 6.13 and 6.14, are
symmetric on opposite sides of the crestal and
trough traces. The crestal and trough traces of

Fig. 6.13 Eastward-plunging folds. (a) Map view. (b)
Block diagram.
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Fig. 6.14 Westward-plunging folds. (a) Map view. (b)
Block diagram.

such folds are also axial traces, and the dip at
the axial trace is equal to the plunge of the
fold axis. The folds shown in Fig. 6.13 plunge
35° due east, and those in Fig. 6.14 plunge 35°
due west.

Figure 6.15 shows an outcrop pattern
identical to those in Figs 6.13 and 6.14, but here
the folds are overturned, and they plunge 45°
south. Fold a piece of paper and tilt it to simulate
one of the folded layers in Fig. 6.15. Notice
that these folds, and all overturned folds, contain
vertical beds. The strike of vertical beds in
overturned folds is parallel to the trend of the
fold axis.

Because the folds in Fig. 6.15 have no unique
high and low points, they have no crestal and
trough traces. In most cases of plunging folds
with tilted axial surfaces, the crestal and trough
traces are not axial traces. Sometimes the crestal
and trough traces are not even parallel to the axial
traces.

Figure 6.16 shows a set of folds in which the
axial surface dips northwest, the axis plunges 20°
north, and the crestal and trough traces are
clearly not axial traces. The axial traces of such
folds can only be reliably located in the profile
plane.

For any cylindrical fold, the dip of the bedding
at the crestal or trough trace is the same as the

Folds

b

Fig. 6.15 Southward-plunging, overturned folds. (a)
Map view. (b) Block diagram.

Fig. 6.16 Example of folds in which the crestal and
trough traces are not axial traces. (a) Map view. (b)
Block diagram.

trend and plunge of the fold axis. So the crestal
and trough traces are the easiest lines to draw on
map outcrop patterns of folds.
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Figure G-15 contains five geologic maps, each of
which contains folded strata. Fold a piece of paper
to help you visualize each fold’s shape and orienta-
tion, then draw crestal and/or trough traces on each
map. Use the appropriate symbol (see Appendix F) to
indicate the type of fold (syncline or anticline), and
indicate the attitude of the fold axis.

Determine the trend and plunge of each fold axis
and write these in the space provided below each

NG

Problem 6.4

Down-plunge viewing

Features of folds are best examined in profile view,
when your line of sight is parallel to the fold axis.
This is apparent in the block model from Problem
6.1, which has an exposed profile plane. A profile
plane need not be available, however, to obtain a
profile view. Turn the block model around and
look parallel to the axis but on the opposite side
of the block from the profile plane (Fig. 6.17). The
folds should appear the same as in the profile
plane. This technique, in which you look “down
the plunge” (or “up the plunge” in this case), is an
effortless way to obtain a profile view of a fold
even in irregular terrain. When you are working
with a geologic map on which the trend and
plunge of a fold are indicated, you merely place
your eye so that your line of sight intersects
the map at approximately the same angle as the
plunge of the fold axis. Try it on the folds of the
Bree Creek Quadrangle. A technique for con-
structing the profile view of a fold exposed in flat
terrain is explained in Chapter 7 (see Fig. 7.6).

Folds
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Lineof sight é?\

Profile plane

Fig. 6.17 Illustration of the down-plunge viewing tech-
nique for obtaining a profile view of a fold.

-~

Figure G-16 shows the sides and top of a block
model of folded layered rocks. The surface with the
north arrow represents a horizontal surface. Cut out
the pattern, and fold it into a block. Look at the block
from different angles until you see a set of cylindrical
folds. At this point you are looking down-plunge. If
you have trouble, try coloring one or more units.

I Make a drawing of the block as it appears in the

down-plunge view, showing the folds.

Problem 6.5

2 What is the approximate attitude of the axial
surfaces?

3  What is the approximate attitude of the fold
axis?

4 By comparing the folds with those in Fig. 6.12,

determine the classes of folds in the block model

and label each fold on your drawing accordingly.
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Stereographic Analysis
of Folded Rocks

Objectives

e Construct beta diagrams and pi diagrams of folds.
e Construct and interpret a contoured equal-area diagram of structural data.

Large-scale folds that are poorly exposed may be
impossible to analyze using the techniques dis-
cussed in Chapter 6. In such cases, data from
isolated outcrops may be combined and analyzed
stereographically to characterize the geometry of a
fold and the orientations of its elements. Stereo-
graphic analysis of the folded Paleogene rocks of
the Bree Creek Quadrangle will serve as the major
exercise in this chapter.

While the techniques described in this chapter
will be applied specifically to the analysis of folds,
stereographic analysis is also commonly used to
study structures such as joints, faults, and cleav-
ages at many scales.

Beta (3) diagrams

A simple method for determining the orientation
of the axis of a cylindrical fold is to construct a B-
diagram. Any two planes tangent to a folded
surface intersect in a line that is parallel to the
fold axis (Fig. 7.1). Such a line is called a B-axis.
A B-axis is found by plotting the attitudes of bed-
ding (or some other planar element) on an equal-
area net; the B-axis is the intersection line of the
planes, which plots as a point on the net.

Suppose, for example, that the following four
foliation attitudes are measured at different places
on a folded surface: N82°W, 40°S; N10°E, 70°E;
N34°W, 60°SW; and N50°E, 44°SE. These atti-
tudes are shown plotted on an equal-area net in
Fig. 7.2. The B-axis, and therefore the fold axis,
plunges 39°, S7°E.

Few folds are perfectly cylindrical, so the great
circles will rarely intersect perfectly, even if the

B-axis. V

Fig. 7.1 'The B-axis is the intersection of planes tangent
to a folded surface.
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Fig. 7.2 Beta diagram. The great circles represent four
foliation attitudes of a cylindrical fold intersecting at the
B-axis.

folds have a common history. When data from
areas with different folding histories are plotted
together, distinctively different B-axes will appear.

Pi (7) diagrams

A less tedious method of plotting large numbers of
attitudes is to plot the poles of a folded surface on
the equal-area net. Ideally, in a cylindrical fold
these poles will lie on one great circle, called the
w-circle. In reality, however, there may be consid-
erable scatter in the distribution of poles and a
best-fit m-circle will have to be chosen. The pole
to the m-circle is the mw-axis, which, like the B-axis,
is parallel to the fold axis. Figure 7.3 shows the
same four attitudes that were plotted on the B-
diagram in Fig. 7.2, and the corresponding -
circle and w-axis. In most cases w-diagrams are
more revealing, as well as more quickly con-
structed, than B-diagrams.

Determining the orientation of the axial plane

The orientation of a fold is defined not only by the
trend and plunge of the fold axis, but also by the
attitude of the axial plane. The axial plane can be
thought of as a set of coplanar lines, one of which
is the hinge line and another is the surface axial

Pole of
N 82°W, 40.°S _—
_— Circle —.

Pole of
N 34°W, 60°SW

{ ]
Pole of

N50°E, 44°SE

®Pole of
N10°E, 70°E

Fig. 7.3 DPi diagram. The m-circle is the great circle
common to the four poles of foliations of a cylindrical

fold.

trace (Fig. 7.4). If the axial trace can be located on
a geologic map, and if the trend and plunge of the
hinge line can be determined, then the orientation
of the axial plane can easily be determined stereo-
graphically; it is the great circle that passes
through the m-axis (or B-axis) and the two points
on the primitive circle that represent the surface
axial trace (Fig. 7.5).

Often the surface axial trace cannot be reliably
located on a geologic map. If the folds are well
exposed, then a profile view can be constructed (as
explained in the next section), and the axial trace
can be located in the profile plane and transferred
to the geologic map.

Constructing the profile of a fold exposed in flat
terrain

To find the orientation of the axial plane of a fold,
it is very useful to know the orientation of the
axial trace. This is most reliably located on a
profile view of the fold. If the trend and plunge
of the fold axis are known, and if the fold is well
exposed in relatively flat terrain, then a profile
view may be constructed quickly. Consider the
fold shown in plan view in Fig. 7.6a. The profile
view and surface axial trace are constructed as
follows:



Axial plane
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— — Axial trace

Fig. 7.4 Block diagram of folds showing the profile plane, axial plane, and axial trace.

Axial trace

Fig. 7.5 Equal-area net plot. The axial plane is the
great circle common to the m-axis and the two points
on the primitive circle that represent the axial trace.

1 Draw a square grid on the map with one axis
of the grid parallel to the trend of the fold axis
(Fig. 7.6b). The length of the sides of each
square, ds (surface distance), is any convenient
arbitrary length, such as 1 or 10 cm.

2 When the surface distance d is projected on a
profile plane it remains the same length in the

direction perpendicular to the trend of the fold
axis. The sides parallel to the trend, however,
will be shortened in the profile view (except in
the case of a vertical fold). This is easily con-
firmed by viewing down-plunge in Fig. 7.6b.
The shortened length parallel to the trend of
the fold axis we will call d,, (profile distance).
Length d, may be determined trigonometri-
cally with the following formula:

dp = d, sin plunge

It can also be determined graphically, as
shown in Fig. 7.6c.

With d, now determined, a rectangular grid is
drawn that represents the square grid pro-
jected onto the profile plane. Points on the
square grid in the map view are then trans-
ferred to corresponding points on the rect-
angular grid. The profile view of the fold is
then sketched freehand, using the transferred
points for control (Fig. 7.6d).

The axial trace can now be drawn on the profile
plane (Fig. 7.6d) and then transferred back to
corresponding points on the square grid.

Simple equal-area diagrams of fold orientation

The orientation of a fold can be simply and clearly
characterized by an equal-area diagram showing
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Fig. 7.6 Method for constructing the profile view of a
fold exposed in flat terrain. (a) Map view. (b) Square
grid drawn on a map with one axis parallel to the trend
of the fold axis. (c) Graphical relationship between the
surface distance (d;) and profile distance (dp). (d) Profile
view. The fold is drawn using grid intersections for
control. The axial trace is drawn onto the fold.

the axial plane and fold axis. Examples of various
folds are shown in Fig. 7.7. Picture in your mind’s
eye what each of these folds would look like. What
characteristics of a fold are not displayed in such a
diagram?

Problem 7.1

On separate pieces of tracing paper construct a
B-diagram and 1r-diagram for the folds in Figure
G-17 (Appendix G). Determine the trend and
plunge of the fold axis.

Construct a profile view as shown in Fig. 7.6,
and draw surface axial traces on the plan view.
Determine the strike of the axial plane.

Draw a simple equal-area diagram, such as those
inFig. 7.7, showing the orientation of these folds.
Succinctly but completely describe these folds.
Include the attitude of the fold axis, attitude of
the axial plane, interlimb angle, symmetry, and

fold class. }




Ax. pl.: vertical
Axis: horizontal

Ax. pl.: inclined to W
Axis: horizontal

Ax. pl.: vertical
Axis: plunges N

Ax. pl.: inclined to W
Axis: plunges NW
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Ax. pl.: vertical
Axis: vertical

Ax. pl.: inclined to W
Axis: plunges W

Fig. 7.7 Simple equal-area diagrams showing orientation of the folds. Ax. pl., axial plane.

Contour diagrams

In nature, folds are not exactly cylindrical, so
commonly no single B-axis or m-axis emerges on
the stereonet. However, if a large number of data
are available the orientation of the hinge line may
be statistically determined through the use of a
contoured equal-area diagram.

Figure 7.8 is an equal-area diagram showing the
poles to 50 bedding attitudes. Such a diagram is
called a point diagram or scatter diagram. You
could approximately locate a mw-circle through
the highest density of points, but contouring
makes the results repeatable and reliable, as well
as providing additional information.

There are computer programs that will quickly
contour a set of data points in a scatter diagram,
but it is instructive to do it by hand at least one
time, to understand the process. Follow these in-
structions:

Cut out the center counter and peripheral
counter in Fig. G-18 (Appendix G). Use a
razor-blade knife to very carefully cut out the
holes in the counters, and cut a slit in the
peripheral counter as indicated. The holes in
the counters are 1% of the area of the equal-
area net provided with this book.

Remove the grid in Fig. G-19, and tape it to
a piece of thin cardboard to increase its
longevity. The distance between grid intervals
is equal to the radius of the holes in the counters.
Tape the tracing paper containing the point
diagram onto the grid such that the center of
the point diagram lies on a grid intersection.
Tape a second, clean piece of tracing paper
over the point diagram. The two pieces of
tracing paper should not move while you are
counting points.

You are now ready to start counting points.
This is done by placing the center counter on
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Fig. 7.8 Point diagram with 50 attitudes plotted.

the point diagram such that the hole is centered
on a grid intersection (Fig. 7.9a). Count the
number of points within the circle, and write
that number in the center of the circle on the
clean sheet of tracing paper. Systematically
move the counter from one grid intersection
to the next, recording the number of points
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within the 1% circle at each intersection.
Each point will be counted more than once.
On the periphery of the point diagram, where
part of the circle of the center counter lies
outside the net, the peripheral counter is used
(Fig. 7.9b). When the peripheral counter is
used the points in both circles are counted,
added together, and that number is written at
the center of both circles. Figure 7.10 shows
the results of counting the points in the point
diagram in Fig. 7.8. Each number is a sample
of 1% of the area of the point diagram.

The numbers are contoured as shown in
Fig. 7.11a. The result is much like a topo-
graphic map, except that the contour lines
separate point-density ranges rather than ele-
vation ranges. In the interest of simplicity and
clarity, some of the contours can be elimin-
ated. Figure 7.11b shows contours 3 and §
eliminated and varying shades of gray added.
Fifty points were involved in this sample, so
each point represents 2% of the total. The
contours in Fig. 7.11b, therefore, represent
densities of 2, 4, 8, and 12% per 1% area.
The contour interval and total number of
points represented () are always indicated,
either below the plot or in the figure caption
(Fig. 7.11c).

The highest density regions on such a diagram
are called the w-maxima. The great circle that

Perimeter

\(— of net

\
Perimeter
\/— of net
|
Center /
/\ Perimeter
\y —] of net
counter
a

T~

Fig. 7.9 Technique for counting points for the purpose of contouring. (a) Use of center counter. (b) Use of peripheral
counter. The total number of points in both circles is written at the center of both circles.



Fig. 7.10 Results of counting the points in Fig. 7.8.

passes through them is the w-circle, and its
pole is the m-axis (Fig. 7.11c). In the case of
mildly folded, symmetric folds, the axial plane
bisects the acute angle between the m-maxima,
as shown in Fig. 7.11c. The attitude of the
axial plane is most reliably determined from
a combination of the m-axis attitude and the
strike of the surface axial trace, the latter
being determined by the technique shown in
Fig. 7.6.

Determining the fold style and interlimb angle
from contoured pi diagrams

In addition to providing a statistical m-axis, con-
toured m-diagrams indicate the style of folding and
the interlimb angle. The band of contours across
the diagram is referred to as the girdle, and the
shape of the girdle reflects the shape of the folds.
Figure 7.12a shows a profile and m-diagram of an
extreme case of long limbs and narrow hinge
zones. Figure 7.12¢ shows asymmetric folds
whose eastward-dipping limbs are longer than
the westward-dipping limbs. Figures 7.12b, d,
and e are other examples of different styles of
folding and their corresponding contoured m-dia-
grams.

The interlimb angle of a fold can be measured
between the two maxima along the w-circle dir-

© %&Ww{v rafilhic C%u]{yﬂk a//f‘%/(/nf/ Rocks 67

TC- circle

<2A><ial plane

« TU- axis

Cl =248 12
per 1% area

Fig. 7.11 Deriving the m-circle. (a) Contours drawn on
a point grid. (b) Selected and shaded contours. (c) The =-
axis and w-circle are determined from the contour dia-
gram. The axial plane cannot be located with certainty
without additional information. CI, contour interval.

ectly off the contoured mw-diagram. For upright
folds the interlimb angle is 180° minus the angle
between the two maxima. For overturned folds
the interlimb angle is simply the angle measured
directly between the maxima.
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Fig. 7.12 Profiles and corresponding contoured m-dia-
grams of variously shaped folds (c, d, and e after Ragan,
1985).

/ Problem 7.2

Three of the four fault blocks within the Bree Creek
Quadrangle contain folded Paleogene rocks for which
bedding attitudes are shown on the map. Complete
the tasks listed below for each fault block. We sug-
gest that this problem be completed by teams of
three students, with each member of the team com-
pleting all the tasks for only one of the three fault
blocks. Each member of the team should then make
copies of his or her results so that each student on
the team has data for all three of the fault blocks.
These diagrams will be used in Chapter 11 for a
structural synthesis of the Bree Creek Quadrangle.
I Construct a contoured r-diagram of the folds
involving Paleogene strata.
2 Using the technique shown in Fig. 7.6, con-
struct a profile view of the folds.

Wizard hint: In the northeast-
4o+ | ern block, do not include the
.-Q,- | beds exposed on the Gollum
_:,' ! Ridge fault scarp, because
i this technique can only be
used in areas of low relief.

3 Draw dip isogons on your profile view and
determine the class of each folded layer.

4 Describe the folds as succinctly and completely
as possible. Your description should include the
trend and plunge of the r-axis, attitude of the
axial surface, interlimb angle, symmetry, class of
folds, and age of folding.

5 Figure G-20 is a reference map of the Bree Creek
Quadrangle with a circle on each of the three
fault blocks involved in this problem. Sketch the
contour diagram for each of the three fault
blocks in the corresponding circle, similar to
those in Fig. 7.11c. Draw the mr-axis and axial
plane on each circle. Such a reference map is an
effective way of summarizing the orientation

\ and geometry of folds in separate areas.
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Parasitic Folds, Axial-Planar

Foliations, and Superposed Folds

Objectives

e Use parasitic folds to locate the axial traces of major folds.
e Reconstruct the structural history of an area that underwent two generations of

folding.

In this chapter you will learn to analyze and inter-
pret folds within folds, refolded folds, and axial-
planar foliations. The southeastern portion of the
Bree Creek Quadrangle, which up to now has been
ignored, will be analyzed as the major exercise in
this chapter.

Parasitic folds

On the limbs and in the hinge zones of large folds
one often finds small folds, the axes of which are
parallel to the major fold axes. Such small folds
are called parasitic folds. Parasitic folds that occur
in the hinge zone of a larger fold are usually sym-
metric and are sometimes referred to as M folds
because of their shape. Those that occur on the
limbs of large folds are usually asymmetric and
may be referred to as Z folds or S folds, depending
on their shape in profile (Fig. 8.1). A fold that
appears as a Z on a south-facing exposure will be
an S on a north-facing exposure; however, it will
exhibit a consistent sense of asymmetry or rotation
with respect to the axial surface of the fold regard-
less of the view. Z folds record a clockwise sense
of rotation and S folds a counterclockwise sense.
S (counterclockwise) parasitic folds consistently

occur on the left limbs of synclines viewed in
profile, and on the right limbs of anticlines. Z
(clockwise) parasitic folds are found on the oppos-
ite limbs from S folds (Fig. 8.1).

Examples of map symbols commonly used to
show the attitude of the axis and the sense of
rotation of a parasitic fold are shown in Fig. 8.2.
The straight arrow represents the trend of the fold
axis, while the curved arrow shows the sense of

Fig. 8.1 Types of parasitic folds. The arrows show the
sense of rotation.
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Fig. 8.2 Examples of symbols representing variously
oriented parasitic folds. North is at the top of the figure.
(a) Axis plunges 20°N; sense of rotation is clockwise. (b)
Axis plunges 45°SE; sense of rotation is counterclock-
wise. (c) Axis plunges 5°Wj; sense of rotation is clock-
wise. (d) Axis of Z fold plunges 15°N.

rotation of the parasitic fold as viewed down-
plunge on the map or in the field. Alternatively,
the actual down-plunge shape of the fold may be
used as a map symbol (Fig. 8.2d).

In areas with tight or isoclinal folds that are
poorly exposed, parasitic folds may allow the
geologist to locate the position of the axial trace
of a major fold that cannot be recognized any
other way. Consider the map in Fig. 8.3a. Four
bedding attitudes all show a westward dip. With-
out considering the parasitic folds, the structure
appears to be a west-dipping homocline. However,
the sense of rotation of the parasitic folds reveals
the presence of an anticline and syncline and al-
lows the axial traces to be approximately located
(Fig. 8.3b). Note also that this analysis indicates
that the dips on the shared limb of the two folds
are overturned (Fig. 8.3b). The sense-of-rotation
arrows point foward anticlinal axial traces and
away from synclinal axial traces. Figure 8.3c is a
structure section showing the two folds.

/ Problem 8.1

Figure G-21 (Appendix G) contains an oblique view
of a small map area showing several outcrops, some
with parasitic folds. Each outcrop on the oblique
view is represented on the map view (Fig. G-21b)
by either a strike-and-dip symbol or a trend-and-
plunge symbol. The black layers represent thin lime-
stone beds that are interbedded with shale and sand-
stone. The limestone bed at one outcrop is not
necessarily the same bed as at another outcrop.

I Using small, curved arrows, as in Fig. 8.3, indi-
cate on the map view (Fig. G-21b) the sense of
rotation of each parasitic fold.

2 Draw the axial traces of the major folds on the

map.
3 Sketch the structure section A-A" in Fig. G-2lc,
\ schematically showing parasitic folds. j
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Fig. 8.3 Attitudes of beds and parasitic folds. (a) Map
view. (b) Same map with axial traces of the overturned
anticline and overturned syncline approximately lo-
cated. (c) Structure section with the parasitic folds
shown schematically.

Axial-planar foliations

In areas of tight folding, particularly in low- to
intermediate-grade metamorphic rocks, a perva-
sive cleavage or foliation may develop approxi-
mately parallel to the axial surface of regional
folds. Examine the photograph in Fig. 8.4 closely
for an example of axial-planar cleavage.
Although such a fabric may be the most con-
spicuous planar feature within the rock, it should
not be confused with bedding. In many cases,
bedding can be recognized in strongly cleaved
rocks by looking for distinct bands in the rock.
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the locations of axial traces of macroscopic folds
that may not otherwise be evident in areas of
incomplete exposure.

Figure 8.5 shows the relation between bedding
and cleavage in an upright antiform. Refer to this
figure to help you visualize the following four
relations that can be used to provide information
about large-scale, regional folds:

1 Cleavage dips more steeply than bedding (ex-
cept on an overturned fold limb). Sketch this,
to convince yourself.

2 In the hinge area of a fold, the angle between
the cleavage and bedding is 90°.

3 The tighter the fold, the smaller the angle
between the cleavage and bedding.

4 Because the cleavage is parallel (or nearly so)
to the axial surface of the fold, the orientation
of the cleavage can be used to directly infer the
orientation of the axial surface.

In nature, differences in rock properties can
cause local deviations in the orientation of cleav-
age surfaces. It is therefore important to acquire
cleavage orientation data from different rock units
over a relatively large area when using cleavage to
infer fold geometry and orientation. Figure 8.6a is

Fig. 8.4 Map view of folded interbedded limestone and
slate. Note axial-planar cleavage, which is oriented paral-

lel to the axial surfaces of the folds. Rock hammer for ; ! ' -
scale. a geologic map in which parasitic folds reveal the

presence of a syncline; the axial-planar cleavages
(or foliations) allow the attitude of the axial sur-
face to be determined (Fig. 8.6b).

These bands may reflect original differences in
composition or texture (i.e., bedding) or the sedi-
mentary protolith. If bedding and cleavage are
oblique to one another, the relative orientation
of these two planar features may be used to infer

) 504 4 50{ #
oA
A o

a 4 Foliation attitude

Cleavage
(dashed lines)

W Cleavage traces on

bedding surface (i.e.,
FoIQed_beds bedding-cleavage b
(solid lines) intersection lines)

Fig. 8.6 Axial-planar foliations (cleavage). (a) Map
Fig. 8.5 Antiform showing bedding—cleavage relation- showing attitudes of foliations and parasitic folds. (b)
ships. See text for discussion. Structure section A-A'.
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/ Problem 8.2

Figure G-22 is a photograph of an outcrop in the
Transantarctic Range of Antarctica. The view shows
a cross section of beds of coarse conglomerate and
finer-grained conglomerate. The arrow points to an ice
axe for scale. Due to the snow and ice, exposures in
the area are limited, and the geologist must glean as
much information as possible from available outcrops.
Place a sheet of tracing paper over the photo. Draw and
label the bedding and the cleavage. If these beds rep-
resent the limb of an upright fold, would the hinge area
of the antiform be to the right or to the left? Explain your
answer, and illustrate your explanation with a simple
sketch showing the antiform, the cleavage, and the
@sition of this exposure within the antiform.

/ Problem 8.3

Figure G-23 contains a geologic map that shows both
the bedding and cleavage attitudes. Using the cleav-
age—bedding relations discussed above, sketch a
cross section of the map area showing the form of
the folds. There are no contacts between the rock
units shown on the map; show the geometry of the
folds schematically by sketching the form lines of
hypothetical bedding surfaces, as is done in
Fig. 8.6.
Wizard hint: Some of the beds
are overturned, but the geologist
who measured them in the field
could not identify which were
.-Q,- . overturned and which were
A not. Use relation number |
A above to identify the outerops
where the beds are overturned,
and alter the strike-and-dip sym-

\ bols accordingly. }

Superposed folds

A region that has experienced more than one epi-
sode of deformation may show complex fold inter-
ference patterns in the field and on a geologic
map. Consider the simple case shown in Fig. 8.7.
The first generation of folding, Fy, produced folds
with east-west-striking axial surfaces (Fig. 8.7a).
The second generation of folding, F,, produced
folds with north-south-striking axial surfaces
(Fig. 8.7b). It is clear that the east-west axial
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Fig. 8.7 Superposition of folding (map view). (a) First
generation of folding (Fy). Sy is the axial-surface trace of
the F; folds; the symbols show the F; parasitic folds. (b)
Map pattern after two generations of folding (F; and
F,). S, is the axial-surface trace of the F, folds, and
double-headed arrows denote F, parasitic folds.

surfaces, Sy, developed before the north-south
axial surfaces, S, because the S; traces have been
folded while the S; traces are straight.

Various fold interference patterns can occur, de-
pending on the initial orientation of the F; fold
hinge and its axial surface relative to the F, fold.
Figure 8.8 shows the four basic patterns that result
from fold superposition. In each case the F, fold
has a vertical axial surface and a horizontal hinge
line. In a type O interference pattern (Fig. 8.8a),
both fold generations have parallel hinge lines and
axial surfaces. Type O is so named because this
type of superposed folding does not produce a
recognizable interference pattern in the field;
from the fold geometry alone, you would not
know that two episodes of folding had occurred.
Type 1 involves two sets of upright folds; the F;
hinge lines and axial surfaces are perpendicular to
the F, hinge lines and axial surfaces, resulting in a
dome-and-basin (sometimes called “egg-carton”)
interference pattern (Fig. 8.8b). In type 2 interfer-
ence folding, the F; folds have subhorizontal axial
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surfaces (recumbent folds); the F, hinge lines are patterns (Fig. 8.8¢). In type 3 interference folding,
oriented perpendicular to the Fy hinge lines. This the F; folds are also recumbent; however, in this
type of fold superposition results in complex case the F, hinge lines are parallel to the F; hinge
mushroom-shaped and boomerang-shaped map lines (Fig. 8.8d).

aTypeO b Type 1

Axial surface

Fl F2 Fl FZ
geometry displacement geometry displacement

,13\«,’1:32%//
o
»’Q‘W«/z
” “ é ﬁ’“/
V4

Resulting geometry Resulting geometry

c Type 2
Fy Fa F
geometry displacement geometry displacement

Resulting geometry Resulting geometry

Fig. 8.8 Four basic patterns resulting from the superposition of folds. In each case the orientation of the F, fold is the
same, superimposed on variously oriented F; folds. After Ramsey (1967).
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/ Problem 8.4

Figure G-24 is a photograph of a slabbed rock that

experienced two generations of folding. Compare this

photograph with the patterns shown in Fig. 8.8; indi-

cate which type of interference pattern is present in

the space provided. Place a sheet of tracing paper over

the photograph, lightly outline the slab, and then draw
@d label the S; and S, axial-surface traces.

/ Problem 8.5

In the southeastern fault block of the Bree Creek
Quadrangle, Paleozoic rocks have experienced two
episodes of folding, F; and F,. The foliations shown
on the Bree Creek map are axial planar. F; parasitic
folds are indicated by the symbol with a single-
headed arrow, and F, parasitic folds are indicated
by the symbol with a double-headed arrow.

I On your Bree Creek Quadrangle map draw the
axial-surface traces, S1 and S;, for both gener-
ations of folds, as is done in Fig. 8.7, using the
parasitic folds to help you locate them. Use appro-
priate symbols to indicate synclines and anticlines.

2 Draw structure sections C-C' and D-D’, using
the axial-planar foliations to help you determine
the attitudes of the axial planes of the folds.

" 74 | Wizard hint: Structure section
1 D-D’' is simpler than C-C’;
draw the simpler one first.

Because structure sections C—C’ and D-D’ are
intersecting vertical planes, they have a common
vertical line. Draw this vertical line on both struc-
ture sections and label it “Intersection of C-C’
and D-D’.” The depth from the surface to the top
and bottom of each rock unit must be the same
along this vertical line on both structure sections,
as if you had cored down at this spot on your
Bree Creek map and shown the data from the
core on both structure sections. After you have
drawn structure section D-D’, the depth and
thickness of each rock unit on this line of inter-
section can be transferred to your C-C’ topo-
graphic profile, thereby providing stratigraphic
control for your C-C’ structure section.

3 Completely and succinctly describe each gener-
ation of folding. Include attitudes of the fold
axes, attitudes of the axial surfaces, interlimb
angles, symmetry, fold class (see Chapter 6),

\ age of folding, and type of interference pattern.







Faults

Measure slip.
Measure rotational slip.

Objectives

Describe geometry, sense of slip, and age of faults.
Reconstruct the history of faulting from outcrop patterns on a geologic map.

A fault is a fracture along which movement has
occurred parallel to the fracture surface. Sometimes
there is a single discrete fault surface, or fault plane,
but often movements take place on numerous sub-
parallel surfaces resulting in a fault zone of fractured
rock. The San Andreas fault in California, for ex-
ample, in most places has a single, recently-active
fault plane lying within a highly sheared fault zone
that is tens to hundreds of meters wide.

Some faults are only a few centimeters long,
while others are hundreds of kilometers long. On
geologic maps it is usually impossible to show
every fault. Only those faults that affect the out-
crop pattern of two or more map units are usually
shown. The scale of the map determines which
faults can be shown.

Below are some terms used to describe faults
and their movements.

Slip vector The displacement of originally adja-
cent points, called piercing points, on opposite
sides of the fault.

Strike-slip fault A fault in which movement is
parallel to the strike of the fault plane
(Fig. 9.1). Strike-slip faults are sometimes called

==
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Fig. 9.1 Block diagram showing a left-lateral strike-slip
fault. The bold arrow shows the slip vector.

wrench faults, tear faults, or transcurrent faults.
A right-lateral (dextral) strike-slip fault is one in
which the rocks on one fault block appear to
have moved to the right when viewed from the
other fault block. A left-lateral (sinistral) strike-
slip fault, shown in Fig. 9.1, displays the oppos-
ite sense of displacement.

Dip-slip fault A fault in which movement is par-
allel to the dip of the fault plane (Fig. 9.2).

Oblique-slip fault A fault in which movement is
parallel to neither the dip nor the strike of the
fault plane.



& Footwall

Footwall
block

Hanging-wall
) block
Hanging wall—

Fig. 9.2 Block diagram showing a dip-slip fault. This is
a normal fault because the hanging-wall block has
moved down relative to the footwall block. The bold
arrow shows the slip vector.

Hanging-wall block The fault block that overlies
an inclined fault (Fig. 9.2).

Footwall block The fault block that underlies an
inclined fault (Fig. 9.2).

Normal fault A dip-slip fault in which the hang-
ing wall has moved down relative to the foot-
wall (Fig. 9.2).

Reverse fault A dip-slip fault in which the hang-
ing wall has moved up relative to the footwall.

Thrust fault A low-angle reverse fault, typically
dipping less than 30°.

Décollement or detachment fault A regionally
extensive, low-angle or subhorizontal fault
that typically separates upper- and lower-plate
rocks with different structural characteristics.
Both terms imply decoupling between the
upper and lower plates. The term detachment
fault is commonly, but not exclusively, applied
to major low-angle normal faults.

Listric fault A fault shaped like a snow-shovel
blade, steeply dipping in its upper portions and
becoming progressively less steep with depth
(Fig. 9.3).

Fig. 9.3 Block diagram showing a listric fault. The
bold arrow shows the slip vector.
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Translational fault One in which no rotation oc-
curs during movement, so that originally paral-
lel planes on opposite sides of the fault remain
parallel (Figs 9.1 and 9.2).

Rotational fault One in which one fault block
rotates relative to the other (Fig. 9.4).

Scissor fault A fault in which one fault block
rotates relative to the other along a rotational
axis that is perpendicular to the fault surface.
The sense of displacement is reversed across a
point of zero slip, and the amount of displace-
ment increases away from this point (Fig. 9.4).

Slickensides A thin film of polished mineralized
material that develops on some fault planes.
Slickensides contain striations parallel to the
direction of latest movement. Often it is not
possible to tell from slickenside lineations
alone in which of two possible directions move-
ment actually occurred.

Slickenlines Slickenside lineations (see above).

Fault trace Exposure of the fault plane on the
earth’s surface.

Offset Horizontal separation of a stratigraphic
horizon measured perpendicular to the strike
of the horizon (Fig. 9.5a).

Strike separation Horizontal distance parallel to
the strike of the fault between a stratigraphic
horizon on one side of the fault and the same
horizon on the other side. Strike separation may
be described as having either a right-lateral
(dextral) or left-lateral (sinistral) sense of dis-
placement (Fig. 9.5a).

Dip separation Horizontal (heave) and vertical
(throw) distance between a stratigraphic hori-
zon on one side of the fault and the same hori-
zon on the other side as seen in a vertical cross
section drawn perpendicular to the fault plane

"\
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Fig. 9.4 Block diagram showing a rotational fault. This
is a scissor fault because there is a reversed sense of
displacement across a point of zero slip.
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Fig. 9.5 (a) Geologic map showing the difference between offset and strike separation. (b) Vertical structure section

showing the heave and throw components of dip separation.

(Fig. 9.5b). Dip separation has either a normal
or reverse sense of displacement.

Notice that the term separation is concerned with
the apparent displacement of some reference hori-
zon, and the terms right-lateral, left-lateral, nor-
mal, and reverse are used to describe the
separation, whether or not the actual direction of
movement is known. Similarly, arrows are often
drawn along faults on geologic maps to indicate
the sense of strike separation, even on faults with
no history of strike-slip movement. More often
than not, the actual slip path of a fault cannot
be determined. When describing faults it is import-
ant to distinguish clearly between separation
and slip.

Measuring slip

Of fundamental importance in the study of faults
is the distance that two originally contiguous
points have been separated. This displacement is
called slip. Slip is a vector, having both magnitude
and direction. To measure slip on a fault, the
geologist must either: (1) determine the slip direc-
tion, or (2) identify two originally contiguous
points that have been displaced by movement on
the fault. In the ideal situation, two intersecting
planes, such as a dike and a bed, are located on
both fault blocks. The points of intersection on the
hanging wall and footwall serve as piercing points.
Unfortunately, one rarely finds such a happy situ-
ation in the field. More commonly, the structural
geologist must use a single distinctive bed,

together with slickenside lineations, to estimate
slip. The danger here is that the slickenside linea-
tions may indicate the orientation of only the lat-
est movement. Some faults have complex slip
paths that cannot be reconstructed from slicken-
side lineations.

Figure 9.6a is a geologic map showing the trace
of a fault plane (N50°E, 60°SE) and a bed
(N45°W, 40°SW) with 300 m of strike separation.
Figure 9.6b is a block diagram of the situation.
Without further information it is impossible to
know if this fault is a left-lateral strike-slip fault,
a normal fault, or an oblique-slip fault. It would
also be impossible to determine the slip. The rela-
tive sense of offset may be easily visualized by the
down-plunge viewing method described in Chap-
ter 6. Orient Fig. 9.6a so that your line of sight is
directly down the plunge of the line of intersection
of the fault and the layers on one of the fault
blocks. In this orientation, the left or east block
(hanging wall) can be seen to have moved down
relative to the right or west block (footwall), but
this does not reveal the actual slip path.

Let us assume that the fault in Fig. 9.6a is a
normal fault, as indicated by slickenside lineations
on the fault plane. The slip is determined as follows:

1 On an equal-area net, draw the great circles
that represent the fault plane and the plane
that is offset (Fig. 9.6c).

2 Find the pitch of the offset plane in the fault
plane (Fig. 9.6¢). In thisexample the pitch is 44°.

3 Place a piece of tracing paper over the map.
Draw the fault trace on the map view, and
draw the offset layer on the upthrown block.
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Fig. 9.6 Diagrams showing the solution of a slip problem. (a) Geologic map. (b) Block diagram. (c) Equal-area plot of
the fault plane and bedding plane. (d) Orthographic projection of the fault plane showing the pitch of bedding. The slip
is 280 m in the same direction as the dip (direction indicated by slickenside lineations).

Mark the place where the offset layer on the
downthrown block intersects the fault, but do
not draw it in (Fig. 9.6d).

The fault trace on your tracing paper is now
considered to be a fold line, and the fault plane
is imagined to be folded up into the horizontal
plane. We know that the pitch of the offset
bed in the fault plane is 44°. With the fault
plane now horizontal, we can draw this 44°
angle on the tracing paper, showing what the
offset layer looks like in the fault plane
(Fig. 9.6d).

If we know the pitch of the slip direction within
the fault plane we can now measure the amount
of slip. Because we know that this is a normal

fault, theslip direction is 90° from the fault trace
inthe fault plane, thatis, directly down-dip. The
amount of slip in this example is 280 m
(Fig. 9.6d). The direction of slip is the same as
the dip of the fault plane, 60°, S40°E.

Problem 9.1

Figure 9.7 shows the trace of a fault (330°, 50°SW)
and a dike (040°, 35°SE) with 450 m of strike sep-
aration. Assume that this is a normal fault. What is
the amount of slip? }
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Problem 9.2

Measure the slip in Problem 9.1 if slickenside linea-
tions trend northwest and have a pitch of 60°. }

!

100 200 300 400 500 m
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Fig. 9.7 Geologic map for use in Problem 9.1.

Rotational (scissor) faulting

In Fig. 9.7 the beds on opposite sides of the fault
have identical attitudes, indicating that all of the
movement was translational. Fault movement
often has a rotational component as well, which
can be measured. We consider here only the case
of planar bedding and the type of rotational fault-
ing in which the rotational axis is oriented perpen-
dicular to the fault plane. Look at the example in
Fig. 9.8a. Obviously some rotation has occurred
on the fault because the beds have different atti-
tudes on the two fault blocks. The hanging wall
has rotated counterclockwise relative to the foot-
wall. (The sense of movement on rotational faults,
as on strike-slip faults, is determined by imagining
yourself on one fault block looking across the fault
at the other fault block.)

Before we determine how much rotation has
occurred in this example it will be instructive to
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examine the range of possible attitudes that rota-
tion on this fault could produce. This can be done
as follows:

1 Plot the pole of the fault (point F) and the
poles of the bedding in the footwall block
(point A) and in the hanging-wall block
(point B) on the equal-area net (Fig. 9.8b).

2 We now need to orient the fault so that it is
vertical, so we move point F 30° to point F' on
the primitive circle. Points A and B move 30°
to points A’ and B’ (Fig. 9.8b). (You may want
to review the procedure for rotating lines on
the equal-area net in Chapter 5.)

3 During rotational faulting the axis of rotation
is perpendicular to the fault plane. Look at the
geologic map (Fig. 9.8a) again and imagine
rotating the fault from its 60°S dip into a
vertical position. Use your left hand to repre-
sent the fault and your right hand to represent
the bedding in the footwall. Stick a pencil
through the fingers of your right hand to rep-
resent the pole to bedding. Now, keeping your
left hand vertical, rotate your hands 180° and
observe the relationship between the vertical
fault plane and the pole to the bedding. This
relationship can be plotted on the equal-area
net by turning the tracing paper to put the pole
of the fault (point F') at the north (or south)
pole of the net. The small circle on which A’
now lies, together with its mirror image across
the equator, defines the locus of all possible
pole-to-bedding orientations if the footwall
block is rotated about an axis perpendicular
to the fault (Fig. 9.8¢).

Having plotted the range of possible attitudes
that rotation on this fault could produce, we can
confirm that B’ is included within this set.
Rotation on this fault is equal to the angle between
A’ and B, which is 50° (Fig. 9.8c).

An alternative approach to measuring the rota-
tion on faults involves determining the pitch of
each apparent dip in the fault plane. Because the
pitch on the footwall and hanging wall were iden-
tical prior to rotation, the difference in pitch
equals the amount of rotation. In this problem
the apparent dips are in opposite directions so
the pitches are added together. The pitch on the
hanging wall in the fault plane is 42° and the pitch
on the footwall is 8° (Fig. 9.8d), indicating 50° of
rotation.

Solve Problem 9.3.
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Fig. 9.8 Diagrams showing the solution to a rotational-slip problem. (a) Geologic map. (b) Equal-area net plot of the
pole to fault plane (point F') and the poles to bedding in each fault block. (c) Small circles that define the locus of
possible poles to bedding in the footwall block if rotated on the fault plane. (d) Measuring rotation by the pitch of

bedding on each wall of the fault.
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Fig. 9.9 Geologic map for use in Problem 9.3.
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Figure 9.9 is a geologic map showing a fault. On the east
side of the fault the beds all have an attitude of 335°,
40°E. West of the fault the rocks are poorly exposed,
with only two outcrops, which have different attitudes.

( If so, determine direction and amount of rotation.

Problem 9.3

Plot the attitude in the hanging wall on the
equal-area net, and also plot the range of pos-
sible attitudes in the footwall that could result
from rotation on this fault. Determine whether
either of the two attitudes west of the fault could
be the result of rotation on the fault.
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Tilting of fault blocks

Layers that were deposited horizontally and then
tilted provide an opportunity for measuring the
rotation of fault blocks. Tilting occurred after the
deposition of the youngest tilted beds and before
the deposition of the oldest horizontal beds within
the fault block. Review, for example, Problem
5.11, in which you determined the amount of
post-Rohan Tuff/pre-Helm’s Deep Sandstone tilt-
ing within the northeastern fault block of the Bree
Creek Quadrangle.

/ Problem 9.4

By stereographic projection, using the attitudes de-
termined in Problem 3.1, determine the amount (in
degrees) and direction of Neogene tilting on the fault
blocks of the Bree Creek Quadrangle that contain
Tertiary rocks.

Post-Rohan
Tuff/pre-Helm'’s
Deep Post-Helm'’s
Sandstone Deep Sandstone
tilting tilting
Northeastern
fault block
Central fault
block
Western
fault block

G

Map patterns of faults

The map pattern of faults and strata can provide
insight to the types of faults present in an area if
the deformational history is relatively simple. For
example, the approximate attitude of a fault sur-
face can commonly be determined by its trace
across the topography. Steeply dipping (more
than ~75°) faults appear as nearly straight lines
across rugged topography on geologic maps,
whereas gently dipping faults, such as thrusts and
low-angle normal faults, will be deflected follow-
ing the rules of “Vs” (see Figs 2.1-2.7). The rela-
tive offset of strata across faults may allow one to
distinguish between normal, reverse, and strike-
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slip faults. The discussions below assume that the
original stratigraphic order has not been disrupted
by a previous deformational event.

Normal faults

Normal faults can dip at any angle. High-angle
normal faults generally dip between 50° and 70°,
and they show relatively straight traces across top-
ography. However, detachment faults (a special
class of low-angle normal faults) may dip less
than 30° and conform closely to topographic
contours. Normal faults typically place young
rocks in the hanging wall against older rocks
in the footwall; that is, the fault dips toward the
younger rocks (Fig. 9.10). Depending on the an-
gular relationship between the fault and the bed-
ding, normal faults may result in the omission of
strata across the fault (such as layer F in Fig. 9.10)
or the repetition of strata across the fault
(Fig. 9.11).

Reverse and thrust faults

Reverse faulting causes older rocks to be placed on
top of younger rocks; that is, the fault dips toward

Fig. 9.10 Block diagram showing the omission of
strata (as exposed on the earth’s surface) across a nor-
mal fault.

s

v vV

Fig. 9.11 Block diagram showing domino-style normal
block faulting, resulting in a repetition of strata on
adjacent fault blocks.
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Fig. 9.12 Block diagram showing the repetition of
strata (as exposed on the earth’s surface) across a reverse
fault.

the older rocks (Fig. 9.12). This results in a repe-
tition of strata across individual faults.

Thrust faults (reverse faults that dip at angles
less than 30°) may transport relatively thin sheets
of rock over distances measured in tens of
kilometers. Sometimes one portion of a thrust
sheet moves farther than an adjacent portion,
resulting in the development of a tear fault. Tear
faults are strike-slip faults that are confined to the
upper plate (hanging wall) of the thrust; they

Fenster Thrust7 K’Iippe
V4
upper plat
A- f FA'
N
| lower plate
a Tear fault
upper plate
A A
—
lower plate
b

Fig. 9.13 (a) Map and (b) cross-section showing typical
elements of a thrust belt. The sawtooth pattern indicates
the upper-plate (hanging-wall) rocks. See text for
discussion.
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strike parallel to the movement direction
(Fig. 9.13).

Erosion can significantly modify the original
extent of a thrust sheet, sometimes creating ero-
sional windows (fensters) and isolated outliers
(klippen) (Fig. 9.13).

The structural style of thrust faults is explored
in greater detail in Chapter 15.

Strike-slip faults

Strike-slip faults are characterized by horizontal
slip vectors. Strike-slip faults commonly, but not
always, show dips greater than about 70°. Because
there is no differential vertical motion across a
pure strike-slip fault, no predictable age relation-
ships exist between rocks on the opposite sides of
these faults. Note that strike-slip faulting in an
area of horizontal strata will produce no offset in
map view. If old and young rocks occur in a non-
systematic manner on both sides of a high-angle
fault, one should consider the possibility of either
strike-slip faulting or a complex, multiphase de-
formational history.

Timing of faults

An important goal of structural analysis in com-
plexly deformed terranes is to determine the tim-
ing of movement along faults. This is generally
accomplished through the study of cross-cutting
relationships; any geologic feature (e.g., fault,
sedimentary layer, pluton) must be younger than
another feature that it cuts or truncates. However,
application of this principle is complicated in
the case of a growth fault, in which sediments
accumulated simultaneously with the faulting. In
such cases, only a portion of the motion must be
younger than the strata cut. In fact, a significant
percentage of the total displacement along a fault
could be older than the strata cut.

The age of faulting commonly cannot be pre-
cisely determined, even in areas unaffected by
growth faulting. Typically the timing of movement
along a fault is bracketed between the youngest
rock unit or feature that the fault cuts and the
oldest unit or feature that cuts the fault.
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Answer the following questions regarding features

on the geologic map shown in Figure G-25 (Appen-

dix G). Use the spaces provided on Fig. G-25. This

exercise will require you to integrate information

from previous chapters as well as this one.

I Foreach fault (A, B, C, D, and E) determine the
type of faulting that has occurred and bracket
the age of faulting as precisely as possible.

2 Identify the following features indicated by cir-
cled, lower-case letters on the map.

(a) Type of contacts at localities a, b, c, and d.
(b) Specific geologic structure present at local-
ities e, f, g, and h.

3 The strike and dip directions that are shown are
correct; however, three of the dips are actually
overturned. Correct these directly on the map by
substituting the correct symbol for overturned
beds.

4 Istheunitontheeastsideofthe maplabeled “Tm”
older or younger than the other Miocene rocks on
the map? Give a reason for your answer.

5 Determine the minimum amount of displace-
ment on fault C.

6 Write a one-paragraph geologic history of the
map area. Include all episodes of deposition,
erosion, and plutonism. Also indicate when spe-
cific deformational styles (folding and faulting)

\ occurred.

Problem 9.5

rrults
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Using the geologic map, your structure sections, and
your work in this chapter, write a succinct, complete
description of each fault in the Bree Creek Quadran-
gle. Use complete sentences, but avoid them being
long and rambling. Include the following information
for each fault:

Problem 9.6

I  Type of fault (normal, reverse, strike-slip). (If
you cannot determine the sense of movement
with certainty, describe the possible senses of
movement and the evidence for each.)

2 Attitude of the fault plane (including geographic
variation).

3 Strike separation and dip separation (heave and

throw) as the data allow (sometimes only a min-

imum amount of separation may be determined).

Age of movement as specifically as the evidence

permits.

4
N




70

Dynamic and Kinematic
Analysis of Faults

of faults.

population of faults.

Objectives
e Determine the orientation of the stress ellipsoid responsible for a given population

e Reconstruct the history of change in the orientation of the stress ellipsoid for
a given area from the distribution of various types of faults in time and space.
e Use kinematic analysis of faults to determine the direction of extension
(or shortening) for which a given population of faults is responsible.
e Use kinematic analysis of faults to test for kinematic compatibility within a

~

Structural geologists use fault analyses to glean as
much information as possible about the structural
history of a region, and also to better understand
deformation processes within the earth’s crust. In
this chapter we explore two types of fault analy-
sis—dynamic analysis and kinematic analysis.
This chapter also begins our exploration of stress
in structural geology. Stress is measured in units of
force per unit area.

Dynamic analysis

Dynamic analysis seeks to reconstruct the orienta-
tion and magnitude of the stress field that pro-
duced a particular fault or a population of faults.
In this chapter we examine the relationship be-
tween stress orientation and faulting, while the
relationship between stress magnitude and fault-
ing is the subject of Chapter 13.

Three principal stresses

Imagine a hand pushing diagonally on a table top
(Fig. 10.1). The stress acting on the table top can
be resolved into two components: normal stress
acting perpendicular to the surface, and shear
stress acting parallel to the surface. We use the
Greek letter o (sigma) to symbolize stress: o, rep-
resents normal stress, and o, represents shear
stress. [The Greek letter 7 (tau) is sometimes used
to represent shear stress.]

Although both normal and shear stresses are
acting on the table top in Fig. 10.1, we can easily
imagine a plane perpendicular to the arm in which
the shear stress is zero. Within a body under stress
from all directions there are always three planes of
zero shear stress; these are called the principal
planes of stress. The three normal stresses that
act on these planes are called the principal stresses.
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Fig. 10.1 The diagonal force of a hand pushing on a
table top resolved into a normal stress (o,,) acting per-
pendicular to the surface and a shear stress (o) acting
parallel to the surface. The plane of zero shear stress
experiences only normal stress.

By convention, the three principal stresses are
named o1, 02, and o3 in order of magnitude,
where o1=0,=03 (Fig. 10.2a). Together the three
principal stresses define the stress ellipsoid
(Fig. 10.2b). The normal stress acting on any
plane within a stressed body cannot exceed oy
nor be less than o3. Even in situations where the
crust is being extended, such as in rift valleys, all
three principal stresses may be compressive.

Laboratory studies of rock fracturing have
shown that when an isotropic body fractures
under applied stress, the fracture surfaces have a
predictable orientation with respect to the stress
ellipsoid. As shown in Fig. 10.3, there are two
predicted fracture surfaces, or conjugate shear sur-
faces, which are both perpendicular to the o1-03
plane. These shear fractures form an acute angle in
the oy direction and an obtuse angle in the o3
direction. The angle between o1 and each of the
shear fractures is variable, depending on the dif-
ference in magnitude between o1, 02, and o3, and
also on the material properties of the rock, but it is
always less than 45°.

O1
O1

‘ - o
Fig. 10.2 (a) The three principal stresses and the three

planes of zero shear stress on which they act. (b) The
stress ellipsoid, defined by the three principal stresses.
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Fig. 10.3 Relationship between the three principal
stresses and conjugate shear surfaces.

Problem 10.1

Figure G-26 (Appendix G) shows three pairs of con-
jugate shear surfaces. Sketch the arrows representing
the three principal stress directions on each pair of
conjugate shear surfaces, as was done on Fig. 10.3.

Fault attitudes and orientation of the stress
ellipsoid

Modern ideas about the relationship between
faults and the stress ellipsoid began with the
work of British geologist E. M. Anderson (1942).
Anderson reasoned that because the earth’s surface
is an air-rock interface it must be a surface of zero
shear stress and therefore a principal plane of
stress. In the shallow crust, therefore, one princi-
pal stress can be assumed to be vertical and the
other two must be horizontal. As a first approxi-
mation, this assumption has proved to be valid for
many faults. Some exceptions are discussed below.

Anderson’s assumption that one principal stress
is always vertical explains the occurrence of three
classes of fault: normal faults (o vertical), strike-
slip faults (o, vertical), and thrust faults (o3 verti-
cal) (Fig. 10.4). This assumption also allows us to
reconstruct the orientation of the stress ellipsoid
responsible for a given population of faults. Figure
10.4 also shows stereograms of typical populations
of faults of each type. These stereograms are based
on field observations and measurements. Points on
the fault-plane great circles indicate the pitch of
slickenside lineations. For normal and thrust faults,



arrows on the great circles point in the direction of
hanging-wall motion. Notice that on stereograms
of normal faults the pitch of the lineations is at a
high angle, and the arrows point toward the perim-
eter of the net (Fig. 10.4a). Stereograms of reverse
faults also show the pitch of the lineations at a high
angle, but the arrows point toward the center of the
net (Fig. 10.4c). On stereograms of strike-slip
faults, the lineations have a very low-angle pitch,
and pairs of arrows are used to indicate the sense of
offset of each fault (Fig. 10.4b).

The population of normal faults (Fig. 10.4a) occurs
as two subpopulations; the faults in each subpopula-
tion dip steeply in a direction opposite to those in the
other subpopulation. The population of thrust faults
displays parallel strikes, and the faults dip gently in
opposite directions (Fig. 10.4c). And the strike-slip
fault population consists of two subpopulations
with different strikes (Fig. 10.4b). Note that in each
case o bisects the acute angle between the faults. The
two subpopulations in each case represent the conju-
gate set of shear surfaces analogous to those observed
in experimental studies (see Fig. 10.3).

In order for two discrete subpopulations of faults
to develop in isotropic rocks as shown in Fig. 10.4,
there must be a distinct quantitative difference
between o1, 02, and o3. If two of the principal
stresses are approximately equal in value, the result-
ing faults would not occur in two well-defined

G1
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sub-populations. For example, if oy is vertical,
and o, and o3 are of approximately the same
magnitude, the resultant fault population would
consist of normal faults with no preferred strike.

To reconstruct the orientation of the stress el-
lipsoid from a population of faults, draw the fault-
plane great circles on the equal-area net along with
any available data on the sense of slip and the
orientation of slickenlines (as in Fig. 10.4). One
principal stress is assumed to be vertical and the
other two horizontal. The line of intersection be-
tween the two fault sets gives the orientation of 0.
The bisector of the acute angle between the fault
sets is a1, and the bisector of the obtuse angle
between the fault sets is o3.

Complications due to preexisting planes of
weakness

All of the foregoing discussion assumes that the
rocks being studied have no intrinsic preferred
directions of shear. Of course, this assumption is
very often incorrect. Planes of weakness, such as
bedding or cleavage planes, joints, or preexisting
faults will serve as preferred shear surfaces and
will cause faults to have different attitudes than
they otherwise would have had. Old faults that
formed in response to one stress system are often
reactivated by new stresses.

63
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Fig. 10.4 Block diagrams and equal-area plots of three classes of faults predicted by E. M. Anderson. The equal-area
sterograms show typical fault and slickenline orientation data for a set of faults within each class. For normal faults and
thrust faults, the arrows on the great circles of the stereograms point in the direction of the hanging-wall motion. For
strike-slip faults, the arrows on the great circles indicate the sense of shear. After Angelier (1979) in Suppe (1985).
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Movement on such preexisting planes of weak-
ness is typically oblique-slip. The orientation of
the stress ellipsoid cannot be determined in such
cases unless there is a population of variously
oriented faults with slickenlines. If such faults
do occur, the theoretically preferred fault plane is
the great circle defined by the stereographically
projected slickenlines that occur on the preexisting
planes of weakness.

-

The table below lists measurements from 10 normal
faults in a small area on the island of Crete (Angelier
1979). Plot the data on an equal-area net and deter
mine the orientation of the principal stresses. (In
reality, 10 faults are not enough to reliably determine
the orientation of the stress ellipsoid; ideally, about
40 should be used.)

Problem 10.2

B

Fault Strike Dip of Pitch of

number of fault fault slickenlines
| 045° 61°S 80°E
2 036° 59°S 80°W
3 090° 80°N 58°W
4 052° 68°N 78°W
5 045° 63°N 78°W
6 110° 88°N 59°W
7 074° 78°N 65°W
8 046° 60°S 80°W
9 077° 61°N 86°F
10 067° 56°S 88°E

-

Problem 10.3

Figure 10.5 shows a map of a mine adit and a series
of minor faults that occur in a homogeneous rock
unit. Plot the fault planes on the equal-area net and
determine the orientation of the stress ellipsoid. ]
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Figure G-27 is a geologic map and structure section
from the Inyo Range of eastern California. Using
complete sentences, describe the history of principal
stress orientations in this area. What can you say
about the specific time periods that the variously
oriented stresses were in effect? Is there any evidence
that shear surfaces were controlled by anything other
{han the orientation of the principal stresses? Explain.

Problem 10.4

Problem 10.5

In one succinct paragraph, describe the history of the
principal stress orientations in the Bree Creek Quadrangle.
Be as specific as possible about the time intervals during
which variously oriented stress ellipsoids were in effect.
Cite specific evidence to support your conclusions. }

Nonuniform stress fields

Although Anderson’s assumptions about faulting
and the stress ellipsoid have proved to be ex-
tremely useful, we now know that they are not
always valid. For example, instead of the two
sets of conjugate faults predicted by Anderson,
sometimes a rhombohedral network of four fault
sets forms in isotropic rock (Aydin & Reches,
1982). In the cases of thrust faults and strike-slip
faults, usually only one of the predicted two sets of
faults actually develops. In addition, Anderson’s
theory does not explain the formation of low-
angle normal faults or high-angle reverse faults.
Despite these limitations, Anderson’s theory of
faulting remains the basis for all dynamic analysis.

Anderson also assumed that the orientation of the
stress ellipsoid does not change with depth and that
the stress field causing deformation in the shallow
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Fig. 10.5 Map view of a mine adit, showing the attitude and sense of motion on eight faults. For use in Problem 10.3.

D, down; U, up.



crust is uniform over a large area. Implicit in these
assumptions was the expectation that a single fault
type would characterize a region, and that multiple
fault types require multiple deformation episodes.
This expectation has turned out to be wrong. We
will examine two examples of nonuniform stress
fields occurring during a single tectonic episode.
The first (Problems 10.6 and 10.7) is from an exten-
sional tectonic regime, the Basin-and-Range prov-
ince of the western United States, in which the stress
system has been nonuniform through time, and
the second (Problem 10.8) is from a compressive
regime, the Himalayan-Tibetan region of Asia, in
which the stress system is highly variable in space.

-

Figure G-28 is a generalized map of a portion of the

southwestern United States showing the Basin-and-

Range geologic province and bordering regions. The

Basin-and-Range province derives its name from the

north—south-trending basins and ranges that occur

there. Two late Cenozoic deformational fields are

recognizable in this area (Wright, 1976).

I Examine Field | on the map. This field, which
includes central and northern Nevada and west-
ern Utah, is characterized by listric normal faults.
What are the two horizontal principal stresses in
this field, and how are they oriented? Draw your
answer in the space provided below the map.

2 Examine Field I, which includes southern and
westernmost Nevada and eastern California. No-
tice that this field contains a combination of
normal and strike-slip faults. These faults have
all been active during the same general time
interval, but not necessarily exactly synchron-
ously. Focusing first on the normal faults, in the
space provided below the map, draw the orien-
tation of the horizontal principal stresses indi-
cated by the normal faults in Field II.

3 Notice that the strike-slip faults in Field Il include
both dextral and sinistral faults. What horizontal
principal stresses, and in what orientations, are
indicated by these strike-slip faults? Draw your
answer in the space provided below the map.

Problem 10.6

Wizard hint: Carefully examine
the relationship between the
: horizontal principal stresses
Ly and dextral and sinistral strike-
\ slip faults in the block diagram
.. inFig. 10.4b, and compare these

to the strike-slip faults in Field II.
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4 You should now recognize that your answers
have revealed a stress-orientation paradox in
Field II. In the space provided near the bottom
of Fig. G-28, use one or two succinct sentences
to state what this paradox is, including a de-
scription of the orientation of the stress ellipsoid
responsible for each type of fault. Finally, think
of at least one hypothesis to explain this para-
dox, and write your hypothesis in the space
provided. If you can think of more than one

\ hypothesis, all the better.

-~

Let us look more closely at the fault history within
Field Il of Fig. G-28. We will examine the detailed
fault pattern of one small area at Hoover Dam on the
Arizona—Nevada border, a highly controversial area
within the Basin-and-Range province. The faults at
Hoover Dam were studied by Angelier et al. (1985);
Fig. G-29 is a schematic summary of their results.
Although not all workers in the area would agree,
Angelier et al. (1985) recognized four faulting epi-
sodes at Hoover Dam — two episodes of normal
faulting and two episodes of strike-slip faulting. The
first faulting episode (early normal faulting) is
depicted in Fig. G-29a, and the second (early strike-
slip faulting) is depicted in Fig. G-29b.

I Draw the three principal stresses on Fig. G-29a
and b that would account for each of these first
two stages of faulting.

2 The early strike-slip stage was followed by a late
normal-faulting stage, which was then followed
by a late strike-slip stage. The end result is sche-
matically shown in Fig. G-29c. Draw the three
principal stresses on Fig. G-29c that would ac-
count for this late strike-slip stage of faulting.

3 Notice that in Fig. G-29b one of the strike-slip
faults is left-lateral and the other is right-lateral.
Notice also that one segment of the left-lateral
fault is reactivated in Fig. G-29c with right-lateral
motion. All of the faulting depicted in Fig. G-29
took place during Miocene regional extension,
when the Basin-and-Range province developed
in the Hoover Dam region. In the space provided
near the bottom of Fig. G-29, explain how a
strike-slip fault can change from sinistral to dex-
tral during one tectonic episode.

Problem 10.7

Wizard hint: Examine the
oot block diagram in Fig. 10.4b
again, and imagine slowly ro-
\ tating the stress ellipsoid

about a vertical axis.
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4  The authors of this study attributed the alterna-
tion of normal and strike-slip faulting depicted in
Fig. G-29 to “permutations of o and o [which]
represent stress oscillations in time and space”
(Angelier et al., 1985, p. 361). Bearing in mind
that the Miocene was a time of active volcanism,
crustal thinning, and high denudation rates in
the Hoover Dam region, in the space provided at
the bottom of Fig. G-29, speculate about the
geologic factors that might have caused the
vertical principal stress to increase and decrease
in magnitude relative to the horizontal principal

\ stresses.
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f Problem 10.8

Asia contains a complex array of active fault types. As

shown in Fig. G-30, for example, there is a major system

of thrust faults in the Himalaya (Himalayan Frontal

Thrust), major left-lateral strike-slip faults in China

(e.g., Kunlun and Altyn Tagh Faults), major right-lateral

strike-slip faults in Central Asia (e.g., Talasso-Fergana

Fault) and also in Indochina (e.g., Red River Fault), and

normal fault systems in Siberia (Baikal Rift System) and

also in China (Shansi Graben System). Obviously, no
single stress ellipsoid orientation can account for this
tectonic nightmare, yet all of these faults probably owe
their existence to the collision and continued compres-
sion between India and Asia, which began in the

Eocene (Molnar & Tapponnier, 1975).

The India-Asia collision has been experimentally
reconstructed with plasticene, producing insightful
results (Tapponnier et al., 1982). Figure G-3I
shows drawings made from photographs taken dur-
ing one of the plasticene experiments. The upper and
lower surfaces of the plasticene were confined be-
tween two plates, preventing the development of
dip-slip faults, but in spite of this limitation there is
a remarkable similarity between the features in Fig. G-
31c and the fault map of Asia (Fig. G-30).

I On the basis of fault type and orientation, on
Fig. G-30 draw the orientations of the two hori-
zontal principal stresses acting on each of the
seven faults listed below. (Refer to Fig. 10.4 for
help with this.)

(a) Himalayan Frontal Thrust.
(b) Quetta-Chaman Fault.
(c) Talasso-Fergana Fault.

(d) Altyn Tagh Fault.

(e) Baikal Rift System.

(f) Shansi Graben System.
(g) Kang Ting Fault.

2 Place a sheet of tracing paper over the three
drawings of Fig. G-31. On Fig. G-3Ic locate the
faults that correspond to the seven faults listed
above. Draw these faults on the overlay, and
transfer the stress orientations from Fig. G-30.

3 On the overlays of Fig. G-31a and b, draw the
major faults and indicate the orientation of the
horizontal principal stresses along each of these.

4 In one succinct paragraph describe the evolution
of regional stresses during the India-Asia colli-

k sion. Use the space provided on Fig. G-30.

Kinematic analysis

Kinematic analysis is a graphical technique for
analyzing fault data (Marrett & Allmendinger,
1990). It allows the structural geologist to quanti-
tatively characterize the overall deformation or
movement pattern resulting from cumulative
fault motions in a region and to determine the
direction of bulk shortening or extension (i.e.,
strain). Unlike dynamic analysis, kinematic analy-
sis does not seek to determine the orientation and
magnitude of the stresses responsible for deform-
ation.

As with dynamic analysis, the basic data neces-
sary for kinematic analysis of faults are: (1) the
strike and dip of the fault surface, (2) the pitch of
slickenlines within the fault plane, and (3) the
sense of movement on the fault. Sense of move-
ment is most commonly determined by using
stratigraphic separation in combination with the
orientation of slickenlines. [For a discussion of
various additional brittle sense-of-shear indicators
see Petit (1987).]

As an example of the first steps needed for a
kinematic analysis of faults, consider a fault strik-
ing north-south and dipping 30° east (Fig. 10.6a).
We know from field observations that this is a
normal fault, and that the slickenlines have a
pitch of 90° within the fault plane, indicating
that all of the motion is dip-slip. Here is how this
information should be plotted:

1 The fault plane and its pole are plotted on
tracing paper superimposed on the equal-area
net, and the pitch of the slickenlines is plotted
as a point on the same great circle (Fig. 10.6b).

2 From this slickenline-pitch point draw a small
arrow to indicate the direction of motion of
the hanging-wall block (Fig. 10.6b). Be sure
that the slickenline-pitch point is positioned
over the east—-west or north—south axis of the
stereonet when you draw your small arrow.
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Fig. 10.6 (a) Cross-section diagram of a normal fault dipping 30° to the east. (b) Equal-area projection, showing the
pole to the fault, 90° pitch of slickenlines, and corresponding slip-direction arrow. (c) Cross-section diagram showing
the shortening and extension axes, which are perpendicular to one another and 45° from the pole to the fault. (d)
Equal-area projection showing the movement plane and projection of the shortening and extension axes. The
movement plane lies on the great circle defined by the pole to the fault and the pitch of the slickenlines. The slip-
direction arrow points toward the extension axis and away from the shortening axis.

3 The slickenline-pitch point and the pole to the
fault lie in a plane called the movement plane.
To locate this plane, rotate the tracing paper
so that the pole to the fault and the slickenline-
pitch point lie on a common great circle. This
great circle is the movement plane. In the ex-
ample shown in Fig. 10.6, the slickenline pitch
is 90°, so the movement plane is vertical; in
the more general case the movement plane is
inclined and is represented on the stereonet as
a curved great circle.

4 We are now ready to plot the shortening axis
and the extension axis of the fault. Both of
these axes are defined for each fault, regard-
less of what type of fault it happens to be.
These axes lie within the movement plane,
they are oriented 90° from one another, and
each is 45° from the pole to the fault
(Fig. 10.6c). On the stereonet plot, the two
axes are plotted on the line that represents
the movement plane; the slip-direction arrow
always points toward the extension axis and
away from the shortening axis (Fig. 10.6d). It

is important to use different symbols for the
extension and shortening axes, such as a
square for the extension axis and a dot for
the shortening axis, as in Fig. 10.6d.

Quantifying the direction of shortening or
extension

Suppose you have mapped a population of faults.
You want to test the hypothesis that these faults
were all produced as part of a single deformational
episode, and you also want to determine the dir-
ection of extension (or shortening).

Figure 10.7 shows the plots of five reverse
faults, their slip-direction arrows, and their exten-
sion and shortening axes. This stereogram tells us
that these faults represent a regional shortening in
the direction of approximately 110°. In order to
characterize quantitatively a large number of
plots, the points should be contoured, using the
technique described in Chapter 7.
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K Problem 10.9

The data tabulated below were collected within the
Basin-and-Range province, from faults in southern
Nevada, and from north of Hoover Dam in the Lake
Mead area. Although local exceptions exist, the over-
all extension direction in the Basin-and-Range prov-
ince during the Tertiary was east-west. Construct
one plot showing the orientations of faults, pitch of
slickenlines, and slip directions (as in Fig. 10.6b).
Construct a second plot that shows the extension
and shortening axes (as in Fig. 10.6d). There are not
enough data to contour, so visually determine the
“best fit” extension axis direction (or directions, if
there are more than one).

Strike of Dip of Pitch of Dominant

fault fault slickenlines slip sense
195° 65°W 85°N Normal
358° 62°E 84°N Normal
349° 59°E 77°N Normal
355° 76°E 75°N Normal
202° 72°W 76°N Normal
346° 60°E 85°N Normal
208° 65°W 78°N Normal
155° 58°W 80°N Normal
025° 70°E 82°N Normal
190° 68°W 79°N Normal

Are these data from the Lake Mead area consistent

with the regional extension direction in the Basin-

and-Range province as a whole? (In reality, many

more data points would be needed to rigorously
(ddress this question.)

Kinematic compatibility

Kinematic analysis is useful, not only for charac-
terizing the overall strain pattern in an area, but
also for testing the kinematic compatibility of fault
sets. Kinematic compatibility is a complex topic,
and our brief discussion below is designed to only
introduce you to the basic principle.

In some regions, faults of different orientations
and movement sense, such as strike-slip and normal
faults, may act in concert to accommodate regional
extension. These faults are said to be kinematically
compatible. Kinematic analysis of such fault sets
should yield a single extension or shortening
axis. If kinematic analysis shows two or more dis-
tinct extension and shortening axes, the faults are

e and Hinemalic p%{ﬂ/j ity c/ ' Teruulls
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Fig. 10.7 Equal-area plot of five reverse faults, show-
ing the pitch of slickenlines, slip-direction arrows, ex-
tension axes, and shortening axes. The faults dip 20° to
30° to the northwest. The direction of tectonic transport
is east-southeast. Consistent with this transport direc-
tion, the shortening axes trend east-southeast and are
subhorizontal; the extension axes are nearly vertical.

probably not kinematically compatible and may
represent different deformational events.

Here is an example of the kinematic compatibil-
ity test applied to a population of faults. Consider
the following data set collected from 10 faults in a
particular area:

Strike of Dip of Pitch of Dominant
fault fault slickenlines slip sense
345° 34°W 82°NW Normal
078° 70°N 35°SW Left-oblique
329° 32°W 78°NW Normal
090° 51°N 25°W Left-oblique
084° 62°N 21°SW Left-oblique
066° 90° 32°SW Left-oblique
071° 54°N 42°SW Left-oblique
335° 29°W 75°NW Normal
088° 40°N 26°SW Left-oblique
321° 35°W 68°NW Normal

Do these 10 faults represent a single, kinematically
compatible population, or do they represent two or
more separate, kinematically incompatible sets?

These fault data are plotted in Fig. 10.8. The
faults, slickenline pitches, and slip-direction
arrows are plotted on the equal-area net in Fig.
10.8a. Despite the variability in fault surface atti-
tude, the slip direction arrows show a consistent



westerly slip direction. Figure 10.8b is a contoured
plot of the extension axes, and Fig. 10.8¢c is a
contoured plot of the shortening axes. (One
would not usually contour 10 data points; these
contour diagrams are shown here as an example
of the procedure.) The contoured plots indicate
generally uniform extension and shortening direc-
tions for the fault data. This analysis allows us to
conclude that these 10 faults could have operated
in a kinematically compatible fashion.

f Problem 10.10 Part A: Testing a dead
geologist’s hypothesis

A geologist studying thrust faults in a Proterozoic
shear zone in southern Wyoming developed the
hypothesis that all of the thrust faults formed during
a regional north—northwest/south-southeast short-
ening event. Unfortunately, before she was able to
analyze her data she was killed by a grizzly bear.
Fortunately, her field notebook survived the attack.
With her last breath, the dying geologist whispered
to her field assistant: “Please, do a kinematic analysis
of the fault data and find out whether they support or
falsify my hypothesis.”

Use the data from her notebook, tabulated below,
to fulfill her dying wish. First construct a plot show-
ing the orientations of the faults, pitch of slicken-
lines, and slip direction (as in Fig. 10.6b). Then,
construct a second plot that shows the extension
and shortening axes (as in Fig. 10.6d). There are not
enough data to contour, so visually determine the
“best fit” shortening axis direction.

In one succinct sentence, explain what your
analysis tells you about the dead geologist’s
hypothesis.

Strike of Dip of Pitch of Dominant

fault fault slickenlines slip sense
075° 65°S 76°E Thrust
075° 40°S 90° Thrust
241° 32°N 88°W Thrust
234° 37°N 86°W Thrust
061° 51°S 83°E Thrust
062° 45°S 82°E Thrust
094° 30°S 75°E Thrust
263° 22°N 73°W Thrust
055° 22°S 80°E

Thrust j
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Fig. 10.8 (a) Equal-area plot of 10 faults, including
the fault plane, pitch of slickenlines, and slip direction.
(b) Contour diagram of the extension axes; the squares
indicate individual extension axes. (c¢) Contour diagram
of the shortening axes; the dots indicate individual
shortening axes. Contouring was done following the
method of Kamb (1959).
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/ Problem 10.10 Part B: Testing the hypothesis of her precocious field assistant

Near the shear zone discussed in Part A, above, is a region characterized by faults with a dominantly strike-slip sense
of slip. There is a controversy as to whether or not these strike-slip faults are kinematically related to the thrust faults.
While continuing the work of her deceased boss, the precocious field assistant developed the hypothesis that the
strike-slip faults are tear faults (cf. Fig. 9.13) that formed during the same episode of thrusting as the faults examined
in Part A. Tabulated below are her data on six faults. Test this hypothesis by constructing two plots, as before, one
plot of the faults and slickenlines, and the second plot of the extension and shortening axes for the faults tabulated
below. Succinctly discuss the kinematic compatibility or lack of compatibility of the strike-slip and thrust faults.

Strike of fault Dip of fault Pitch of slickenlines Sense of shear
100° 85°S 6°E Right lateral
352° 85°W 8°S Left lateral
282° 78°N °W Right lateral
107° 77°S 10°E Right lateral
348° 85°W 4°S Left lateral

@OO 90° 3°S Left lateral
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A Structural Synthesis

Objective

e Write a professional-quality structural history of the Bree Creek Quadrangle.

The ultimate objective of analyzing the structures
of an area is to reconstruct the area’s structural
history. Even when the impetus is purely eco-
nomic, a great deal of time and money is often
spent on sorting out generations of deformation
and compiling a detailed geologic history. Such
knowledge is not just academic; it may be crucial
for the successful discovery of ore bodies and pet-
roleum reservoirs.

Structural synthesis of the Bree Creek
Quadrangle

From your work on the Bree Creek Quadrangle
map you have the data to reconstruct a detailed
structural history of that area. The task in this
chapter is to do just that. Below is a review of
the problems in this book that deal with the Bree
Creek Quadrangle.

Problem 2.2  Draw structure contours on the
upper surface of the Bree Conglom-
erate in the northeastern corner of
the Bree Creek Quadrangle.

Determine the attitudes of the

Neogene units.

Problem 3.1

Problem 3.2

Problem 3.3

Problem 3.5

Problem 4.4

Problem 5.11

Problem 7.2

Problem 8.5

Problem 9.4

Problem 9.6
Problem 10.5

Determine the thicknesses of the
Paleogene units.

Determine the approximate thick-
nesses of the Neogene units.
Construct a stratigraphic column
for the Cenozoic and Mesozoic
units.

Draw structure sections for A—A’
and B-B'.

Determine the amount of post-
Rohan, pre-Helm’s Deep tilting
of the northeast fault block.
Construct  contoured  w-dia-
grams, profile views, dip isogons,
and summary diagrams of the
folds; as well as describing the
folds.

Draw axial-surface traces of the
superposed folds; draw structure
sections C—C’ and D-D’; and de-
scribe the superposed folds.
Determine the amount and direc-
tion of Neogene tilting on the
fault blocks.

Describe the faults.

Describe the history of the princi-
pal stress orientations.
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Synthesize as many of these tasks as you have
completed into a cohesive summary of the struc-
tural history of the Bree Creek Quadrangle. This
synthesis should consist of the following.

1 Geologic map (in an envelope at the back of
the report).

2 Structure sections A-A’, B-B/, C-C/, and
D-D/, neatly drawn, inked, and colored (in
an envelope with the map).

3 Text (to include the following, with a sub-
heading for each section):

(a) Title.

(b) Abstract. Write this last, but put it at the
front of your report on a separate page. An
abstract is a concise but comprehensive
summary. It is the report, condensed and
packed with concentrated information and
significant results.

(c) Table of contents.

(d) Introduction. Briefly introduce the terrain
and the structures. Since you did not actually
do the fieldwork yourself, your introduction
in this case should be one succinct paragraph.

(e) Stratigraphy. Add the Paleozoic rocks to
the stratigraphic column you drew in Prob-
lem 3.5, and include this complete column
in your report. The approximate thick-
nesses of the Paleozoic units can be meas-
ured directly off your structure sections
C-C' or D-D'. Irregular plutonic units,
such as the Dark Tower Granodiorite, are
not assigned a thickness.

Briefly describe the stratigraphy, paying
special attention to unconformities; they
often have structural significance. If you
had mapped the Bree Creek Quadrangle
yourself, you would include detailed rock
descriptions here as well.

(f) Folds. Combine your work from Problems
7.2 and 8.5 into a detailed but readable de-
scription of the folds. Use your cross-section
diagrams, contoured diagrams, and profile
views to support and illustrate your descrip-
tions. For descriptive purposes the Bree
Creek Quadrangle can be conveniently div-
ided into four subareas, each of which is a
separate fault block. To allow a quick com-
parison of the folding in each subarea, in-
clude the page-sized reference map used in
Problem 7.2 (Fig. G-20, Appendix G).

Prepare a synoptic diagram that shows
the variation in the orientation of the fold
axes of the folded Tertiary rocks. A synoptic
diagram shows data from different subareas

Fig. 11.1 Synoptic B-axis diagram prepared from 11
subareas. Each point represents a different subarea.
After Weiss (1954).

plotted together. Figure 11.1 is an example
of such a diagram.

(g) Faults. As specifically as possible, describe
the age of each fault, the orientation of the
fault surface, the sense of movement, and
the amount of offset.

(h) Orientation of principal stresses. Review
the orientation of the principal stresses at
various times, citing specific structural fea-
tures to support your statements.

(i) Discussion. Discuss how faulting, folding,
and stratigraphy relate to one another. Did
faulting precede folding or follow folding
or both? Have the folded sections been ro-
tated by faulting? Can sedimentation, ero-
sion, intrusion, or metamorphism be
related to structural events? Specifically
how? Has the stress orientation of the area
changed? When and in what way? Support
your statements with references to the map,
cross sections, and other diagrams.

(j) Summary of structural history. Succinctly
summarize the structural history that you
have just discussed in detail. Begin with the
oldest events and work forward. Be very
specific about the period or epoch in
which an event occurred. This is your
chance to tie everything together into a
neat package.

(k) References cited. Give credit to your
sources of information by citing refer-
ences. Many students seem to have trouble



learning when and how to cite references. It
is worth the trouble to look at any geologic
journal and to pay close attention to the
reference citations.

Generally speaking, any time you use
someone else’s observations or conclusions
you need to cite the reference. This is done
by providing the author and date of the
publication in either of the following two
ways:

Example no. 1: Although it had generally been
thought that the Mt Doom volcanic center is no
longer active, Baggins and Gamgee (2005)
showed that this is not the case.

Example no. 2: Although it had generally been
thought that the Mt Doom volcanic center is no
longer active, recent observations have shown
that this is not the case (Baggins & Gamgee,
2005).

The complete bibliographic reference is
then provided in the References Cited sec-
tion of the report.

If a reference has two authors it is normal
practice to list both of them in the text of
the paper, as in the examples given above.
With three or more authors, the citation is
commonly written like this: “(Baggins and
others, 2005)” or “(Baggins et al., 2005).”
“Et al.” literally means “and others;” a
period must be placed after “al.” because
it is an abbreviation of alii (masculine
others) or alige (feminine others) or alia
(mixed gender or neuter others). The
names of all of the authors must be listed
in the References Cited section of the
report.

Regarding the precise method of listing
references in the References Cited section,
different scientific journals follow different
nit-picky conventions. Here is the style used
by publications of the Geological Society of
America:

Baggins, F. and Gamgee, S., 2005, Reconnais-
sance survey of Mt. Doom Volcano: Journal of
Middle Earth Field Studies, v. 27, p. 116-125.

Do not list any references in your Refer-
ences Cited section that are not cited in the
text of the report. Conversely, all citations
in the text of the report must be listed in the
References Cited section. Citation of inter-
net resources requires special attention;
consult your local reference librarian.
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Writing style

Write with a specific reader in mind. This should
be a geologist who has never seen the area you are
describing. You do no# need to explain basic geo-
logic concepts and terms (e.g., anticlines are folds
with the oldest rocks in their cores), but you do
need to explain things that are known only to
geologists familiar with the local area (e.g., the
Bree Creek fault strikes north—-south and dips 50°
to the west).

Explain your data and conclusions in clear, sim-
ple prose. Aim for short sentences. Try reading
aloud what you have written; if it does not flow
smoothly it needs to be rewritten. Here is an ex-
ample of a sentence that makes the reader struggle:
“It should be noted that a clast of indurated crustal
material perpetually rotating on its axis along the
modern air-lithosphere interface is somewhat un-
likely to accumulate an accretion of bryophytic
vegetation.”

Do not put all of your diagrams at the back of
the report, where they are difficult for the reader
to find. In this report, the map and cross sections
must be separated from the text, but in general it is
desirable to place figures on the page following the
first reference to them in the text. Label your
diagrams “Figure 1,” “Figure 2,” etc., and be
sure each figure has a caption that explains its
significance, even though this will duplicate some
of the explanation in the text. At appropriate
places within the text of your report, refer your
reader to the figure she should be looking at.

Within reason, avoid using passive-voice and
third-person constructions, such as: “The Bree
Creek Quadrangle was studied by the author in
2005.” This style is very common in the older
literature, but today most editors consider the
convention of always referring to yourself in the
third person to be clumsy and stiff. It is much more
direct to write: “I studied the Bree Creek Quad-
rangle in 2005.” Furthermore, when you use third
person/passive voice construction you convey a
sense that you are trying to distance yourself
from your work, as if you do not want to be
responsible if it is not quite correct.

Beware of vague qualifiers such as “rather,”
“somewhat,” and “fairly.” Also, avoid “weasel
words” such as “seems” and “might.” In rare in-
stances these words are appropriate, but people
often use them by reflex and then do not think
through what they are saying. For example, a
geologist might write: “The principal axis of
extension seems to rotate clockwise during the
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Tertiary by a rather small amount.” If the evidence
is not conclusive, it is better to write: “The data
suggest that the principal axis of extension rotated
clockwise approximately 10° during the Tertiary,
but more fault orientations must be measured to
confirm the rotation.”

Common errors in geologic reports

Here are a few errors that repeatedly appear in the
reports of geology students.

1

The most commonly misspelled word in stu-
dent reports is “occurred,” which, like “occur-
ring” and “occurrence,” has two “r”s.

The most commonly misspelled geologic
period is the Ordovician, with the Cretaceous
a close second. Do not confuse Paleocene with
Paleogene.

In scientific usage, the word “data” is the

plural form of the word “datum.” Therefore,

oA Structural C%w//m;rf;

2

use “these data show that rather than
“this data shows that ....”

When you are describing rocks that you per-
sonally examined, use the present tense. Stu-
dents often write such things as “the Tapeats
Sandstone was a coarse-grained quartz sand-
stone,” because that was what they saw. If the
rocks still exist, use the present tense to de-
scribe them.

Many geologists make a distinction between
Upper and Late, and between Lower and
Early. For them, Upper and Lower refer to
rocks, while Late and Early refer to time: the
Upper Cambrian Nopah Formation was
deposited during the Late Cambrian Epoch.
However, due to the evolution of stratigraphic
methods and nomenclature, some prominent
stratigraphers now adovocate the use of the
terms Early and Late for both strata and time
(Gradstein et al., 2004; Zalasiewicz et al.,
2004). Ask your instructor what he or she
prefers.
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Rheologic Models

Objective

e Acquire a qualitative understanding of rheologic models as analogs of rock

deformation.

/ Equipment required for this chapter

e Rubber bands and springs

Plastic disposable syringe (available from
any medical facility)

String

Silly Putty® (available at toy stores)
Standard masses

Spring scale (or fish scale)

Laboratory stands

Bars and clamps

Meter stick

Rocks respond in complex ways to stress. A layer
of rocks that will fold under one set of conditions
will fracture under another set. Adjacent layers
may behave differently under the same conditions.
Various aspects of stress and strain are examined
in Chapters 10, 13, and 14. In this chapter we will
investigate idealized relationships between stress,
strain, and strain rate, and try to achieve a more
intuitive understanding of why rocks deform the
way they do.

Stress, symbolized by the Greek letter o (sigma),
is the force intensity experienced by a bodyj; it is
measured in units of force per unit area. Strain,
symbolized by the Greek letter € (epsilon), is the
resulting change in shape or volume caused by
stress. Strain can be measured in various ways
(see Chapter 14).

In addition to stress and strain, ¢ime is an import-
ant element in the study of deformation. The study
of the relationships between stress, strain, and time
is called rheology, from the Greek work rheos,
which means a flow or current. A rheologic model
is a characteristic relationship between stress, strain,
and time, exhibited by an object being deformed.

In order to gain a qualitative understanding of
stress and strain, it will be useful to examine
three rheologic models: elastic deformation, vis-
cous deformation, and plastic deformation. We
will examine these separately and in combination.

Elastic deformation: instantaneous,
recoverable strain

Elastic deformation is exhibited by a rubber band
or a coiled spring (Fig. 12.1). With a perfectly
elastic body the strain is strictly a function of



700 Rheotogic AModels

'/ rubber band

Fig. 12.1 Elastic deformation. (a) Schematically represented as a coiled spring. (b) Simulated with a rubber band.

€

(percent lengthening or
shortening)

Fig. 12.2 Stress/strain graph of elastic deformation.
The slope of line varies with the elasticity (Young’s
modulus) of the material.

stress, and stress graphed against strain is a
straight line (Fig. 12.2). Elastic deformation is
described by Hooke’s law, o = Eg, where E is the
elasticity (Young’s modulus) of the material. Ob-
jects that display perfect elastic behavior are called
Hookean bodies. Rocks behave as Hookean bod-
ies during earthquakes, when they transmit seis-
mic waves.

Unlike other types of deformation, elastic de-
formation occurs very quickly in the earth; for
our purposes it will be assumed to be instantan-
eous. Another unique characteristic of elastic de-
formation is that the strain is recovered when the
stress is removed, providing that the elastic limit of
the material has not been exceeded.

\\\\“:\j\\\\‘

1]

To summarize the key features of elastic deform-
ation: strain is directly proportional to stress,
strain is (for our purposes) instantaneous, and
strain is completely recovered when the stress is
removed (unless the elastic limit has been
exceeded).

Viscous deformation: continuous strain under
any stress

Viscosity is the measurable resistance of a fluid to
flow. The viscosity of water is low, while the vis-
cosity of honey is relatively higher. There are two
categories of viscous deformation: Newtonian and
non-Newtonian. The viscosity of water, and many
other fluids, can be altered only by changing the
temperature of the fluid. As long as the tempera-
ture remains constant, there is a linear relationship
between stress and strain rate. Materials that be-
have this way are called Newtonian fluids. The
lower crust may behave like a Newtonian fluid
(Wang et al., 1994).

In this chapter the viscous deformation that we
model will assume Newtonian behavior, in which
the strain rate is proportional to stress. The sche-
matic analog of Newtonian viscous deformation is
a porous piston in a fluid-filled cylinder, together
called a dashpot (Fig. 12.3a). A suitable dashpot
for our experimentation is a plastic, disposable
syringe, common in hospitals (Fig. 12.3b).

Fig. 12.3  Viscous deformation. (a) Schematically represented as a leaky piston in a fluid-filled cylinder (together called

a dashpot). (b) Simulated with a disposable syringe.



Another class of fluids — called non-Newtonian
fluids — behave differently. In non-Newtonian
fluids, the viscosity can be altered by means other
than temperature, such as by shearing the fluid. A
geologic example of a shear-thickening fluid is
quicksand. Quicksand occurs where sand is sus-
pended in water that is under pressure due to a
slow influx of water below the surface, such as at
the orifice of a spring. If you rapidly shear the
quicksand, such as by stepping into it, its viscosity
increases, and you may be unable to extricate your
foot. The more you struggle, the more you shear
the quicksand, and the greater the viscosity be-
comes. The trick is to move slowly. If necessary,
lie down backward with your arms spread, and
slowly free your legs.

An example of a shear-thinning non-Newtonian
fluid is ink in a ballpoint pen. As the ball turns, the
ink is sheared and becomes less viscous, allowing
it to flow freely as you write. Non-Newtonian
viscous behavior is fairly common in the earth,
but it does not lend itself to the simple modeling
used in this chapter, so we will not be incorporat-
ing it into the following experiments.

Notice that, because viscous deformation is con-
tinuous at any stress, it is meaningless to graph
stress against strain as in Fig. 12.2. Here it is the
strain rate rather than absolute strain that is sig-
nificant. Strain rate is symbolized & (the first time
derivative of €). The strain rate of a Newtonian
fluid is a function of stress and viscosity: ¢ = ng,
where m (eta) is the coefficient of viscosity of the
material. The greater the stress, the faster the de-
formation. Figure 12.4 shows o graphed against &
for a given material. Unlike elastic deformation,
viscous deformation is permanent.

Because the total strain is partly a function of
time, it is instructive to graph stress and strain
separately against time, as in Fig. 12.5. Examine
the two graphs in Fig. 12.5 carefully, and be sure

€
(percent lengthening per second)

Fig. 12.4 Stress/strain rate graph of viscous deform-
ation. The slope of the line varies with the viscosity of
the material.
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stress stress
appliedy ¢ removed
c
to f Iz I3
time
a
€
to I 5] I3
b time

Fig. 12.5 Viscous deformation experiment in which
time is simultaneously graphed against stress (a) and
strain (b).

that you understand how they relate to each
other. We will be using such pairs of graphs
throughout the rest of this chapter. In Fig. 12.5a
stress is shown first applied at # and removed at
t. In Fig. 12.5b it can be seen that strain is
continuous from #; to t,, after which no more
strain occurs.

Strain is commonly measured in percent length-
ening or shortening per second, because seconds
are convenient units of time for laboratory experi-
ments. For example, if an object under stress
were shortened from 10 cm to 9 cm in 100 s the
strain rate would be: —10%/100s=—0.1/
100s = —0.001/s = —1 x 1073 /s. By convention,
shortening is considered to be negative strain,
while lengthening is considered to be positive.
Strain rates in the earth’s crust, of course,
are many orders of magnitude slower. For ex-
ample, by measuring the change in distance be-
tween points on opposite sides of the San
Andreas fault, a strain rate of 1.5 x 10713 /s has
been determined.

Plastic deformation: continuous strain
above a yield stress

Plastic deformation is similar to viscous deform-
ation, except that flow does not begin until a
threshold stress, or yield stress (oy), is achieved.
Yogurt, for example, will not flow off a horizontal
table if you dump it out of the carton. It has a yield
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Yield strength
o of material

€
Fig. 12.6 Stress/strain rate graph of plastic deform-

ation. Once the yield strength of the material has been
exceeded, behavior is viscous.

stress of about 800 dynes/cm?, which is greater
than the gravitational force acting on it. If you
place a dish on top of the yogurt it will flow
because the yield strength of the yogurt has been
exceeded. Above the yield stress, stress graphed
against strain rate is like viscous deformation
(Fig. 12.6). Materials that behave in this manner
are called Bingham plastics.

To simulate plastic deformation we will use a
block on a flat surface (Fig. 12.7). Small amounts
of stress may be applied with no movement at all.
There exists a yield stress oy, however, that will
overcome the frictional force on the stationary
block. Once the vyield stress is applied, the fric-
tional force is overcome, the block begins to
move, and it continues to move. A block on a
table is not really a case of plastic deformation; a
key difference is that while the block is not
deformed, a plastic body is deformed. However,
the similarity in the relationships between stress,
strain, and time allows us to use the block as an
analog of plastic deformation.

Notice that after the yield stress is applied, the
amount of strain is a function of time. In
Fig. 12.8, stress and strain are separately graphed
against time. Stress is first applied at #; and
gradually increased until the vyield stress is
reached at .

syic OAModels

stress
removed
o y
o
T 1 T
to t]_ t2 t3
time
a
€
fo i [ 13
b time

Fig. 12.8 Plastic deformation experiment in which time
is simultaneously graphed against stress (a) and strain (b).

Elasticoplastic deformation

Most materials display complex rheologic charac-
teristics that can be simulated with some combin-
ation of elastic, plastic, and viscous deformation.
Attach a rubber band to a wooden block and
conduct the experiment shown in Fig. 12.9. Con-
sider the behavior of the rubber band and block as
a unit, and carefully examine how this behavior is
reflected in the o/time and &/time graph pair in the
figure. Notice that the rubber band provides an
elastic component and causes the strain to begin at
t1, even before the yield stress is reached. When
the stress is removed at t3, however, the elastic
deformation is recovered and the permanent de-
formation is a result of the plastic component.

Elasticoviscous deformation

Attach a rubber band to a syringe (as shown with
string in Fig. 12.3b) and experiment with the

Fig. 12.7 Plastic deformation. (a) Schematically represented as a block on a flat surface. (b) Simulated by pulling a

wooden block with a string.
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Fig. 12.9 Elasticoplastic behavior.

behavior of this unit. This apparatus behaves just In the experiment shown in Fig. 12.10 the rub-
like the elasticoplastic body except that there is no ber band is stretched and fixed, giving the body
yield stress that must be overcome before perman- instantaneous permanent strain. In the two
ent strain begins. An object that behaves this way graphs, notice that although the strain is instant-
is called a Maxwell body. aneous and permanent, the stress is greatest at #;
N\
N

to: at rest stress gradually

A{ decreases

724
stress
EY

N\ to tl t2 t3
11: stretched and held
N\
N
w\ permanent deformation
A\ to system
1. spring nearing unstressed length
N\ € instantaneous elastic
N Kdeformation
| H——wmm\ | —
lo iy 173 I3

1. elastic strain recovered

Fig. 12.10 Elasticoviscous behavior.
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( rubber band

Fig. 12.11 Firmoviscous behavior simulated with a rubber band and syringe.

and gradually decreases until the elastic strain is
completely recovered.

Firmoviscous deformation

Combine a rubber band and a syringe as shown in
Fig. 12.11. Neither the elastic nor the viscous com-
ponent can move without the other. Examine the
stress and strain graphs of Fig. 12.12 and note that
even though the stress is constant, the strain rate
decreases with time as the rubber band lengthens.
When the stress is removed at 2, the strain rate
jumps and then gradually decreases until all of the
strain is recovered. An object that behaves this way
is called a Kelvin body.

The earth can be thought of as a self-gravitating
firmoviscous sphere. For example, when the weight

QqQ
stress
step
stress
removed

lo 21 2] I3

¢ decreases

as spring
Iengthens\\

¢ decreases as
c & spring shortens

Fig. 12.12 Firmoviscous behavior.

of glacial ice was removed at the end of the Pleisto-
cene, northern portions of Europe and North
America responded by isostatically rebounding.
This rebound is still occurring, but at a steadily
decreasing rate.

Within every rock is a little dashpot

Under conditions of low temperatures, low pres-
sures, and high strain rates, rocks deform by brittle
deformation mechanisms. (The conditions under
which rocks fracture are explored in Chapter 13;
deformation mechanisms are discussed in Chapter
16.) However, deeper within the earth’s crust,
where temperatures and pressures are high,
rock deformation occurs by plastic deformation

%

2

rat rest

~
o

=

stress applied
§F\QQQQQQQQQQQJ——‘>

1p: stress removed

Z

W/

t3: strain recovered
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Fig. 12.13 Within every rock is a little dashpot.
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mechanisms. The boundary between shallow-crust
brittleness and deeper-crust plasticity is a zone
called the brittle—plastic transition.

Even within the brittle upper crust, however, at
low strain rates rocks may deform in such a man-
ner that they appear to flow at the mesoscopic
scale. Such behavior is called ductile behavior,
and it can involve brittle or plastic deformation
mechanisms. Over very long time intervals, rocks
are unable to resist any differential stress at all. On
a large planet with a strong gravitational field and
no active tectonism there would be no mountains.
The rocks would flow like Silly Putty®. An analo-
gous situation exists on Europa, one of the satel-
lites of Jupiter. Europa has an ice crust that is
pockmarked with very few impact craters; it is

-

stress applied

i
ey

17 : stress released

%

/%

i

Fig. 12.14 Rheologic model called a standard linear
solid.
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the smoothest known body in the solar system.
The mass of Europa and the rheologic properties
of the ice conspire to erase craters soon after they
form. Within every rock is a little dashpot
(Fig. 12.13).

Many real solids behave like the rheologic
model shown in Fig. 12.14. If stress is applied
and immediately released, the strain is elastic and
is immediately recovered. But if stress is applied
and held for a while, the firmoviscous component
(dashpot and spring) becomes important. This
combination of a Kelvin body and an elastic
body is called a standard linear solid. Such behav-
ior can be seen in an old rubber band that has been
wrapped around a newspaper for several weeks
and is finally taken off; the limp rubber band
slowly recovers some of its strain.

Problem 12.1

On the e/time graph in Fig. G-32a (Appendix G)
show the strain history of a standard linear solid
that would correspond to the stress history in the
o/time graph.

/ Problem 12.2

The rheologic model shown in Fig. 12.15 behaves
differently at different strain rates. At high strain
rates it behaves elastically (“bounces”). At moderate
strain rates it behaves elasticoplastically (the dash-
pot does not have time to work unless the strain
rate is low). And at low strain rates it behaves
elasticoviscously. Experiment with Silly Putty®),
and notice that it shares some of the properties
just described but is not exactly the same as the
model drawn in Fig. 12.15. Silly Putty® exhibits
the following behavior: it bounces at high strain
rates, stretches with slow partial recovery at mod-
erate strain rates, and flows under gravitational force
(low strain rates).
Draw a rheologic model for Silly Putty® that
satisfies all of these requirements, and indicate on
@ur drawing which parts behave in which ways.
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M axwell body (low € )
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Fig. 12.15 Rheologic model for use in Problem 12.2.

r\/\/ﬁ'/ Elastic (high € )
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Problem 12.3

&re might behave differently in different places.

Figure G-32b is a sketch of a folded rock layer. The 3
limbs of the folds deformed without fracturing, while
fracturing occurred in the hinge zones. In terms of
rheologic models, explain why the same material
under the same conditions of temperature and pres-

-

Problem 12.4

In this problem you will quantitatively explore some
rheologic models.

Using a spring scale and meter stick, graph stress
against strain for several rubber bands and
springs. Are these perfect Hookean bodies? Ex-
plain your answer.

Using a syringe and a rubber band, construct a
Kelvin body (see Fig. 12.11). Suspend your Kel-
vin body from a horizontal bar. Using different
masses, graph strain against time.

Place a stick of chalk horizontally across the jaws
of a clamp. Suspend different masses from the
chalk. Does it display elastic deformation? Deter-
mine the breaking strength of the chalk (the
maximum stress it can support).
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Brittle Failure

Objective

e Predict the principal stress magnitudes that will cause a given material to fracture.

Equipment required for this chapter

e Graph paper
e Drawing compass
e Protractor

Chapter 10 was partly devoted to an examination
of the orientation of the stress ellipsoid, especially
with regard to faulting. Here we will investigate
how the magnitude of the principal stresses influ-
ences brittle deformation. The chief objective is to
be able to determine the differential stress at which
a particular brittle failure will occur. We emphasize
that, strictly speaking, the following discussion ap-
plies only to isotropic, homogeneous materials.
Real-world geologic situations are usually more
complicated. The material in this chapter lies at
the heart of engineering geology because it concerns
the conditions under which rock breaks.

Quantifying two-dimensional stress

Experimental rock fracturing has shown that the
difference in magnitude between o; and o3 -
called the differential stress - is the most

important factor in causing rocks to fracture.
The magnitude of o, does not play a major role
in the initiation of the fracture. For this reason we
may profitably examine stress in two dimensions,
in the o1—03 plane.

If we know the orientations and magnitudes of
o1 and o3, then we can determine the normal and
shear stresses acting across any plane perpendicu-
lar to the o1—03 plane. Consider the plane in
Fig. 13.1a. We want to determine the normal and
shear stresses acting on that plane. To simplify the
situation we will isolate the plane, along with two
adjacent surfaces that are perpendicular to o and
o3 (Fig. 13.1b). Viewed in the o1—03 plane, we
will call these surfaces A and B, and we will define
angle 0 as the angle between the plane and the o3
direction (Fig. 13.1c). This is equivalent to the
angle between o and the normal to the plane
(Fig. 13.1d).

If our triangle in Fig. 13.1c¢ is not moving, then
it must be in equilibrium. This means that the
normal stress (o) and shear stress (o) acting on
the plane must be equal to o7 and o3 acting on
surfaces A and B. We will now use this equilibrium
relationship to define o, and o, in terms of o1, 073,
and angle 6.

Figure 13.1d shows o and o3 acting on the
plane, and it also shows the horizontal and vertical
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components of o1 and o3. The length of the line
that represents the plane is:

A B

sin 0

cos 0

The vertical and horizontal forces acting on this
line are indicated in Figure 13.1d. The equations
of equilibrium for this plane are as follows:

A
01A = —— (0, cos O + o sin B) (13.1)
0s 0
B .
03B = —— (0, 5in® — o cos 0) (13.2)
sin

Solving these equations simultaneously for o, and
o, in terms of o1, 03, and 0, we derive the follow-
ing equations:

O = 01 cos® 0 4 o3 sin® 6 (13.3)
o5 = (01—03)sinBcos O (13.4)
O
_G3

N

o1

|

s}
03— ~<+—O03
Q
S
@| Surface A {9
¢ T
ol

Fig. 13.1

In order to reconstitute these equations into a
more useful form we can substitute the following
trigonometric  identities:  sin26 = 2 sin 6 cos 0,
cos?>® = 1/2(1 + cos 26), and sin? 6 = 1/2
(1-cos20). The result is the following two
equations:

T = (‘“ ;“’3) + (‘“;’3) c0s26 (13.5)
5, = (U‘ ;03) sin 20 (13.6)

Stress is measured in units of force per unit area,
for which the basic unit is the pascal (1 Pa = 1
newton per square meter); 10° Pa equals 1 bar,
which is approximately equal to atmospheric pres-
sure at sea level. The most convenient unit for
most geologic applications is the megapascal
(MPa), which is equal to 10° Pa or 10 bars. Stress
within the earth’s crust ranges up to about
10° MPa.

Using equations 13.5 and 13.6, we can now
determine the normal and shear stress acting

O

O3

Gss.n 0

Two-dimensional relationship between a plane and its state of stress. See text for explanation.



across a plane if we know the orientations and
magnitudes of o1 and 3. Suppose, for example,
that in Fig. 13.1, o = 100 MPa, o3 = 20 MPa,
and 6 =40°. Using equation 13.5, the normal
stress is determined as follows:

__(01+03 01-03
(Tn—< 3 )—l—( 7 )cosZG

= (60 MPa) + (40 MPa)(0.17)
= 67MPa

Similarly, equation 13.6 can be used to determine
the shear stress acting on the plane:

_ 01—-03 .

gy = ( 3 )stO
= (40 MPa)(0.98)
= 39 MPa

Problem 13.1

Given the principal stresses of oy = 100 MPa (verti-
cal) and o3 =20MPa (horizontal), determine the
normal and shear stresses on a fault plane that strikes
parallel to o, and dips 32° (Plane | in Fig. G-33a,
Appendix G).

+ Os

— On = + Op

\l
— 05

Fig. 13.2 Mohr diagram for graphing the state of stress
of a plane. Within a stress field consisting of a particular
combination of oy and o3, planes with different dips
will experience different magnitudes of o, and o, and
will therefore plot at different points on the Mohr
diagram.
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The Mohr diagram

In 1882, a German engineer named Otto Mohr
developed a very useful technique for graphing the
state of stress of differently oriented planes in the
same stress field. The stress (o, and o) on a plane
plots as a single point, with o, measured on the
horizontal axis and o, on the vertical axis
(Fig. 13.2). Such a graph is called a Mobr diagram.
Most stresses in the earth are compressive, so
geologists, by convention, consider compression
to be positive. (Engineers, as a rule, are more
tightly strung than geologists, so in engineering,
tension is considered positive.) As a practical mat-
ter in structural geology, o, in the earth’s crust is
always positive and will therefore always plot on
the positive (right) side of the vertical axis of the
Mohr diagram.

The vertical axis of the Mohr diagram, like the
horizontal axis, has a positive and a negative dir-
ection. Shearing stresses that have a sinistral
(counterclockwise) sense (Fig. 13.3a) are, by con-
vention, considered positive and are plotted above
the origin. Dextral (clockwise) shearing stresses
(Fig. 13.3b) are plotted on the lower, negative
half of the diagram.

K Problem 13.2

Plane | in Fig. G-33a has been plotted on the Mohr

diagram in Fig. G-33b. Determine the normal and

shear stresses on planes 2 through 5 and plot them

on the Mohr diagram. (Recall that trigonometric

functions of angles in the second and fourth quad-
@ts are negative, e.g., cos 180° = —1.0.)

X =

— O ol — >

Positive
a b

N egative

Fig. 13.3 Conventional signs assigned to shearing
stresses for the purpose of plotting on the Mohr dia-
gram. Sinistral shearing (a) is considered positive; dex-
tral shearing (b) is considered negative.
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Os

State of stress
on plane =
coordinates of

point (On , Os)
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Fig. 13.4 Main features of the Mobhr circle of stress. The Mohr circle is the set of states of stress on all possible planes
in a two-dimensional stress field. The position on the circle of a given plane is determined by finding angle 6 (the angle
between the plane and o3) and plotting 26 on the Mobhr circle. Planes with sinistral shear are plotted in the upper
hemisphere; planes with dextral shear are plotted in the lower hemisphere. 26 is always measured (up or down) from

the o1 intercept.

The Mohr circle of stress

The five points you have plotted on Fig. G-33 in
Appendix G (see Problem 13.2) should lie on a
circle. A key feature of the Mohr diagram is that
for a given set of principal stresses the points
representing the states of stress on all possible
planes perpendicular to the o1—03 plane graph as
a circle. This is called the Mobr circle. As seen in
Fig. 13.4, the Mohr circle intersects the o, axis at
values equal to o3 and o4. The radius is (61—03)/2
and the center is at (o1 4+ 03)/2. Note how these
expressions relate to equations 13.5 and 13.6.

It is important to understand that the axes of the
Mohr diagram have no geographic orientation.
They merely allow the magnitudes of stresses on
variously oriented planes to be plotted together.
Planes perpendicular to either oy or o3 (planes 3
and 5 of Fig. G-33) have no shear stress acting on
them, so they plot directly on the o, axis. Shear
stress is maximum on planes oriented 45° to the
principal stress directions (6 = 45°); the points
representing these planes plot at the top and bot-
tom of the Mohr circle.

Values of 26 can be measured directly off the
Mohr circle as shown in Fig. 13.4. The 26 angles
corresponding to planes with positive (sinistral)
shearing lie in the upper hemisphere of the Mohr
circle, while those corresponding to planes with

negative (dextral) shearing stresses lie in the lower
hemisphere. In either case the angle 26 is measured
from the right-hand end of the o, axis.

The chief value of the Mohr circle of stress is
that it permits a rapid, graphical determination of
stresses on a plane of any desired orientation.
Suppose, for example, that oy is oriented east—
west, horizontal, and equal to 40 MPa, while o3
is vertical and equal to 20 MPa. We want to find
the normal and shear stresses on a fault plane
striking north-south and dipping 55° west. The
solution is as follows.

1 Figure 13.5a shows the geologic relationships.
Before being concerned with the fault plane,
construct a Mohr circle of stress for the given
values of o1 and o3 (Fig. 13.5b).

2 Next determine the value and sign of angle 26
for the fault plane. Angle 0 is the angle be-
tween the fault plane and o3, which in this
case is 35°. So 260 is 70°. Shearing stresses on
this fault have a dextral or negative sense, so
angle 26 is located in the lower hemisphere of
the Mohr circle (Fig. 13.5b).

3 The normal and shear stress coordinates cor-
responding to the points thus located on the
Mohr circle are read directly off the horizontal
and vertical axes of the graph. In this example
oy, is 33.4 MPa and oy is 9.4 MPa.
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Fig. 13.5 Mobhr circle solution to a sample problem requiring the determination of o, and o on a particular plane.

(a) Block diagram. (b) Mohr circle solution.

Problem 13.3

If o1 is vertical and equal to 50 MPa, and o3 is
horizontal, east-west, and equal to 22 MPa, using
a Mobhr circle construction determine the normal and
shear stresses on a fault striking north-south and
dipping 60° east.

The failure envelope

Up to this point in this chapter we have examined
the stresses acting on variously oriented planes.
The main objective of all of this is to understand

or predict the orientation and magnitude of
stresses that will cause a particular rock to fracture
or “fail.” To begin our examination of brittle fail-
ure we will imagine an experiment in which a
cylinder of rock is axially compressed (Fig. 13.6).
Suppose that the radially applied confining pres-
sure, o, is kept constant at 40 MPa, while the
axial load, o,, begins at 40 MPa and is gradually
increased until the rock fails when the axial load
reaches 540 MPa. The magnitudes of o, at several
stages of this experiment are recorded in Table
13.1, and the corresponding Mohr circles are
drawn in Fig. 13.7. In this type of experiment o,
is analogous to o1, and o, is analogous to o3.

As shown in Fig. 13.7, a fracture experiment
with constant confining pressure results in a series
of progressively larger Mohr circles, all of which
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Fig. 13.6 Schematic diagram of a rock-fracture experi-
ment in which a cylinder of rock is axially compressed.
The axial load (o,) is steadily increased while the con-
fining pressure (o) is kept constant.

Table 13.1 Data from a hypothetical rock fracture
experiment. Mohr circles corresponding to each
recorded stage are drawn in Fig. 13.7.

Time o, (MPa) o. (MPa) 0,—0¢ (MPa)
t 40 40 0
t 100 40 60
t3 165 40 125
t4 265 40 225
ts 413 40 373
ts 540 40 500 Failure

intersect the o, axis at o.. The fracture strength is
the diameter of the Mohr circle (c,—0.) when the
rock fractures. In the experiment shown in

+ 200

+100

Table 13.2 Data from three fracture experiments on
identical rock samples. The Mohr circles at failure are
drawn in Fig. 13.8.

Experiment o¢ o, at failure 0.—0
no. (MPa) (MPa) (MPa)
1 40 540 500

150 800 650
3 400 1400 1000

Fig. 13.7 the fracture strength was determined to
be 500 MPa at a confining pressure of 40 MPa.

Now, suppose we performed a series of three
experiments on identical samples, but at different
confining pressures. We would find that the frac-
ture strength of the rock increases with confining
pressure. Table 13.2 lists the results of our hypo-
thetical series of experiments, with Experiment 1
being the one discussed above and graphed in
Fig. 13.7. In Experiment 2 the confining pressure
was raised to 150 MPa, and in Experiment 3 to
400 MPa. In Fig. 13.8 the three resulting Mohr
circles are drawn. Because each experiment in this
series has a higher confining pressure than the
previous one, the Mohr circles at failure become
progressively larger.

The Mohr circles at failure under different con-
fining pressures together define a boundary called
the failure envelope for a particular rock

/V

t
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Fig. 13.7 Mobhr circles representing successive stages of the rock-fracture experiment recorded in Table 13.1.
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Main characteristics of a failure envelope. The envelope is defined by Mohr circles at failure of identical rock

samples under different confining pressures. The data for these three envelopes are recorded in Table 13.2.

(Fig. 13.8). The failure envelope is an empirically
derived characteristic that expresses the combin-
ation of o1 and o3 magnitudes that will cause a
particular rock (or manmade material such as
concrete) to fracture. If the Mohr circle represent-
ing a particular combination of o1 and o3 inter-
sects the material’s failure envelope, then the
material will fracture; if the Mohr circle does not
intersect the failure envelope the material will not
fracture.

The failure envelope also allows us to predict
the orientation of the macroscopic fracture plane
that will form when the rock fails. In an isotropic
rock this will be the plane that has a state of stress
represented by the point on the Mobhr circle that
lies on the failure envelope (Fig. 13.8). The angle
between this plane and the o3 direction (angle 0)
can be determined by measuring angle 26 directly
off the Mohr diagram. In the example shown in
Fig. 13.8, angle 26 = 114°, so the fracture plane
will be oriented 57° from 3.

At intermediate confining pressures the fracture
strength usually increases linearly with increasing
confining pressure, producing a failure envelope
with straight lines, as in Fig. 13.8. The angle between
these lines and the horizontal axis is called the angle

of internal friction, ¢ (phi), and the slope of the
envelope is called the Coulomb coefficient, p. (mu):
w=tand (13.7)
It is helpful to develop a familiarity with the
Coulomb coefficient. This is a measurable prop-
erty of the rock, like specific gravity, and indicates
its fracture behavior at intermediate confining
pressures within the earth’s crust. The Coulomb
coefficient is analogous to the coefficient of fric-
tion resisting the sliding of one block over another.
Consider a bottomless box sitting on top of an-
other box (Fig. 13.9a). If the two boxes are filled
with dry sand, it would be possible, by pushing
sideways on the upper box, for a shear surface to
develop between the sand in the upper box and
that in the lower box. With respect to this poten-
tial shear surface, o, can be imagined as the force
keeping the sand together, and oy as the force
trying to make the sand in the upper box slide
(Fig. 13.9b). If the boxes are tilted, eventually an
angle 0 is reached, at which point movement
occurs on the shear surface (Fig. 13.9¢). This is
analogous to the angle 6 that we have been using
for the angle between the shear plane and the o;
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o1
On

c d

Fig. 13.9 Sandbox experiment for determining the co-
hesion properties of sand. (a) A bottomless box is placed
over another box. (b) Both boxes are filled with sand
and tilted. (c) Eventually an angle 6 is reached at which
the upper box slides. In the experiment depicted here the
material in the boxes is cohesionless dry sand, analogous
to a Coulomb coefficient of zero and 6 = 45°. (d) Orien-
tation of the shear plane with respect to the principal
stresses.

direction (Fig. 13.9d). The Coulomb coefficient is,
in fact, sometimes called the coefficient of internal
friction. The greater the Coulomb coefficient, the
greater the resistance to fracture.

If the failure envelope plots as straight lines,
which is typical of brittle materials at low confin-
ing pressures, then the Coulomb coefficient can be
determined from a single fracture experiment,
such as any of the three plotted in Fig. 13.8. Con-
versely, if the Coulomb coefficient of a rock is
known, the orientation of the shear surfaces rela-
tive to o1 and o3 can be predicted. It can be seen
on Fig. 13.8 that 26 = 90 + ¢, or:

0 =45+ /2 (13.8)

Figure 13.10 summarizes the relationships be-
tween o1, 03, 0, ¢, o,, 0, and the fracture plane.

A material having a Coulomb coefficient
equal to zero would have an angle of internal
friction ¢ equal to zero, and 6 = 45°. Plastic ma-
terials (see Chapter 12) behave this way. As the
value of p increases, angle 6 also increases. Meas-

ured values of w for nine rock units are listed in
Table 13.3.

01
Fractur(\aj_\
plane
{e’ \
2
0
@S5
0
0=45+ %
(¢}
n o3
Os

Fig. 13.10 Generalized relationships between the prin-
cipal stresses and angles 6 and ¢.

Table 13.3 Coulomb coefficient p of nine rock units
(from Suppe, 1985).

Formation Coulomb coefficient
Cheshire Quartzite 0.9
Westerly Granite 1.4
Frederick Diabase 0.8
Gosford Sandstone 0.5
Carrara Marble 0.7
Blair Dolomite 0.9
Webatuck Dolomite 0.5
Bowral Trachyte 1.0
Witwatersrand Quartzite 1.0
K Problem 13.4

The results of four fracture experiments on samples
of Rohan Tuff are recorded in the table below.

Experiment no. o o, at failure
I 14 MPa 87 MPa
2 42 MPa 164 MPa
3 70 MPa 242 MPa
4 99 MPa 321 MPa

I Draw Mohr circles for each experiment, and
draw the failure envelope.

2 Determine the Coulomb coefficient of the Rohan
Tuff.

3 Determine the angle 6 that the fracture plane is
predicted to form with the o3 direction when a

\ sample of Rohan Tuff fractures.




/ Problem 13.5

Suppose you are an engineering geologist designing a
nuclear waste repository in the Rohan Tuff (see
Problem 13.4). Figure 13.11 shows the general plan
of the repository. It will be a large room, the ceiling of
which is to be 20 m deep within the tuff. During
excavation of the repository, cylindrical pillars of tuff
5 m in diameter will be left in place to support the
20 m of overburden. Determine the maximum spa-
cing of pillars (center to center) sufficient to support
the overlying tuff. The density of the tuff is
2.0g/cm’. Assume that the confining pressure on
the pillars is atmospheric pressure, 0.1 MPa. Clearly
show how you got your answer.

Wizard hint: One way to ap-
proach this problem is to first
use your failure envelope from
Problem 13.4 to find the value
of o, at failure when o is
0.1 MPa. Convert this com-
pressive strength to kg/m?
g (see Appendix E). Next, deter-
- mine the weight per square
meter of the overburden and
the area of overburden that
each pillar ean support. Fi-
nally, determine the maximum

\ allowable spacing of pillars.

Brittte Filuure 115

/ Problem 13.6

Figure G-34 shows a block of fine-grained limestone
that was experimentally shortened by about 1% at
room temperature. Four sets of fractures developed.
Fractures of sets “a” and “b” are conjugate shear
surfaces (the angular relationship between which
can be measured directly on the diagram). Fractures
of set “c” are extension fractures that formed during
loading. Fractures of set “d” are extension fractures
that formed during unloading when the orientation of
o3 became vertical in the rock-squeezing apparatus.

\Determine the Coulomb coefficient w for this rock.

The importance of pore pressure

Many rocks contain a significant amount of pore
space filled with fluids. These fluids support some
of the load that would otherwise be supported by
the rock matrix. Consider Fig. 13.12, which shows
the failure envelope of a porous sandstone. This
sandstone is subject to the following principal
stresses: o1 = 40MPa and o3 = 13MPa. The
dashed Mohr circle in Fig. 13.12 represents this
state of stress. Now, suppose we add 10 MPa of
pore pressure to the rock. This has the effect of
lowering the principal stresses by 10 MPa. Fluid
pressure is hydrostatic (equal in all directions), so

cross-sectional area of pillar

A = nr? =n(¢)’ =n2.5m)’

x - _ __ __ L |- S

/ | 5m | 7

| g /
R e SIS P ="
20m]/ / | |
- - - |

| |

__/

A

Fig. 13.11 Schematic diagram for use in Problem 13.5.
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Fig. 13.12 Effect of pore pressure on brittle failure. The dashed Mohr circle is based on measured principal stresses.
Pore pressure effectively translates the Mohr circle to the left, as indicated by the solid Mohr circle of effective stress.

all principal stresses are affected equally, but shear
stress is unaffected. The Mohr circle remains the
same size; it merely moves to the left on the hori-
zontal axis a distance equal to the increase in pore
pressure (Fig. 13.12).

The reduction of principal stresses by pore pres-
sure is expressed through the term effective stress.
The effective stress acting on the rock is the total
(regional) stress minus the pore pressure.

Notice that in Fig. 13.12 the solid Mohr circle
(representing effective stress) intersects the failure
envelope. The increase in pore pressure caused this
rock to fracture. This phenomenon, called
hydraulic fracturing, is routinely used to create

i G, 59 MPa

6, 31 MPa

Fig. 13.13 Block diagram showing an oblique-slip fault
that was experimentally activated at Rangely, Colorado,
by increasing the pore pressure within the rocks. The
principal stress magnitudes were determined from fluid-
pressure measurements made during hydraulic fractur-
ing. The fault plane is subject to a normal stress of
35 MPa and a shear stress of 8 MPa. After Raleigh
and others (1972).

fractures in low-permeability rocks, thereby in-
creasing the flow of water, oil, or gas.

In addition to triggering the formation of new
fractures, fluid pressure can be used to control
movement and earthquakes on preexisting faults.
This was first demonstrated in the 1960s when the
US Army accidentally triggered some earthquakes
near Denver by injecting wastewater into the
ground. A controlled experiment was subse-
quently conducted by the US Geological Survey
at Rangely, Colorado (Raleigh et al., 1972). The
geologic setting and principal stresses of this ex-
periment are schematically depicted in Fig. 13.13.
A preexisting oblique-slip fault in the Weber Sand-
stone was successfully activated when water was
injected into the ground. Pore pressure was experi-
mentally raised and lowered while seismicity was
monitored.

Mohr circles for the Rangely experiment are
shown in Fig. 13.14. Because movement was oc-
curring on a preexisting fault in this case, the
failure envelope is different from the normal en-
velope for intact rock. The failure envelope in
Fig. 13.12 was derived from experiments with
unfractured Weber Sandstone; the failure envelope
in Fig. 13.14 was derived from experiments with
previously cut samples.

In order to determine the state of stress on the
fault shown in Fig. 13.13, the principal stress
magnitudes (o7 = 59 MPa, o3 = 31 MPa) were
resolved onto the fault plane in the direction of
slip, yielding a normal stress of 35 MPa and a
shear stress of 8 MPa. This state of stress is indi-
cated on the Mohr circle in Fig. 13.14a. The
injection of water into the rock created a pore
pressure of 27 MPa, thereby reducing o and o3
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@ure envelope for Weber Sandstone

with pre-existing fractures
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Fig. 13.14 Mohr circles and failure envelope for Weber Sandstone at Rangely, Colorado. (a) Assuming zero pore
pressure. (b) Mohr circle of effective stress after the injection of 27 MPa of fluid pressure, which triggered a series of
earthquakes. The earthquakes ceased when the Mohr circle of effective stress was moved 3.5 MPa to the right.

to effective stresses of 32 and 4 MPa, respectively.
The Mohr circle of effective stress, shown in
Fig. 13.14b, is 27 MPa to the left of the pre-
injection Mohr circle.

Notice in Fig. 13.14b that the point on the
Mohr circle that represents the state of stress on
the fault plane has crossed the failure envelope.
Movement on the fault did indeed occur at this
level of pore pressure. When the pressure was
reduced by 3.5 MPa the earthquakes stopped.
This is in impressive agreement with Fig. 13.14b,
which indicates that if the Mohr circle is translated
3.5 MPa to the right, the state of stress of the fault
lies directly on the failure envelope.

Problem 13.7

Figure G-35a shows the failure envelope of a “tight”
(low-permeability) sandstone, which is a petroleum
reservoir rock. If o, =72MPa and o;=42MPa,
determine the amount of pore pressure that would
be necessary to fracture this reservoir hydraulically.

/ Problem 13.8

Figure G-35b is a map showing the Johnson Valley
Fault in southern California. This is a right-lateral
strike-slip fault that lies a short distance to the north
of the San Andreas Fault zone. On June 28, 1992, one
of the largest earthquakes in recent decades occurred
on the Johnson Valley Fault, a magnitude 7.5 event
named the “Landers earthquake”. This large earth-
quake presumably released shear stress that had accu-
mulated over a long period of time on the Johnson
Valley Fault.

Some geologists have suggested that such an
accumulation of shear stress on faults can be pre-
vented by injecting water into the fault zone. By
increasing the pore pressure, blocks on opposite
sides of the fault are permitted to slip continuously
past one another, rather than lurching episodically.

Determine the pore pressure required for a fault
slip to occur on the Johnson Valley Fault. Regional
o in this area is oriented 007°, and estimated to be
10 MPa; w is 0.4 (Stein et al., 1992). Assume o3 to
be 6 MPa. (Because the rocks are already fractured,
draw your failure envelope with straight lines that

\meet at the origin of the graph, as in Fig. 13.14.)
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Strain Measurement

Objectives

deformed objects.

Measure longitudinal and shear strain from deformed objects.
Determine the orientation and relative dimensions of the strain ellipse from

e Determine in which of three strain fields a particular structure developed.

/ Equipment needed for this chapter

e Play dough*

e Card stock (such as 3 x5 inch cards;
exact dimensions are not critical; you
will need a stack of cards about 5 cm
thick)

e Protractor

e Metric ruler

Strain is a change of shape or volume, or both. One
fundamental aspect of structural geology is the
study of how rocks deform under different stresses.
Our observations, however, are limited to the end
product of rock deformation long after the stresses
have disappeared. We never can really measure
stress directly; all “stress determinations” are really

Recipe for play dough: Mix together 1 cup flour, 1 cup
water, 1 tablespoon cooking oil, 1/2 cup salt, 1 teaspoon
cream of tartar, and food coloring as desired. Cook over
medium heat until mixture pulls away from sides of pan
and becomes doughlike. Knead until cool. Keeps about 3
months unrefrigerated.

inferences based on strain. It is very important to
thoroughly measure and characterize strain if we
are to understand the deformational history of a
particular region. In this chapter we will measure
strain several different ways, starting with changes
in the lengths of lines (longitudinal strain) and
changes in the angles between intersecting lines
(shear strain). We will also examine how it may
be possible to distinguish between the two end-
member strains — coaxial and noncoaxial strain.

Longitudinal strain

If the original length of a line is known, then a
comparison may be made between the original
length (ly) and the deformed length (/;). This
value is called the extension (e) of the line. It is
the proportional change in unit length:

-l
-1

Notice that if [; is greater than [y then e will
be positive, and if /1 is less than [; then e will be



negative. For a line that is stretched to twice its
original length, ¢ = 1.0 (100% has been added).
For a line that is contracted to half its original
length, e = —0.5 (50% has been eliminated).
Throughout this chapter it will be assumed that
undeformed lines have a length of 1 unit. After
extension their length may be defined as 1 +e.
This parameter is defined as the stretch, S.

Shear strain

If the original shape of a deformed object is known,
then changes in angular relationships can be meas-
ured. Angular shear, symbolized by the Greek letter
W (psi), is the angular change after deformation of
two lines that were originally perpendicular
(Fig. 14.1). Shear strain, symbolized by the Greek
letter v (gamma), is the tangent of angular shear:

vy =tanV¥

/

Figure 14.2 shows a diagrammatic brachiopod shell
before deformation (Fig. 14.2a) and after deformation
(Fig. 14.2b).

I Determine the extension e of the hinge line.

2 Determine the angular shear W and the shear

\ strain -y of the shell.

Problem 14.1

.

A
/

a b

Fig. 14.1 Shear strain measured as angular shear (V).
(a) Before deformation. (b) After deformation.

a Hinge line

b
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The strain ellipse

Deformation in rocks is described in terms of the
change in shape or size of an imaginary sphere.
During homogeneous deformation the imaginary
sphere within the rock becomes an ellipsoid. Be-
fore considering three-dimensional deformation,
however, it is instructive to examine deformation
in two dimensions.

Imagine a plane containing a circle. Upon de-
formation, the circle becomes an ellipse (Fig. 14.3).
This ellipse is called a strain ellipse, and its orien-
tation and dimensions characterize the deform-
ation of the plane in which it lies. Figure 14.3a
contains a circle from which the strain ellipse de-
velops; it is always, by convention, given a radius
of 1 arbitrary unit. Figure 14.3b contains the
strain ellipse representing the deformed circle.

The strain ellipse is described in terms of the
two principal strains, which correspond to the
semi-major and semi-minor axes of the strain el-
lipse. The lengths of the maximum and minimum
principal strains are 1+ ¢y and 1+ e,, respect-
ively. The shape of the ellipse is described by the
ratio of the principal strains, which in this ex-
ample is 3 : 1.

Minimum
TTTT T principal
S

l+e;:1+e,
30:10

Fig. 14.3 The strain ellipse. Beginning with a circle
with a radius of 1 unit (a), the strain ellipse develops
with maximum and minimum principal strain axes (b).

Fig. 14.2 Schematic brachiopod. (a) Undeformed. (b) Deformed. For use in Problem 14.1.



720 Strain Meas

/ Problem 14.2

Figure G-36 (Appendix G) contains four photographs
of slabs of a breccia from the Alps. The sample in
photograph G-36a is undeformed; Fig. G-36b—d
show slabs of this same breccia from nearby localities
where it has been deformed. The scale is the same in
all photographs.

On each of the three photographs of the deformed
breccia, measure the long and short axis of at least
five clasts. Calculate the mean for each axis to deter-
mine the | +e;: | + e, ratio of the strain ellipse.
Write the ratio in the space provided below each
photograph.

Next to each photograph is a square. A circle has
been drawn in the square adjacent to the undeformed
sample. Within each of the other three squares
sketch a properly proportioned strain ellipse for the

{Ock sample.

Three strain fields

Strain ellipses may occur in a variety of shapes. In
Fig. 14.4 there are seven circles of radius 1, and
the strain ellipse that has developed from each. In
Fig. 14.5 is a graph in which 1+ ¢, is plotted
against 1+ e;. The undeformed circle is shown
at 14+e, =1.0 and 1+ e; = 1.0. Before reading
further, plot the letter of each of the seven strain
ellipses of Fig. 14.4 onto its appropriate position
on Fig. 14.5. You will probably have difficulty
understanding the following discussion if you do
not take the time to do this.

nl

The seven strain ellipses that you have plotted
on Fig. 14.5 represent seven generalized classes.
Notice that no ellipse can ever be plotted above
the diagonal line on the graph, because 1+ e is
always greater than or equal to 1 + e;. The diag-
onal line is the locus of all strain ellipses that are
not ellipses at all; they are circles. “Ellipse” A,
which exhibits equal elongation in all directions,
and “ellipse” G, which exhibits equal contraction
in all directions, both plot on this line.

The graph of Fig. 14.5 can be divided into three
fields with the e; = 0 and e, = 0 lines acting as
dividers. Field 1 includes all ellipses in which both
principal strains have positive extensions, such as
ellipse B in Fig. 14.4. Field 2 includes ellipses in
which eq is positive and e, is negative, such as
ellipse D in Fig. 14.4. And field 3 includes ellipses
in which both e; and e, are negative, such as
ellipse F in Fig. 14.4. Figure 14.6 summarizes the
characteristics of each of the three fields.

Layered rocks may develop structures that are
useful for determining the characteristics of the
strain ellipse and the field in which it developed.
Some layers have a higher viscosity than other
layers and are therefore less inclined to flow.
When elongated, such stiff layers break up or are
stretched into clumps, while the less viscous layers
flow around them. The result is the formation of
sausage-shaped structures called boudins of the
stiff layers surrounded by the lower viscosity ma-
terial. This process is called boudinage. Figure
14.7 is a photograph of boudins in cross section.

If the viscosity of a rock does not allow it to
deform in a ductile manner, then fractures com-
monly develop during elongation. Such fractures
will be oriented perpendicular to the maximum
principal strain. Boudinage, fractures, fold geom-
etry, and other products of deformation can often
be used to determine the strain field in which a

Fig. 14.4 Seven circles and their corresponding strain ellipses. The seven strain ellipses should be plotted on the graph

in Fig. 14.5.
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3.0

Field 1

2.0

€7 negative

1.0

_A.i__l.

Fig. 14.5 Graph on which 1 + e is plotted against 1 + e; for a given strain ellipse.

3.0
Coaxial strain in play dough

The coaxial deformation path

2.0

to see how the strain ellipse develops as deform-
Experiment 14.1:

ation proceeds. We will limit our examination to
strain ellipses that lie in field 2, because these are
the most common. Even with this restriction, how-
ever, strain ellipses may develop in an infinite
number of ways. We will examine in some detail
The simplest possible strain ellipse forms by com-
pressing a circle. An ellipse made this way in play
dough is convenient for study. Record the results
of this experiment on the table provided in the

the final products of deformation. It is important
only the two simplest.

Up to this point we have viewed strain ellipses as

1+e;

|

give your reasons. Refer to Fig. 14.8 forassistance

he
2 The circle next to each photograph represents

1.0

Problem 14.3
the strain ellipse prior to deformation. Superim-

pose an approximation of each rock’s post-

Decide which field the strain ellipse lies in, and
\ deformation strain ellipse on the circle.

For each of the three photographs in Fig. G-37 do't

following:

Fig. 14.6 Graph on which 1 + e is plotted against 1 + e, showing three fields.

structures that develop in each of the three strain
fields. Study this diagram carefully, and make sure
that you understand why each structure exists

where it is shown.

-

deformed rock lies. Figure 14.8 shows the types of
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Fig. 14.7 Boudinage in cross section. From the collection of O. T. Tobisch.

upper part of Fig. G-38 (Appendix G). (This ex-
periment may also be simulated by using graphics
software that permits you to deform objects. One
useful example of such a program is StrainSim,
available on the website of Cornell University
geology professor Richard Allmendinger who has
graciously made it available to the geological
community: http://geo.cornell.edu/geology/faculty/
RWA/maintext.html.)

Flatten a slab of play dough and impress into it a
circle several centimeters in diameter. A jar lid or
drinking glass can be used as a circle press. With a
straightedge, inscribe two perpendicular lines
through the center of the circle, as in Fig. 14.9.
These two perpendicular lines are to be the lines of
principal strain as the strain ellipse develops.
Measure and record the radius of the circle. This
measurement is lp for both axes of the strain
ellipse. You need to know [y to compute e, but
the radius of the circle is arbitrarily given a length
of 1.0.

Compress the slab a small but measurable
amount parallel to one of the two lines. Measure
the lengths of the semi-major axis and semi-minor
axis of the resultant ellipse and determine e¢; and
;. Proceed to fill in the table as you deform the
play dough in small increments. After measuring
the dimensions of six such ellipses, graph the
strain path on the graph below the table.

The strain exhibited by the play-dough strain
ellipse is called coaxial strain because the principal
axes of strain do not change their orientation with
respect to the material being deformed. In con-
trast, during noncoaxial strain the principal axes
rotate with respect to the material being deformed.
We will examine an example of noncoaxial strain
later in the chapter.

The type of deformation path you observed in
Experiment 14.1 is sometimes referred to as pure
shear, which is defined as coaxial strain with no
change in volume, although some authors consider
the constant-volume requirement unnecessarily re-
strictive. You could check to see if your play-dough
ellipse maintained its surface area by comparing the
area of the undeformed circle with that of the ellipse.

Fig. 14.8 The three strain fields, as in Fig. 14.6, show-
ing the types of structures predicted to occur in each
strain field. After Ramsay (1967).

o

Slab of play dough

=

Fig. 14.9 Circle and lines impressed into play dough at
the beginning of Experiment 14.1.
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@

C

Fig. 14.10 Coaxial strain, in which the principal strain axes do not rotate during deformation. (a) The solid lines are
the strain axes. (b) The dashed lines represent both material lines impressed into the play dough and geometric lines
that separate the zone of compression from the zone of extension. (¢) During deformation the geometric-zone
boundaries (dashed lines) do not move, while the material lines (not shown) rotate into the zone of extension.

Now that you have graphed a coaxial deform-
ation path, we will take a closer look at other
properties of coaxial strain. For the purpose of
discussing the evolution of the strain ellipse, it
will be useful to distinguish between material
lines, such as the lines you pressed into the play
dough, and geometric lines, such as the boundaries
between the zone of shortening and the zone of
elongation.

Experiment 14.2: Lines of no infinitestimal
longitudinal strain

Re-form your play-dough slab, and impress a cir-
cle into it once again. As before, impress on the
circle two perpendicular lines that will be the axes
of principal strain. Now impress two more per-
pendicular lines on the circle so that they make 45°
angles with the first pair, as shown in Fig. 14.10a.
Deform the play dough as in Experiment 14.1, and
pay close attention to the fate of the second pair of
lines.

At the onset of deformation the second pair of
perpendicular lines divide the circle into zones of
shortening and elongation (Fig. 14.10b). These
material lines rotate into the zone of elongation
during deformation, but the zone boundaries
themselves do not move during the evolution of
the strain ellipse. As shown in Fig. 14.10c, the
percentage of the ellipse’s area in the elongation
zone increases at the expense of the percentage in
the shortening zone, but the boundaries of the two
zones remain perpendicular to one another and at
45° to the principal strain axes.

The development of the strain ellipse in any
single deformational event is a continuous process,
but it may be analyzed in small increments called
incremental strain ellipses or infinitesimal strain

ellipses. The geometric lines that separate the
zone of elongation from the zone of shortening
are called lines of no infinitesimal longitudinal
strain (Fig. 14.11) because, for all infinitesimal
strain ellipses, e = 0 along these two lines. As the
ellipse progressively develops, the material lines
that occupy the lines of no infinitesimal longitu-
dinal strain in one infinitesimal strain ellipse pass
into the zone of elongation in the next increment.

Linesof no «--

infinitesmal _t

longitudinal
strain

Fig. 14.11 Infinitesimal strain ellipse.

Your play-dough ellipse should now look some-
thing like the one in Fig. 14.12a. Impress two new
lines onto your strain ellipse at the positions of no
infinitesimal longitudinal strain, then impress two
more lines across the center of the ellipse close to
these lines but in the zone of shortening, as shown
in Fig. 14.12b. This last pair of lines has, up until
now, experienced only shortening. As you further
deform your play dough, however, notice that
these shortened lines become lines of no infinitesi-
mal longitudinal strain for an instant, and then
they begin to elongate. During deformation,
some lines undergo continuous elongation, some
shorten and then elongate, and some shorten con-
tinuously. Such behavior explains many features
seen in deformed rocks.
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Fig. 14.12 Shortening and lengthening of material
lines. (a) Deformed play-dough ellipse with two sets of
originally perpendicular material lines. (b) Same ellipse
with two new sets of material lines.

The coaxial total strain ellipse

Once deformation has ceased, we can call the
strain ellipse a total or finite strain ellipse. Imagine
impressing a unit circle into play dough and
deforming it into an ellipse. Now imagine super-
imposing another unit circle on top of the ellipse,
as in Fig. 14.13. Notice that two axes of the ellipse
are also diameters of the circle. Regardless of how
these lines might have shortened and elongated
during the development of the strain ellipse, the
net result is that they are the same length that they
were before deformation began. These are called
lines of no total (or finite) longitudinal strain. All
axes of the strain ellipse that fall within the unit
circle have undergone net shortening, while all of
those that extend beyond the circle have under-
gone net elongation.

Now we can divide our coaxial total strain ellipse
into four zones that characterize the deformation

,,,,,,,,,,,,,,,,,,

1
[ e Sttt '

Line of no total

edeibd T longitudinal- - |

Fig. 14.13 Total strain ellipse with lines of no total
longitudinal strain.
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history of lines. Figure 14.14 shows these four
zones on the coaxial strain ellipse, and Table 14.1
lists the structures that are predicted to form in each.
Zone 1a, which includes lines that have only elong-
ated, produces boudinage in competent beds. Zones
1b and 2 include lines that underwent early shorten-
ing followed by elongation; those in zone 1b ended
up long; while those in zone 2 ended up short. In
these two zones, folds that formed during the short-
ening stage become disrupted or unfolded during
the elongation stage. Zone 3 includes lines that
have been only shortened, producing folds with
large amplitude and short wavelengths. Figure
14.15 shows a fold containing structures from all
four zones.

Experiment 14.3: Superimposed total strain
ellipses

Before setting the play dough aside, one more
observation needs to be made. Impress a circle on
a smooth slab of play dough and deform the circle
into a distinct ellipse as before. Now squeeze the
slab from a different direction. You will see that
the total strain ellipse from the first strain regime
becomes deformed into a different-shaped ellipse
under a differently oriented strain field. Any strain
ellipse, therefore, may be the product of any num-
ber of strain episodes of varying orientations. The
possibility of multiple phases of deformation must
always be considered in finite strain analysis.

/ Problem 14.4

Figure G-39 shows a dike and sill complex in which a
competent rock, colored black, has intruded into a
schist. The horizontal lines represent cleavage in the
schist. Consider the cleavage planes to be perpen-
dicular to the minimum principal strain axis. Assume
that all structures formed during the same deform-
ational event.
I  What has been the approximate extension e
perpendicular to the cleavage?
2 What has been the approximate extension e
parallel to the cleavage?
3 Usingthe two extensions just determined and the
structures seen in the dikes and sills, draw a prop-
erly proportioned and properly oriented strain el-
lipse forthis rock. Label the zones within the strain
ellipse, and give the | + e,: | + e; ratio.
4 Indicate the zone of the strain ellipse into which
each of the two diagonal dike segments falls, and

\ discuss briefly the strain history implied for each.




Line of no infinitesimal
longitudinal strain (two
fixed perpendicular lines)

Original circl
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Line separating zones of
elongation from zones of

shortening in first

infinitesmal strain elipse

Line of no total longitudinal
strain (two lines common to
both original circle and finite
elipse)

Fig. 14.14 Coaxial total strain ellipse with four zones, each of which has a different deformation history. After

Ramsay (1967).

Table 14.1

Coaxial total strain ellipse with four zones,

each of which has a different deformation history. After

Ramsay (1967).

Structures in

Zone Strain history competent beds

la Lines that have  Boudinage
been elongated
only

1b Lines that under- Remnants of dis-
went early rupted folds and
shortening fol- isolated fold
lowed by hinges
elongation
(net lengthening)

2 Lines that Folds that are
underwent early  becoming
shortening unfolded and
followed by boudinaged
elongation (net
shortening)

3 Lines that have  Folds with large

been shortened
only

amplitude and
short wave-
lengths

Noncoaxial strain

Experiment 14.4: The card-deck strain ellipse

Noncoaxial strain, in which the principal axes of
strain change their orientation with respect to ma-
terial lines, is easily demonstrated with a stack of
cards about 5 cm or more in thickness. Ideally, a
wooden box such as the one shown in Fig. 14.16

Zone la

Zone 2 (+1b) /
:////ii’éfé’i‘//
D e
4 //://—?f’;k/—’r//;‘
L~

Zone 3

Fig. 14.15 Fold developed by coaxial strain showing
the structures in each zone. The maximum principal
strain axis is vertical. From Ramsay (1967).

should be constructed to hold the cards during the
experiment. This can also be done using the
“skew” function of many graphics programs.

First, draw a circle on the edge of the cards.
Using a straightedge, produce a uniform shear in
one direction, thereby deforming the circle into an
ellipse (Fig. 14.17). Deck-of-cards-type deform-
ation is referred to as simple shear. Simple shear
is noncoaxial, constant volume, two-dimensional
deformation with no flattening perpendicular to
the plane of slip. Notice that the ellipses produced
by shearing the cards must all be of equal area
because the component chords that lie on each
card are of constant length.

An important aspect of simple shear, and non-
coaxial strain in general, is the angle of shear of
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Fig. 14.16 Wooden-box apparatus to hold cards during noncoaxial strain experiments. After Ramsay and Huber

(1983).

reference lines in the deforming rock. In this ex-
periment you will measure the angular shear ¥, as
shown in Fig. 14.17b.

Deform the deck in small increments of
¥ =10°, and record the pertinent data on the
table provided in the lower half of Fig. G-38.
Then graph the deformation path of the ellipse
on the graph below the table, as you did with the
coaxial ellipse.

Compare the simple-shear strain path of the
card-deck ellipse with the strain path of the play-
dough ellipse. In fact, there should be very little
difference between the two strain paths. The two
processes are, however, quite different. As sum-
marized in Fig. 14.18, the principal strain axes
rotate within the stress field during noncoaxial
strain; in coaxial strain they do not rotate.

The noncoaxial total strain ellipse

We will now examine some details of noncoaxial
strain. As with the coaxial ellipse, this ellipse
has two fixed, perpendicular boundaries between
the zones of shortening and elongation. These are

===

Angular

Fig. 14.17 Noncoaxial strain demonstrated with a
stack of cards. (a) Before deformation. (b) After deform-
ation, showing angular shear.

the lines of no infinitesimal longitudinal strain,
and they are parallel and perpendicular to the
edges of the cards. Recall that these are geometric
and not material lines. As with coaxial deform-

Coaxial Noncoaxial
strain strain

.
s
SETAEN

Fig. 14.18 Comparison of coaxial and noncoaxial
strain.
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= longitudinal
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Fig. 14.19 Noncoaxial-strain ellipse showing zones of
shortening and elongation, and the lines of no infinitesi-
mal longitudinal strain. Left, before deformation; right,
after deformation.



ation, as the ellipse deforms, the area of the ellipse
in the zone of elongation increases, while the area
in the zone of shortening decreases (Fig. 14.19).

Experiment 14.5: The asymmetrically zoned
noncoaxial ellipse

Square up your card deck and draw the lines of
no infinitesimal longitudinal strain on the un-
deformed circle (Fig. 14.19). Deform the circle
into a distinct ellipse, and draw a circle equal in
diameter to the original circle symmetrically on the
ellipse. Finally, draw in the lines of no infinitesimal
longitudinal strain once again and also the lines of
no total longitudinal strain, as in Fig. 14.14.

As summarized in Fig. 14.20, the noncoaxial
ellipse can be divided into four zones based on
the behavior of the lines. These zones correspond
to those shown in Fig. 14.14 for the coaxial
ellipse. Notice, however, the asymmetric arrange-
ment of the zones on the noncoaxial ellipse. Be-
cause lines that are parallel to the shear direction
are lines of no infinitesimal and no total longitu-
dinal strain, zones 1b and 2 occur only on one side
of zone 1a in the noncoaxial ellipse. This phenom-
enon is useful in attempting to determine whether
or not rotation has been involved in the develop-
ment of certain structures.

Problem 14.5

Figure 14.15 shows some folds and associated struc-
tures produced by coaxial strain. Sketch a similar
drawing of structures produced by noncoaxial strain.
You may find it useful to use two or three differently
oriented planar surfaces.

Line of no total

“\Line of no infinitesimal
\ and no total
\longitudinal strain

L \
Orlglna_l/(\\

circle

Line perpendicular to
direction of shear
before deformation

Fig. 14.20 Noncoaxial total strain ellipse showing four
zones. Notice the asymmetric arrangement of the zones
compared with those in the coaxial ellipse (Fig. 14.14).
After Ramsay (1967).

Strain Measurement 727

Deformed fossils as strain indicators

Many rocks are lithologically homogeneous and
do not contain structures such as folds and bou-
dins that reveal the strain. In such rocks, fossils or
other objects with known starting shapes (e.g.,
ooids), can sometimes be used as strain indicators.
If the undeformed size and shape of a fossil is
precisely known, then the problem is merely one
of measuring extensions and angular shear in dif-
ferent directions, as in Problem 14.1. Usually,
however, it is impossible to reliably determine
what the lengths of lines were before deformation.
This problem can be partially overcome when sev-
eral variously oriented individuals are present.

Fossils that are especially suitable for strain meas-
urement are bilaterally symmetric ones such as
brachiopods and trilobites. Trilobites, for example,
have a central axis that divides the animal into
mirror-image right and left sides (Fig. 14.21).

A technique developed by Wellman (1962) pro-
vides an elegant approach to the use of such fossils
in strain analysis. Imagine five randomly oriented,
undeformed trilobites on a slab of mudstone.
These are represented by five sets of perpendicular
lines in Fig. 14.22a. Points A and B are arbitrarily
located points on the slab. Without changing the
orientation of the lines, imagine translating each
set of perpendicular lines to points A and B and
lengthening the lines until they meet to form a
rectangle. If this is done for all five sets of lines,
the corners of the five rectangles lie on a common
circle (Fig. 14.22b). This circle represents the
strain ellipse prior to deformation.

Now imagine five deformed trilobites on a slab,
represented by five pairs of nonperpendicular lines
(Fig. 14.23a). Points C and D are arbitrarily

Fig. 14.21 Undeformed trilobite.
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Fig. 14.22 Wellman technique for determining strain
ellipse. In this example the rock is not deformed, and the
fossils are represented by perpendicular lines, as in
Fig. 14.21. (a) Perpendicular lines representing five fos-
sils. Points A and B are arbitrary points located on the
rock slab. (b) The strain ellipse (dashed line) passes
through the corners of the squares formed by extending
perpendicular sets from points A and B. Because the
rock is not deformed, the strain ellipse is a circle.

Fig. 14.23  Using the Wellman technique on deformed fos-
sils. (a) Five non perpendicular lines representing deformed
fossils, with points C and D. (b) Strain ellipse (dashed line)
drawn through the corners of the parallelograms.

located on the slab, and each pair of lines is trans-
lated to each point and extended, resulting in five
parallelograms. The corners of the parallelograms
define the strain ellipse (Fig. 14.23b).

To determine the axial ratio and orientation of
the strain ellipse from a group of deformed fossils,
follow these steps:

1 Draw two lines on each fossil. These lines rep-
resent perpendicular lines prior to deformation.

2 Place two points several centimeters apart on
the photograph or drawing. The line between
these two points should not be parallel to any
of the lines you have drawn on the fossils.

3 Place tracing paper over the photograph,
transfer the two points to the tracing paper,

nl

and proceed to transfer the pairs of lines to the
two points without rotating the tracing paper
with respect to the photograph.

4 Sketch the ellipse that most closely fits the
corners of the parallelograms.

f Problem 14.6

Figure G-40isa photograph of an exposed bedding plane

containing deformed portions of several trilobites.

I Determine the strain ellipse for this rock.

2 Determine the | +4e;:14e, ratio and the
orientation of the maximum principal strain

\ with respect to north. }

Strain in three dimensions

Because rocks are three-dimensional objects,
consideration must be made for the third dimension
in describing and measuring strain. Undeformed
rocks are imagined to contain a sphere that
becomes an ellipsoid during homogeneous deform-
ation. This is the strain ellipsoid, and its dimensions
and orientation describe the strain in the rock.
The strain ellipsoid has three principal axes,
the maximum, intermediate, and minimum princi-
pal strain axes. Their lengths are 14 e1=1
+ey=1 + ej3, respectively, with the original sphere
having a radius of 1. Figure 14.24a shows an
equidimensional, undeformed block. Figure
14.24b shows the same block after deformation,
showing the principal strain axes. The graph in
Fig. 14.25, in which (1 +¢1)/(1 + ¢3) is graphed
against (1 +e3)/(1+e3), displays the range of

JE— —t—1+e;g

N

Fig. 14.24 The three principal strain axes. (a) Un-
deformed. (b) After deformation.
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Fig. 14.25 Flinn diagram. Two strain fields are divided
by a plane-strain line along which e, = 0 and volume is
preserved. Constant volume pure shear and simple shear
both fall on the plane-strain line.

strain ellipsoids. This graph, called a Flinn dia-
gram, is divided into two fields by the plane strain
line. Plane strain is deformation in which extension
is zero on the intermediate principal strain axis.
Above the plane strain line the ellipsoids are con-
stricted, the ultimate being cigar-shaped ellipsoids
inwhich1 +e; > 1+ e, = 1 + e3. Below the plane
strain line the ellipsoids are flattened, the ultimate
being pancake-shaped ellipsoids in which
l+er1=14e>1+e;.

The fabrics of deformed rocks may often be
used to diagnose the orientation and shape of the
strain ellipsoid. The rock depicted in Fig. 14.26,
for example, contains pebbles that have been
elongated during deformation. The strain ellipsoid
is cigar-shaped in which 1 +e; > 14+ e, =1 + e3.
The principal strain axes are shown on the
drawing.

Problem 14.7

On the four drawings of deformed rocks in Fig. G-41,
indicate the orientations of the principal strain axes.
Below each drawing indicate the relative lengths of
the axes (e.g., | +¢e; > 1 + e, = | +¢3).
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Fig. 14.26 Deformed conglomerate containing elong-
ated pebbles. The consistent lineation in this rock indi-
cates the orientation of the maximum principal strain
axis. The equidimensional nature of the pebbles on the
right-hand face indicates that 1 +e; = 1 + e3.

Quantifying the strain ellipsoid

Several techniques have been devised for quantify-
ing strain. Most are beyond the scope of an intro-
ductory course. Ramsay and Huber (1983) is the
source to be consulted for a more complete discus-
sion of this topic. One technique thatis, in principle,
very simple involves the measurement of deformed
objects in the rock. Pebbles in deformed conglomer-
ate, for example, may be used this way, but a lack of
original sphericity complicates the measurements.
A rock type that is particularly well suited to
strain measurement is oolite, a limestone com-
posed of spherical, sand-sized grains called ooids.
Upon deformation, the spherical ooids become
ellipsoidal and can be measured directly.

/ Problem 14.8

Figure G-42a is a sketch of a hand specimen of oolite.
The orientations of the principal strain axes have been
determined in the field on the basis of lineations,
cleavages, and the shapes of the ooids. Two thin-
sections have been cut perpendicular to two of the
principal strain axes, and Fig. G-42b contains sketches
of photomicrographs of each of the two thin-sections.
I Measure the dimensions of several ooids and de-
termine the arithmetic mean (X) of the semi-major
and semi-minor axes in each field of view. Indicate
the semi-major to semi-minor axes ratio for each
field of view, and combine these ratios to find the
| 4+ e: 1 4+ ey: | + es ratio for the strain ellipsoid.
2 Plot the strain ellipsoid on the Flinn diagram in

\ Fig. G-42c.
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Construction of
Balanced Cross Sections

Objectives

e Determine the relationship between the shapes of folds exposed at the earth’s
surface and the types of faults in the subsurface that produced these folds.

e Evaluate existing cross sections for balance.

e Construct retrodeformable, balanced cross sections in fold-thrust belts.

A geologic cross section depicts subsurface geol-
ogy along a vertical profile. Cross sections are
constructed from geologic maps, well data, seismic
lines, and other geophysical data. Typically, a
geologist can draw different cross sections that
satisfy the available, and usually limited, data.
This chapter introduces you to the construction
of balanced, or restorable, cross sections. These
techniques will help you draw cross sections that
are geologically reasonable, and they will also help
you evaluate published cross sections. Our discus-
sion is limited to thrust belts, where the concepts
of balanced cross sections were first developed and
where the structural style is well understood. A
different set of techniques is needed to balance
cross sections in regions of extension.

Thrust-belt “rules”

Research in many thrust belts has revealed several
recurring characteristics that can be synthesized
into the following set of “rules” regarding the
geometry and orientation of thrust faults. As
with most rules in geology, there are notable

exceptions and variations; hence, these “rules”
should be treated as guidelines only.

Rule 1  Thrust faults follow a staircase trajectory
marked by flats and ramps. Flats occur
where a fault lies at a specific strati-
graphic horizon for a great distance.
Ramps occur where a fault cuts across
stratigraphic contacts over a short dis-
tance (Fig. 15.1a); they usually dip at
angles of less than 30°.

Thrusts cut up section, most commonly
in the direction of tectonic transport (left
to right in Fig. 15.1b).

The conditions that promote thrust fault-
ing often result in the creation of multiple
thrusts. The thrust system commonly
propagates in the direction of slip; that
is, new thrusts tend to form “in front of”
or toward the foreland of existing thrusts.
For this reason, thrusts tend to be progres-
sively younger in the direction of tectonic
transport (toward the foreland). How-
ever, “out-of-sequence” thrusts (younger
faults that developed behind earlier

Rule 2

Rule 3
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Fig. 15.1

Schematic cross section showing typical elements of thrust terranes. (a) Pre-deformation cross section

showing ramp-and-flat geometry of future thrust fault (dashed line). Letters a, b, and ¢ show the positions of future
footwall cutoffs at the tops of footwall ramps; @, b’, and ¢’ show the positions of future hanging-wall cutoffs at the tops
of hanging-wall ramps. (b) Deformed-state cross section showing the relation of folds to thrust ramps and the new
positions of hanging-wall cutoffs. Dashed lines are fold axial traces; FWR, footwall ramp; HWR, hanging-wall ramp.
Notice that for each hanging-wall cutoff there is a corresponding footwall cutoff.

formed thrusts) have been recognized
in many thrust belts and often play an
important role in the evolution and
movement history of thrust belts.

Rule 4 Net slip along a thrust cannot increase
upward. But it can decrease upward,
provided that shortening is accommo-
dated by folding or imbricate faulting.

Rule 5 Thrusts may terminate upward, without

reaching the earth’s surface. Such faults
are called blind thrusts, and they terminate
in asymmetric folds. Thrusts that reach the
surface are referred to as emergent thrusts.

Recognizing ramps and flats

Thrust sheets are typically characterized by kink
folds, which consist of “panels” and “hinges.” A
panel is a portion of the hanging wall in which the
bedding attitude is more or less constant over a
large area. A hinge, or hinge zone, is the narrow
zone between adjacent panels (Fig. 15.1b).
Carefully examine Fig. 15.1a and b; note the
geometry of the thrust, paying particular attention
to the geometry of the folds in the upper plate
(hanging wall). Find point a on both diagrams. It

is the point in the footwall where the upper surface
of the lower white bed has been cut by the thrust.
Such a point is called a cutoff point. In three dimen-
sions a cutoff point is a line, called a cutoff line.

Now find point 4’ on Fig. 15.1a and b. Prior to
faulting, cutoff points a and &’ lay adjacent to one
another. Cutoff points a, b, and c all lie in the
footwall, and each has a corresponding displaced
point, @', b, and ¢/, in the hanging wall.

Notice in Fig. 15.1 that this thrust has three
footwall ramps, labeled FWR,, FWR;, and
FWR.. Footwall ramps are recognizable as por-
tions of the lower plate (footwall) containing
strata that have been diagonally truncated. Each
footwall ramp must have a corresponding ramp in
the hanging wall of the thrust.

Hanging-wall ramps and flats are defined by
their positions relative to bedding. Ramps occur
where the thrust fault cuts across bedding; flats are
present where the thrust is parallel to bedding. For
example, hanging-wall ramp HWR,, which cor-
responds to FWR,, is recognizable as the panel in
the hanging wall in which the same strata that are
diagonally truncated in FWR, are truncated in the
direction of tectonic transport. Strata in hanging-
wall-ramp panels typically dip in the direction of
tectonic transport (toward the foreland). Examine



Fig. 15.1b, and be sure you understand why
HWR, is identifiable as the portion of the hanging
wall that lay adjacent to FWR, prior to faulting.

Flats are the panels between ramp panels. They
do not contain truncated strata, either in the hang-
ing wall or in the footwall. Displacement along the
thrust fault may result in a hanging-wall flat
coming to lie either parallel to bedding in the foot-
wall or at an angle to bedding in the footwall. In
the latter case, the bedding in the hanging wall
typically dips in the direction opposite to the
direction of tectonic transport (toward the hinzer-
land) (Fig. 15.1b). It is important to remember
that hanging-wall flats do not have to be horizon-
tal, but they do not contain truncated strata.
In Fig. 15.1b, all of the panels in the hanging
wall that lie between hanging-wall-ramp panels
are flats.

For each footwall flat there must be a corre-
sponding hanging-wall flat, and both flats must
be the same length. However, due to deformation
of the hanging wall, a particular footwall segment
may correspond to two or more adjacent panels in
the hanging wall. Similarly, each hanging-wall
ramp must have a corresponding footwall ramp
of equal length. This is known as the “template”
constraint.

The most important feature is the relationship
between the fault and stratigraphy. If the fault
stays at the same stratigraphic horizon in either
the footwall or the hanging wall, then that portion
of the footwall or hanging wall is a flat. If the fault
cuts stratigraphically upward, then that portion of
the hanging wall or footwall in which this occurs
is a ramp.

/ Problem 15.1

For each lettered panel on the cross section in Fig. G-
43 (Appendix G), determine whether the panel in the
hanging wall and the footwall directly below is a
ramp or a flat. Write the term “ramp” or “flat” in
the table provided; the first one has been completed
for you. Next, determine which hanging-wall panel
corresponds to each footwall segment. Do this by
dropping a short line segment downward from the
edge of each footwall ramp and flat; below each
footwall segment, write the letter of the correspond-
ing hanging-wall panel. A’ has already been written
below the leftmost footwall ramp on Fig. G-43, be-
cause that footwall segment corresponds to panel A
in the hanging wall. Follow this format for panels B
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through J. Be careful; there may be more than one
hanging-wall panel for each footwall segment. Note
that there are no footwall panels that correspond to
hanging-wall panels K through O; their corresponding
portions of the footwall lie to the right of the cross
section.

Relations between folds and thrusts

Research in thrust belts has shown that most folds
are ultimately generated by fault movement at
depth. There is a systematic and predictable geo-
metric relation between a fold and the thrust that
generated it. Thus, we can use the geometry of an
exposed fold to infer the position and geometry of
a fault at depth. The kink-like character of folds in
thrust belts can be generalized in cross-section
construction by use of the “kink-fold” method,
which is described below. This method, developed
in the early 1980s by John Suppe of Princeton
University, assumes that the folds are produced
by a flexure-slip mechanism so that bed thickness
does not change. This assumption of constant bed
thickness will be taken for granted throughout this
chapter, but it must be established for each indi-
vidual geologic situation.

Another assumption of the kink-fold method is
that the footwall remains undeformed during the
formation of folds in the hanging wall. This assump-
tion is a necessary simplification of the real world;
the relatively common occurrence of footwall syn-
clines in thrust belts indicates that it is not exactly
correct. If footwall folds are present in an area, they
must be shown on the cross section, but they can be
added after the kink-fold method has been applied.

Many folds in thrust belts are associated with
underlying thrust ramps. Two types of ramp-related
folds are the most common. These are fault-bend
folds and fault-propagation folds, each of which is
described below.

Fault-bend folds

Fault-bend folds occur where a thrust fault steps
up from a structurally lower flat to a higher flat.
The folds in the hanging wall of Fig. 15.1b are all
fault-bend folds. Figure G-44 (Appendix G) con-
tains a series of drawings that can be cut up and
compiled into a flipbook, permitting you to ob-
serve the evolution of a fault-bend fold and com-
pare it with a fault-propagation fold.

Figure 15.2 shows the evolution of a fault-bend
fold. Initially, two kink bands form in the hanging
wall, one above the base of the ramp, and the
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other above the top of the ramp (Fig. 15.2a). With
continued slip on the fault, these two kink bands
grow in width (Fig. 15.2b). As the truncated hang-
ing wall moves up the ramp, and the two kink
bands widen, an anticline forms at the top of the
ramp. This anticline terminates downward into
the upper flat (Fig. 15.2c¢). The ramp anticline
grows in amplitude as the kink bands grow in
width. Meanwhile, one syncline develops at the
base of the ramp, and another develops on the
foreland-side of the anticline (Fig. 15.2c). Note
that the ramp height determines the amplitude of
the fold, which, in turn, determines the structural
relief.

Construction 0/ ' Balanced Cross Toctions

kink band

Notice that throughout the development of a
fault-bend fold, axial traces A and B coincide
with the top and bottom of the ramp, respectively,
and the hanging wall “rolls” through these hinges
as it traverses the ramp. The other two axial traces
(A’ and B’) migrate along the fault, but they are
fixed with respect to the rocks in the hanging wall.

When the cutoff point of the lowest strati-
graphic unit in the upper plate reaches the upper
flat (Fig. 15.2¢), the fold ceases to grow in ampli-
tude, but the distance between the axial traces of
the ramp anticline (A and B’ in Fig. 15.2¢) in-
creases with increasing displacement. In a fully
developed fault-bend fold, axial traces A and A’

kink band

B'

migrating

/ axial trace
/Ag

C

Fig. 15.2 Progressive development of a fault-bend fold as the thrust sheet moves over a ramp in a decollement (after

Suppe, 1983). Letters A, A’, B, and B’ denote the axial traces.



are fixed with respect to the hanging-wall rocks,
and they move along the flat with movement on
the fault. Note that all fold axial traces bisect the
interlimb angle of the fold, i.e., the angle between
adjacent panels. Use the flipbook (Fig. G-44) to
confirm these features of fault-bend folds.

Look at Fig. 15.2¢ again and note the following
important relations between an exposed fault-
bend fold and the associated thrust. These rela-
tions allow us to infer subsurface fault geometry
from known fold shape.

1 1In originally horizontal or gently dipping
strata, the backlimb of the hanging-wall anti-
cline always dips more gently than the fore-
limb.

2 The dip of the backlimb is equal to the dip of
the ramp in all stages of fold growth.

3 The axial trace of the hanging-wall syncline
(axial trace B) terminates at the base of the
ramp.

4 In a fully developed fault-bend fold, the axial
trace that separates the backlimb from the
upper flat (axial trace B') terminates at the
top of the ramp.
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5 For every hanging-wall cutoff there must be a
corresponding footwall cutoff of equal strati-
graphic thickness. This is the template con-
straint, discussed above.

6 For every hanging-wall flat there must be a
corresponding footwall flat of equal length.

Fault-propagation folds

In a fault-propagation fold, rather than stepping
from one flat to another, the fault simply dies out
upward, into the axial surface of a syncline
(Fig. 15.3). A fault-propagation fold is the surface
expression of a blind thrust. Shortening above the
fault terminus, or fault tip, is accommodated by
folding. Use your flipbook (Fig. G-44) to compare
the development of a fault-propagation fold with
that of a fault-bend fold.

As is the case with fault-bend folds, there are
several important relations between the exposed
fault-propagation folds and the associated thrusts
that allow us to infer fault geometry at depth. Note
that in both types of folds the axial trace bisects the
interlimb angle of the fold. This is the geometry
required to preserve constant bed thickness.

slip
R
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M ]

i
slip

fault tip

slip

z -
SN
e ———————————
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Fig. 15.3 Progressive development of a fault-propagation fold at the tip of a thrust, as the thrust sheet moves over a
ramp in a decollement (from Suppe, 1983). Letters A, A’, B, and B’ denote the axial surfaces. Note that the fault tip
coincides with the hinge of an asymmetric syncline.
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1 In cases where the fault cuts originally hori-
zontal (or gently dipping) strata (as in
Fig. 15.3), the backlimb dips more gently
than the forelimb. In general, fault-propaga-
tion folds are more strongly asymmetric than
are fault-bend folds, and the forelimb of a
fault-propagation fold is typically very steep
to overturned (Fig. 15.3¢c). This characteristic
alone is an important clue about the type of
fold you are dealing with, especially in the
absence of other information.

2 The dip of the backlimb is equal to the ramp
angle.

3 The axial trace of the syncline that forms on
the hinterland-side of the fold (axial trace B in
Fig. 15.3) terminates at the base of the ramp.

4 The thrust terminates in an asymmetric syn-
cline that forms on the foreland side of the
structure. The fault tip lies at the intersection
of the synclinal axial surface and the thrust
ramp (Fig. 15.3c¢).

5 The fault-propagation model of fold forma-
tion explains why box folds commonly reduce
to simple chevron folds in their cores. The two
axial traces of a box-like fold (A and B’ of
Fig. 15.3¢) bound a flat panel that separates
the backlimb from the forelimb of the anti-
cline. The stratigraphic horizon at which the
fault terminates is the same stratigraphic hori-
zon at which the two axial traces merge to
form a single axial trace (Fig. 15.3c). This
single axial trace bisects the angle between
the fold forelimb and fold backlimb
(Fig. 15.3¢). Cool, isn’t it!

Requirements of a balanced cross section

For a cross section to be valid, certain assumptions
inherent in its construction must be valid. A fun-
damental assumption is that rock volume (dis-
played as area in a two-dimensional cross
section) is conserved during deformation; that is,
deformation approximates plane strain and simply
redistributes rock volume in the two-dimensional
cross-section profile. This assumption will not be
justified if volume loss has occurred (e.g., due to
pressure solution accompanying cleavage develop-
ment) or if there is movement of material in or out
of the cross section. This latter situation can occur
if oblique slip occurs along the thrust faults, if
strike-slip faults intersect the cross-section line,
or if the line of section is oblique to the principal

movement direction. In order for the techniques
described in this chapter to be applicable in a
particular situation, the validity of the conserva-
tion-of-volume assumption must be demonstrated.
The methodologies for testing this assumption are
beyond the scope of this book; references are pro-
vided at the end of the book.

Within any given region, specific types of struc-
tures, and associations of structures, are character-
istic. A geologically reasonable cross section must
honor the structural style of the region. For ex-
ample, uniformly verging asymmetric folds are
characteristic of thrust belts. A cross section that
honors this constraint is said to be admissible
(Elliott, 1983). In addition, the cross section
must be restorable, or retrodeformable. This
means that if all of the shortening represented by
the faults and folds is removed, the layers should
restore to a reasonable predeformational configur-
ation, without large gaps or overlaps in strata. A
cross section that can be restored to a reasonable
predeformational configuration is said to be wvi-
able. A balanced cross section must be both ad-
missible and viable. Note that there may be several
viable solutions to a given data set. Just because a
cross section is balanced does not mean it is cor-
rect. However, if it is not balanced, it cannot be
correct, assuming plane strain and no volume
change.

Examine Fig. 15.4a, which is a simple example
of a cross section that is not balanced. If this cross
section represents a portion of a thrust belt, with
tectonic transport from left to right, it is an admis-
sible cross section. But is it restorable (and there-
fore viable)? To test this, imagine sliding the
hanging wall back down the thrust fault until
layer 1 in the hanging wall connects with layer 1
in the footwall. As shown in Fig. 15.4b, when we
do that, there is an overlap of layer 2. If the
hanging wall is slid back to the point at which
layer 2 in the hanging wall connects with layer 2
in the footwall, there is a gap in layer 1
(Fig. 15.4c). Therefore, this is not a viable cross
section; it is not balanced.

Problem 15.2

Redraw the cross section in Fig. 15.4a to make it
balanced. Assume that the footwall geometry is cor-
rect.
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Total length, top of: _/—\—\
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Fig. 15.4 Unbalanced cross section. (a) Deformed-state cross section. (b) The removal of the slip along a thrust to
restore bed 1 to its predeformational configuration does not produce a reasonable predeformational restoration of bed
2, but results in an “excess” or overlap of bed 2. (c) The restoration of bed 2 to a reasonable configuration results in a
“deficiency” of bed 1, creating a gap. Thus, the deformed-state cross section is not viable.

Constructing a restored cross section

If the assumptions discussed above are valid, then
a deformed cross section should restore to an un-
deformed section of equivalent area. A cross sec-
tion can be tested for balance by measuring areas
in both the deformed and restored states. Where
map units show consistent thicknesses over the
distance of the cross section, the bed length will
be proportional to the area (i.e., area = bed length
x thickness; if thickness is constant, area is pro-
portional to bed length). Therefore, in regions of
constant unit thickness we can simply measure bed
lengths in deformed and restored (undeformed)
cross sections. If the cross section is balanced, the
bed lengths will be equal, or nearly so. We will
focus exclusively on bed-length balancing in this
chapter.

Here are the steps for evaluating whether a cross
section is balanced:

1 Draw a regional pin line on the deformed
cross section (Fig. 15.5a). This is a vertical
line drawn on the foreland side of the cross
section that will serve as a reference marker
from which the bed lengths will be measured.
Typically, a regional pin line is chosen in an
area of no interbed slip such as a point beyond
the limits of thrusting or in a fixed fold hinge.
In Fig. 15.5a the pin line is drawn to the left of
the leftmost thrust.

2 Draw another line, called the loose line, per-
pendicular to bedding on the hinterland side
of the deformed cross section (Fig. 15.5a).

3  Begin the construction of the restored cross
section by drawing a series of horizontal, par-
allel lines representing the regional strati-
graphic sequence, as in Fig. 15.5b. The
spacing between the lines must be propor-
tional to the thicknesses of the units. This
regional stratigraphic sequence will serve as
the template for the restored cross section.

4 On the deformed cross section (Fig. 15.5a),
measure the length of each stratigraphic unit,
from the pin line to the loose line. Measure the
top and bottom (or center) of each unit, and
record the length within each panel. Deter-
mine the total length of each bed, and also
the distance from the pin line to each cutoff
point, where a bed has been truncated by the
fault.

5 Transfer the bed-length measurements from
the deformed section to the restored section.
Use the bed lengths from the pin line to each
cutoff point to determine where to draw the
fault on the restored section.

6 On the restored section, connect the cutoff
points with a dashed line to indicate the pre-
thrusting  configuration of the fault
(Fig. 15.5b).

If the cross section is balanced, all of the bed
lengths in the restored sections will be equal
within 5-10% of each other, depending upon the
complexities of geology and the validity of the
assumptions discussed above for that particular
cross section. Figure 15.5¢ is an example of a
restored cross section in which the bed lengths
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Fig. 15.5 (a) Deformed-state cross section. (b) Stratigraphic “template.” (c) Undeformed-state cross section restored
by measuring the bed lengths at the top and bottom of each unit. Note that the bed lengths are not consistent, hence the
section does not balance. Notice also that the section does not obey the template constraint. FWR, footwall ramp;

HWR, hanging-wall ramp.

are not equal; the corresponding deformed cross
section, therefore, is not balanced.

Several features can also be used to inspect a
cross section for problems without actually meas-
uring each bed length. For example, the cross
section shown in Fig. 15.5a contains several ser-
ious errors that indicate, at a glance, that it cannot
be balanced. Specifically, there are four hanging-
wall ramps (labeled HWR), but only three foot-
wall ramps (FWR). Thus, the section violates the
template constraint. Another problem is that the
hanging-wall flats are not the same length as the
footwall flats. Recall that each hanging-wall ramp
or flat must have a corresponding footwall ramp
or flat. Although application of these principles
may seem overwhelming at first, a bit of practice
will train your eye to recognize inconsistencies
such as those just described; they occur in many
published cross sections.

Once a restored cross section is constructed, the
amount of net shortening can be determined by
the equation:

[(lg — L) /1] x 100%

where [, is the bed length in the undeformed state,
and Iy is the bed length in the deformed state. For

thrust belts, this equation will yield a negative num-
ber, which indicates percent shortening.

Constructing a balanced cross section

Having learned to critique cross sections drawn by
others, you are now ready to draw your own.
When deciding the best place on a geologic map
to draw a cross section, remember that it must be
drawn parallel to the tectonic transport direction.
Cross-section lines that are oriented more than
5-10° from parallel to the tectonic transport dir-
ection may not restore to a reasonable predefor-
mational configuration. In thrust belts, one should
choose a line of section that is perpendicular to the
regional strike of the major thrust faults and also
perpendicular to the trend of the major fold axes.
Avoid lateral ramps (those that are approximately
parallel to the transport direction) or areas near
tear faults.

After you have: (1) constructed the topographic
profile along the line of section, (2) transferred the
strikes and dips from the geological maps, and (3)
incorporated any well-log data onto the cross sec-
tion, the chances are you will still be confronted
with a lot of “blank space” on your cross-section



diagram where you have no data to guide you. It is
your task to infer the structure at depth to fill up
the blank paper. This is where you earn the big
bucks that the oil company is paying you. Fortu-
nately, a few simple rules and techniques can
help you in this effort. Recall that in thrust belts,
folds bear systematic and predictable geometric
relations to the thrusts that generate them. There-
fore, you can use the shapes of folds to infer fault
position and orientation at depth, as indicated in
the following procedure.

1 Define panels of constant dip. Project all con-
tacts into the “air” and into the subsurface.
But do not project faults to depth just yet!

2 Determine the orientations of axial traces of
folds. This is done by constructing bisectors of
adjacent dip panels. The axial surface of a
concentric fold bisects the interlimb angle.
For example, if the interlimb angle of a fold
is 150°, in a cross-section diagram the axial
trace would be shown as a dashed line that lies
at 75° to each fold limb or panel.

3 Project folds to depth, or into the “air” where
eroded. Where two axial traces merge down-
ward, as in a box fold, the result is a single
hinge that bisects the chevron fold (recall that
box folds reduce to chevron folds in their
cores, as in Fig. 15.3). Construct a new axial
trace that bisects the limbs of the chevron fold.

4 Determine which of the two types of ramp-
related folds is probably present (fault bend or
fault propagation). If there is evidence that the
fault ramps up from a lower to an upper flat,
then the fold is a fault-bend fold. If the evi-
dence suggests that the fault dies out into an
asymmetric syncline, a fault-propagation fold
is indicated. The presence of an overturned
limb is evidence of a fault-propagation fold.
If data are insufficient to choose between the
two possibilities, you may have to construct
both fold types and select the solution that
best honors the available geologic data.

5 When you are working on the exercises at the
end of this chapter, refer freely to Figs 15.2
and 15.3 and the discussions of fold charac-
teristics that accompany those figures.
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/ Problem 15.3

Use the bed-length technique to restore the cross
section in Fig. G-45 and evaluate whether or not it
balances. That is, draw the stratigraphic template for
the restored cross section below the deformed cross
section. Then measure the bed lengths of each unit
from the pin line, and determine the positions of the
ramps and flats of the future fault on the stratigraphic
template. Be sure to measure both the top and
bottom of each of the three layers; you will have
six measurements in all. If the cross section does not
balance, state specifically what is wrong with it and
key your comments to the deformed-state cross sec-

tion. Identify every error; it is not sufficient to say

\__bed length too long.” I

/ Problem 15.4

Balance the cross section that you evaluated in Prob-
lem 15.3. Use the footwall template provided in
Fig. G-46. Assume that the footwall structure (i.e.,
position of ramps and flats) is correct. Use the same
dip for the forelimbs of all of the folds (follow the
example of the fold in the Permian bed). Remember
to keep the footwall and hanging-wall flats the same
length. Your section should balance by line length,
but will not conserve slip on the fault because some
shortening is accommodated by folding. Explain in
detail why your section is superior to the one given
in Fig. G-45. Calculate the amount of shortening
represented by the section using an average of
the lengths of the Permian/Triassic contact and the

Qiassic/]urassic contact. I
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/ Problem 15.5

Figure G-47 contains a geologic map and topographic
profile. Two wells have been drilled in the area, as
indicated on the map. Well number | encountered a
thrust decollement at 1500 m. Well number 2
encountered the following units:

Depth to top of unit (m) Unit encountered

350 Jurassic rocks below an
interval of fault gouge
900 Triassic rocks
1680 Permian rocks
2150 Proterozoic crystalline
rocks

Regional mapping indicates that the thickness of
Cretaceous rocks is 700 m.

Use the map, together with stratigraphic thick-
nesses from the well log and regional mapping, to
construct a cross section on the topographic profile.
Be sure to show the eroded layers above the level of
the present exposure. Determine: (I) the type of fold
@esent, and (2) the amount of shortening.

/ Problem 15.6

You have been hired by an oil company, and your
first assignment is to take over a project from another
employee. Figure G-48 contains a geologic map and
topographic profile of an area that your company has
leased. The oil-bearing unit in the region is an Eocene
sandstone that is not exposed in the map area. It is
overlain by unit To (Tertiary, Oligocene shale).

As indicated on the map and profile, an explora-
tory well has been drilled. Some drill bits produce a
solid core of rock for the geologist to examine, but
that type of drilling is very slow and expensive.
Usually, oil companies use a drill bit that chews up
the rock into little chips. It is more difficult to recog-
nize and interpret the rocks in the well, but it is much
cheaper and faster. Such a drill bit was used for this
well. Your predecessor was the on-site geologist who
logged the well. Unfortunately, she was unable to
identify the rock units within the well, nor was she
able to determine their attitudes. She did record the
depth at which the drill bit encountered different
lithologies. These are indicated by the three short
horizontal lines on the vertical line that represents
the well. These indicate the depth of each lithologic
contact within the well, but not the attitude of each
contact. You will have to determine which rock units
occur above and below these contacts in the subsur-
face. The heavy line lower in the well indicates the
position of a major fault.

Complete the cross section. Start by projecting the
dips and contacts onto the topographic profile. Then
determine the orientations of the axial surfaces of the
folds (remember, axial surfaces bisect adjacent fold
limbs or panels). Be sure to complete the geology in
the footwall of the thrust, as well as in the hanging
wall. Follow the rules for fold construction.

Aftercompleting the cross section, do the following:
I Determine what type of fold is present.

2 Calculate the amount of shortening accommo-
dated by the fold.

3 On both the map and cross section, indicate
where you recommend drilling a production oil
well. In one or two succinct sentences, explain

\ why this is the best place to drill for oil. }
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Deformation Mechanisms
and Microstructures

Objectives

e Recognize microstructures produced by different deformation mechanisms.
e Identify rocks produced by faulting under different crustal conditions.
e Use kinematic indicators to determine sense of shear in mylonites.

Most of this book concerns geologic structures on
the scale of maps, outcrops, and hand samples. In
this chapter, we examine grain-scale structures
(microstructures) and the mechanisms that produce
them. The manner in which rocks and minerals
deform at the grain scale is a function of several
parameters, including mineralogy, temperature,
pressure, stress magnitude, presence or absence of
pore fluids, and strain rate. An understanding of
deformation mechanisms and recognition of the
microstructures they produce can therefore provide
important information regarding environmental
conditions during deformation.

Deformation mechanisms

Deformation mechanisms that produce readily ob-
servable microstructures can be grouped into four
categories: fracture processes (cataclasis), diffusive
mass transfer, intracrystalline deformation, and
recrystallization. These mechanisms are not mutu-
ally exclusive; all can operate simultaneously in a
rock. For example, under certain temperature con-
ditions, quartz may deform plastically while an
adjacent feldspar deforms brittlely. However, for

a given mineral in a rock, one mechanism usually
predominates over the others and imparts its char-
acteristic microstructures to the rock.

Fracture processes (cataclasis)

At relatively low temperature and low confining
pressure (or high fluid pressures), most minerals
deform by fracturing or cataclasis. Fracturing in-
volves loss of cohesion at the grain scale. However,
under moderate confining pressures, rocks can
fracture pervasively and deform without losing
cohesion at the outcrop scale. Fractures may be
filled with mineral material, commonly iron
oxides and hydroxides, carbonates, or silica, pro-
ducing a hard, cemented rock. Fracturing does not
generally cause the grains in a deformed rock to
have a preferred orientation; however, subsequent
frictional sliding of grains can result in crude
banding or “cataclastic foliation.”

Diffusive mass transfer
Diffusive mass transfer accommodates deform-

ation by moving material from zones of high nor-
mal stress to regions of lower normal stress. The
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process can result in significant volume loss if the
dissolved material is transported out of the system.
Diffusive mass transfer processes include ionic dif-
fusion within grains (Nabarro-Herring creep),
and along grain boundaries in the absence (Coble
creep), or presence, of a fluid phase (pressure so-
lution). With the exception of pressure solution,
diffusive mass-transport processes do not result in
well-developed microstructures. For this reason,
we restrict our discussion to pressure solution
and the resulting fabrics.

Pressure solution refers to the transfer of dis-
solved material in the presence of an intergranular
fluid film, generally water. Dissolved material may
be precipitated in nearby low-stress sites or be
transported completely out of the system. Pressure
solution may be the dominant deformation mech-
anism at temperatures and confining pressures
intermediate between those that favor fracture
mechanisms and those that favor crystal plasticity,
and it appears to be the dominant process in the
development of metamorphic cleavage.

Several features and microstructures evident in
thin section suggest that material may be dissolved
and reprecipitated during deformation. For ex-
ample, fossils may be strongly dissolved along
margins parallel to rock cleavage but unaffected
along other interfaces. Grains that are normally
equidimensional, such as quartz and feldspar, may
show an elongate morphology and straight grain
boundaries due to dissolution at cleavage-parallel
interfaces (Fig. 16.1). Adjacent grains may show
straight or interpenetrating grain boundaries
resulting in a “fitted” texture that clearly does not

Fig. 16.1 Straight grain boundaries and the crudely
rectangular shape of quartz grains (white) in this meta-
morphosed siltstone suggest that silica has been dis-
solved at grain boundaries parallel to the rock
cleavage. Cleavage is defined by the alignment of biotite
grains, and, to a lesser extent, the grain-shape fabric
defined by the quartz and feldspar. B, biotite; F, feldspar;
Q, quartz. Plane polarized light. Scale bar is 1 mm.
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reflect the original detrital grain shapes (Fig. 16.2).
Subparallel concentrations of iron oxides, graphite,
or clay minerals are insoluble residues left behind
as the more soluble materials were removed from
the rock. Stylolites, common in carbonate rocks,
provide a familiar example. Dissolved material may
reprecipitate as overgrowths on mineral faces per-
pendicular to cleavage to form pressure shadows.
“Mica beards,” or growths of sericite or muscovite
on feldspars, are indicative of dissolution and repre-
cipitation (Fig. 16.3). Abundant vein arrays, particu-
larly those oriented at high angles to the cleavage
direction, may represent reprecipitation of formerly
dissolved material in extension fractures.

Intracrystalline plastic deformation/erystal
plasticity

The processes discussed above dominate at rela-
tively low temperatures (< 300°C) and low to
moderate confining pressures. At higher temperat-
ures and confining pressures and/or slower strain
rates, individual crystals may deform by the move-
ment of lattice defects, such as dislocations,*
through the crystal. This process results in changes
in grain shape, thus altering the overall shape of
the rock mass as it undergoes strain. In highly
strained rocks, formerly equidimensional quartz
grains may be deformed into highly elongate
quartz ribbons (Fig. 16.4).

Fig. 16.2 Photomicrograph of a sandstone that has
undergone a high degree of pressure solution. Note the
straight and interpenetrating grain boundaries that
could not reflect the original detrital grain shapes. IB,
interpenetrating boundary; K, potassium feldspar
(microcline); P, plagioclase feldspar; Q, quartz; SB,
straight boundary. Crossed polars. Scale bar is 1 mm.

The term dislocation refers to curvilinear defects in the
crystal structure. A discussion of dislocation theory is be-
yond the scope of this manual; references are included at
the end of the book.
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Mica beard

Feldspar

Fig. 16.3 Sketch showing development of “mica
beards” in the pressure shadow areas of feldspars.
Micas may grow at the expense of feldspars during
deformation at low temperatures in the presence of
grain-boundary water. Mica beards are typically be-
tween 1 and 10 mm long.

Fig. 16.4 Quartz ribbons in mylonite from southern
Nevada. Small angular grains are brittlely deformed
feldspars. Crossed polars. Scale bar is 1 mm.

Twinning

In some crystals, strain is accommodated by slip
on a discrete crystallographic plane, resulting in
mechanical or deformation twins. Such twinning
commonly occurs at low temperature in calcite
and dolomite, and, to a lesser extent, in feldspars.

Dislocation glide and climb

Dislocations may propagate through a crystal lat-
tice by glide (motion along a single crystallo-
graphic plane) or climb (motion in which a
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dislocation steps upward or downward to a new
glide plane). Lattice distortion due to dislocation
glide and climb in a crystal produces several dif-
ferent optical microstructures. At low strains, min-
erals such as quartz may exhibit wundulose
extinction as a result of dislocation glide. Undu-
lose extinction reflects a nonuniform distribution
of dislocations within the crystal. At very high
strains, crystals may be drawn into elongate rib-
bons (Fig. 16.4). When dislocations concentrate in
narrow zones within a crystal by a combination of
glide and climb processes, the deformed grain be-
gins to show a domainal extinction pattern. These
domains are called subgrains (Fig. 16.5). Sub-
grains show low-angle boundaries; that is, the
optical misorientations (measured by rotating the
microscope stage) between adjacent grains are less
than 10°. The development of subgrains is evi-
dence that the grain has experienced a degree of
recovery; that is, parts of the grains have been
swept free of dislocations (which “pile up,” form-
ing the subgrain boundaries).

Dislocation glide and climb becomes an import-
ant deformation mechanism in quartz at temper-
atures of about 300°C, although factors such as
strain rate and the presence of water play a role in
determining the brittle-plastic transition in quartz.
Feldspars may deform by fracture processes up to
about 450°C.

Recrystallization

Recrystallization can occur either during deform-
ation (dynamic recrystallization) or in the absence

Fig. 16.5 Subgrains (SG) and new grains (NG). The
subgrains indicate that some recovery has occurred,
and the new grains (or neoblasts) record incipient dy-
namic recrystallization. Shear sense is sinistral. Crossed
polars. Scale bar is 1 mm.
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of deformation (static recrystallization). The
mechanical rotation of subgrains may result in
the formation of new grains (neoblasts), the lat-
tices of which are no longer continuous with the
old grains (Fig. 16.5). Optically, this process of
dynamic recrystallization is manifested by grain-
boundary angles that exceed 10°, in contrast to
subgrains that show very low-angle boundaries
with adjacent subgrains. Static recrystallization
results in simple, straight grain boundaries that
meet at about 120°. This process can occur when
heating outlasts deformation in a single deform-
ational event or may be due to later heating of an
earlier deformational fabric.

/ Problem 16.1

What was the principal deformation mechanism in
the quartz in the photomicrograph shown in Fig. G-
49 (Appendix G)? What was the principal deform-
ation mechanism in the feldspar? Provide evidence to
justify your answers. In what approximate range of
temperatures did deformation in this rock occur?
Comment on the degree of recovery or recrystalliza-
tion in the quartz ribbons. Write your answer in well-
@fted, lucid, succinct sentences.

K Problem 16.2

What was the principal deformation mechanism op-

erative in the rock shown in Fig. G-507 Being careful

to use the correct terminology, list the lines of evi-

dence that support your conclusion. Use labeled

arrows to point out an example of each line of
Qidence you present.

Problem 16.3

On Fig. G-51, label three examples of subgrains and
three examples of new grains.

Fault rocks

Faults are discrete fractures within the earth’s crust
along which movement has taken place parallel to
the fracture surface. A shear zone is a zone along
which high-magnitude strain has been accommo-
dated without macroscopic loss of cohesion. Shear
zones range from plastic to brittle in character,
although many geologists restrict the term to

rocks that have accommodated strain by domin-
antly plastic deformation mechanisms (Fig. 16.6).
The general term “fault rocks” applies to rocks
deformed in both brittle fault zones and plastic
shear zones.

Several classifications for fault rocks have been
proposed; Fig. 16.7 shows one that is used widely
today. Fault rocks that develop in near-surface
fault zones under conditions of low temperature
and low confining pressure form by brittle
deformation mechanisms (i.e., fracturing). Rocks
deformed by brittle processes undergo dilation
(volume increase) and loss of cohesion. The result-
ing fault rock is fault gouge or fault breccia, de-
pending on the particle size (Fig. 16.7). Fluids
circulating through voids and fractures may de-
posit minerals within fractures, thus producing
cemented gouge. The cementing agent usually
has a different composition than the host rock.

A cataclasite is a fault rock formed dominantly
by microfracturing processes (Fig. 16.8). Catacla-
sites differ from fault breccias in that they undergo

Fig. 16.6 A centimeter-scale shear zone developed in
amphibolite (metagabbro) in Wyoming. Note grain-size
reduction and development of strong foliation within
the zone of shear. The deflection of foliation adjacent
to the shear zone indicates sense of shear, which is
dextral in this case. Coin for scale.
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Random Fabric Foliated Fabric

; Fault gouge
2| (<30% visible fragments)
S y "Foliated gouge"
5 Fault breccia
Z | (>30% visible fragments)
Cataclasite series Mpylonite series
i 10 - 50% ;
Protocataclasite matrix Protomylonite
@ [
2 i 50 - 90% i
_&w’ Cataclasite Matrix Mylonite
S i
Ultracataclasite gorﬁa}%ﬁg% Ultramylonite

Fig. 16.7 Fault-rock classification (after Sibson, 1977).
The matrix is all material smaller than 50 wm in size.

Fig. 16.8 Cataclasite from the Whipple detachment
fault, California. Note the angular fragments and com-
plete lack of foliation. Pencil for scale.

grain-scale brittle deformation without loss of co-
hesion at the macroscopic scale. This type of de-
formation occurs at moderately low temperature
but at elevated confining pressure, and most com-
monly in the presence of fluids. As individual
grains are fractured, they seal almost immediately

by dissolution—reprecipitation processes. No large
open spaces are formed and, unlike fault breccia,
the material cementing the fractured rock is
most commonly derived from the host rock itself.
Thin-section examination may be necessary to dis-
tinguish fine-grained fault breccia from catacla-
site.

Cataclasis typically results in a rock character-
ized by randomly oriented broken grains; how-
ever, a macroscopic planar fabric (“cataclastic
foliation”) may form due to fractured grains slid-
ing past one another. Cataclastic foliation should
not be confused with the grain-shape foliation that
forms as a result of plastic deformation mechan-
isms. Inspection with a hand lens or in thin-section
generally reveals fracturing to be the dominant
grain-scale deformation mechanism in catacla-
sites.

Mylonites are rocks in which a dominant min-
eral, typically quartz, has deformed by crystal-
plastic deformation mechanisms (Fig. 16.9). The
process usually results in marked grain-size reduc-
tion and the development of conspicuous foliation
and/or lineation. At high shear strains, the orien-
tations of mylonitic foliation and lineation ap-
proximate the shear plane and shear direction,
respectively. Mylonites generally form in discrete
planar shear zones that range in width from milli-
meters to kilometers. Many mylonites contain
large crystals within a fine-grained matrix. The
large minerals, called porphyroclasts, are typically
stronger than the matrix for a particular set of
conditions of deformation. For example, in mylo-
nitized granites, quartz typically exhibits pro-
nounced grain-size reduction due to dynamic
recrystallization, whereas feldspars show little or
no grain-size reduction, except in the most highly
deformed rocks. The relative proportion of por-
phyroclasts to fine-grained matrix is the basis for
the classification of mylonitic rocks into proto-
mylonites, mylonites, and ultramylonites (Figs
16.7 and 16.9).

/ Problem 16.4

Name the type of fault rock shown in Fig. G-52a, and
explain what features you used to identify it. The
protolith of this rock was a coarse-grained granite.
The irregularly shaped, light-colored masses are li-
@ens growing on the rock.




746 Y on OMec ’ and My

Kinematic indicators

Problem 16.5 One of the key goals of a geologist studying a

shear zone is to determine the direction of move-
ment or sense of shear. Rocks that deform plastic-
ally at high temperatures commonly lack
slickenlines (fault striae) and recognizable strati-

Name the type of fault rock shown in Fig. G-52b, and
explain what features you used to identify it. The
protolith of this rock was a porphyritic granite.

C

Fig. 16.9 Mylonitic rocks, showing variation in the relative proportion of porphyroclasts to fine-grained matrix. All
surfaces are parallel to the mineral lineation and perpendicular to the foliation. (a) Protomylonite (exhibiting a greater
proportion of porphyroclasts than matrix) developed in megacrystic granite, from southern Nevada. Note the stretched
feldspar porphyroclasts (arrow points to tails). Coin in lower right is a quarter, 2.4 cm in diameter. (b) Mylonite
(exhibiting approximately equal proportions of porphyroclasts and matrix) from southern Nevada. Scale bar is 2 cm.
(c) Ultramylonite, in which porphyroclasts constitute less than 10% of the rock, from Wyoming. Scale bar is 2 cm.
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graphic markers that can be used to determine
sense of shear. Features in the sheared rock, col-
lectively called kinematic indicators, must be used
instead. A thorough study of kinematic indicators
in a shear zone involves recording many kinematic
indicators at both the mesoscopic and microscopic
scales. Shear-sense indicators must be viewed per-
pendicular to foliation and parallel to lineation
(Fig. 16.10a); that is, on the rock face that corres-
ponds to the XZ plane of the strain ellipsoid. In
Chapter 14 we dealt with only two-dimensional
strain. In three dimensions, X is the long axis of
the strain ellipsoid, Y is the intermediate axis, and
Z is the short axis (Fig. 16.10a).

Shear sense in a given sample or outcrop is
usually reported as dextral (right-lateral or clock-
wise sense of rotation) or sinistral (left-lateral or
counterclockwise sense of rotation). One must be
careful, however, because two geologists looking
at opposite sides of a sample or an outcrop would
see opposite shear sense. For that reason, it is
necessary to interpret sense-of-shear in the context
of the proper geologic or geographic frame of
reference (Fig. 16.10b).

shear sense N

Kinematic lineation j,
indicators XV oe — — ==

_______ 7 (i ZY

Y anl : ; x

B *
XZ face strain axes
oliation

a <

b shear zone

Fig. 16.10 Relationship between mylonitic fabric and
sense of shear. (a) Sketch showing proper orientation for
sense-of-shear determination. Field exposure or thin-
section must be parallel to lineation and perpendicular
to foliation (view in the XZ plane of the strain ellipsoid).
(b) True geographic and geologic orientation of a sample
for sense-of-shear determination. In this case the dextral
shear sense viewed in the hand sample corresponds to
south-side up, reverse-sense motion along the shear
zone.
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S-C fabrics

Many rocks in shear zones, particularly granites,
possess composite planar fabrics defined by two
foliations that are at moderate to low angles to
one another (Figs 16.11 and 16.12). Commonly,
these foliations weaken and ultimately disappear
outside the shear zone, suggesting that the com-
posite fabric was produced as a result of shearing.
Close inspection reveals that one of the planar
fabrics is clearly a grain-shape fabric; that is, a
fabric produced by the parallel alignment of
deformed grains. This fabric is generally penetra-
tive at all scales and is commonly called the S
surface (for the French word schistosité). The sec-
ond fabric, called C (for the French word cisaille-
ment, or shear) consists of a series of spaced
surfaces of shear marked by zones of grain-size
reduction. C surfaces may be penetrative at the
hand-specimen scale but are generally nonpenetra-
tive at the scale of a thin-section. Rocks that pos-
sess S and C foliations are termed S-C mylonites,
and the angular relation between these fabrics can
be used to determine shear sense.

The development of this composite fabric and
its use in determining shear sense can be under-
stood in terms of the strain ellipse. Because ideal
simple shear is plane strain, we consider only two
dimensions (Fig. 16.12). For example, consider an
undeformed quartzite with spherical grains
(Fig. 16.12a). When subjected to simple shear the
grains become slightly elongate into the local finite
X direction of the strain ellipse. This produces a
grain-shape foliation, S, in the rock (Fig. 16.12b).

Fig. 16.11

S-C fabric in granite mylonite, from west-
central Arizona. C, C surface (cisaillement); S, S surface
(schistosité). The sense of shear is dextral. Sample cour-
tesy of Colin Ferguson.
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Fig. 16.12 Schematic diagrams showing the develop-
ment of S-C fabric. The arrows indicate shear sense.
(a) Undeformed specimen; circles represent originally
equant grains. (b) Shear strain produces grain-shape
foliation (S), represented by ellipses, and also a second
foliation (C), parallel to the shear plane. The asymmetry
of S and C foliations can be used to determine the sense
of shear, which in this case is dextral.

A second foliation, C, forms parallel to the shear
plane (Fig. 16.12b). Both fabrics form simultan-
eously in the deforming rock. The asymmetry of
the S foliation relative to the C surface gives the
sense of rotation that indicates the shear direction.
The sample shown in Fig. 16.11, for example,
shows a clockwise (dextral) sense of rotation.
When observed in the outcrop, this sense of rota-
tion reveals the shear direction.

Asymmetric porphyroclasts

Porphyroclasts (see above) may develop an asym-
metric shape as a result of simple shear deform-
ation. As the plastically deforming matrix flows
around the more rigid porphyroclasts, the margins
of the porphyroclasts may be more highly strained
than their interiors. This results in the formation
of “tails” of recrystallized or retrograded material
at the ends of the porphyroclasts. The sense of
asymmetry of the majority of porphyroclasts in a
rock gives the sense of the simple shear component
of the total strain.

Two types of porphyroclasts have been recog-
nized and are named after Greek letters that ap-
proximate their shape (Figs 16.13 and 16.14).
Sigma (o) porphyroclasts are those with tails that
do not extend across an imaginary reference
plane drawn through the grain and parallel to
the foliation (Figs 16.13a and 16.14a). Delta (3)

—»
tail
o ai
porphyroclast

reference plane

-
sigma ( 6 ) porphyroclast

reference plane

—

b delta (& ) porphyroclast

Fig. 16.13 Sketches of two types of asymmetric por-
phyroclasts. (a) Sigma (o)-type asymmetric porphyro-
clast. (b) Delta (3)-type asymmetric porphyroclast. The
sense of shear is dextral in both cases.

Fig. 16.14 Photomicrographs of two types of asymmet-
ric porphyroclasts. (a) Sigma-type porphyroclast (left) is
a garnet grain that has been partially retrograded to
chlorite. Tails are a mixture of garnet, chlorite, and
biotite. The sense of shear is sinistral. Plain polarized
light. Scale bar is 0.5 mm. (b) Delta-type porphyroclast;
feldspar is highly retrograded to sericite. Sense of shear
is dextral. Crossed polars. Scale bar is 0.5 mm.
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porphyroclasts have tails that do intersect the ref-
erence plane. Delta porphyroclasts form when the
rate of rotation of the grain exceeds the rate of
recrystallization. In this case, the tail at the lower
left of Fig. 16.13a will be dragged upward by
(clockwise) grain rotation and will wrap around
the grain. Similarly, the tail at the upper right in
the same figure will be dragged downward by
rotation of the grain. In both cases the tails show
a sense of rotation that can be used to infer shear
direction (Figs 16.13b and 16.14b). In some cases
it is difficult to distinguish between the two types
of porphyroclasts, and other kinematic indicators
must be used to confirm shear sense.

Oblique grain shapes in recrystallized quartz
aggregates

In quartz-rich rocks, quartz grains may be strained
into elongate ribbons. Due to progressive deform-
ation, internal features such as elongate subgrains
or new grains may develop a grain-shape align-
ment that is oblique to the macroscopic foliation.
This obliquity is geometrically analogous to S-C
fabrics, and it too can be used to infer shear sense
(Fig. 16.15).

Antithetic shears

Minerals that possess cleavage and are appropri-
ately oriented with respect to the shear plane may
undergo failure along cleavage planes in a sense
that is opposite, or antithetic, to that of the shear
zone (Figs 16.16 and 16.17). Microfractures in

Fig. 16.15 Oblique foliation in dynamically recrystal-
lized quartz aggregate. MF, mylonitic foliation in rock;
OF, oblique foliation in quartz aggregate. The sense of
shear is dextral. Crossed polars. Scale bar is 1 mm.

antithetically fractured grains develop in a manner
analogous to a sheared stack of cards or dominoes.
Grains that have been systematically fractured in
this manner may provide supporting evidence for
shear sense inferred from other microstructures;
however, they must be used with caution.

cleavage planes

a Undeformed grain

> hear sense
antithetic fractures

D —

Antithetically
b fractured grain

Fig. 16.16 (a) Undeformed grain with cleavage planes.
(b) Antithetically fractured grain. The long arrows show
overall shear direction; the small arrows show the offset
on individual antithetic shears.

Fig. 16.17 Photomicrograph of an antithetically frac-
tured microcline crystal. Note that, in addition to being
fractured, the three segments of the original microcline
crystal have also been pulled apart. The pull-apart areas
have been filled with recrystallized quartz. The overall
shear sense is dextral; the displacement between the
feldspar fragments (F) is sinistral. Crossed polars. Scale
bar is 0.5 mm. Photo courtesy of Colin Ferguson.
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/ Problem 16.6

I Examine the photomicrograph in Fig. G-53. De-
scribe the principal microstructures in the quartz
and the feldspar, and interpret the deformation
mechanisms that led to these microstructures.

2 What is the approximate range of temperatures
experienced by this rock? How do you know?

3 Onthephotomicrograph, label all of the kinematic
indicators you can find. What is the sense of shear
recorded by these kinematic indicators?

\
/ Problem 16.7

I  Figure G-54a shows a porphyroclast. What type
is it?

2 The shear zone that contains this porphyroclast
strikes 050° and dips 70° to the southeast.
Mineral lineations plunge 70° toward 140°
(down dip). The photographer who took this
photograph was looking at a vertical cliff face,
along the strike of the shear zone (i.e., toward
050°) so that northwest (NW) is on the left side

of the photo and southeast (SE) is on the right.
Describe in detail the type of movement on this
shear zone. (Here is a generic example of a
complete description: “normal-sense movement,
\ northeast side down.”)

/ Problem 16.8

Figure G-54b is a field photograph of a mylonitic
megacrystic (porphyritic) granite from a shear zone
that strikes 330° and dips 20°SW. Mineral lineations
are down dip. You are looking at a vertical outcrop,
parallel to the strike of the shear zone (toward 330°)
so that southwest (SW) is to your left and northeast
(NE) is to your right. Describe in detail the type of
movement on this shear zone. (Here is a generic
example of a complete description: “reverse-sense

\ movement, northwest side up.”)

/ Problem 16.9

Figure G-55 is a tectonic map of a region that con-
tains three major shear zones that were active at
different times. For each shear zone a stereogram is
provided that indicates the foliation and lineation
orientations within the shear zone. Figure G-56a, b,
and c are samples from shear zones A, B, and C,
respectively. Use these figures to determine the type
of movement in each shear zone. In one succinct
paragraph, present the deformational history of the
map area, summarizing the timing and style of each

@formational event.
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Introduction to Plate Tectonics

of plate boundary.

/.O.

Objectives

Determine rates and relative plate motions at triple junctions.
Use earthquake focal-mechanism solutions to determine type of faulting and type

Use ocean-floor magnetic anomalies to determine plate-motion rates.
Determine latitudinal movement of plates using apparent polar-wander paths.
Decipher the plate tectonic history of a region (the “plate game”’).

/

A particularly exciting aspect of structural geology
during the past few decades has been the integra-
tion of fault studies, seismology, and paleomagnet-
ism to better understand plate tectonic processes.
The concept of plate tectonics has revolutionized
the earth sciences and provides a context for many
diverse geologic processes including earthquakes,
volcanoes, the construction of mountain belts, and
the development of ocean basins. The purpose of
this chapter is to introduce a few of the more
powerful techniques employed by geologists and
geophysicists to decipher both modern-day and
ancient plate motions and plate configurations.

Some of the material in this chapter will doubt-
less already be familiar to many of you from other
courses you have taken. However, the details of
how seismic patterns, paleomagnetic data, and
focal-mechanism solutions can be combined into
a powerful tool for reconstructing plate inter-
actions will be new to nearly all of you. The chap-
ter culminates in an exercise in which you will
employ all of these techniques to determine the
plate tectonic history of a region.

Fundamental principles

The earth consists of three compositionally dis-
tinct, concentric shells: the core, mantle, and
crust. Within the upper mantle, a major change
in mechanical properties plays an important role
in governing plate tectonic processes (Fig. 17.1).
The 80-150-km thick lithosphere includes the
crust and the upper part of the mantle. The litho-
sphere behaves rigidly and is reasonably strong.
Beneath the lithosphere lies the weak, plastically
yielding asthenosphere, which is several hundreds

QOceanic crust

Lithosphere

Lithospheric mantle

Asthenospher XXX XSSO

|

30 km

Fig. 17.1 Structure of the earth’s crust and upper mantle.
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of kilometers thick. The asthenosphere coincides
with the depth at which a small fraction of mantle
rock begins to melt.

Here are some fundamental principles of plate
tectonics:

The lithosphere is broken into six or seven
large slabs and about a dozen small ones.
These lithospheric slabs are called plates.
These plates move with respect to one another
as they “float” on the underlying astheno-
sphere.

Plates mostly interact along their boundaries
(although broad areas of intraplate deform-
ation also exist). Boundaries along which
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plates move away from each other are
called divergent boundaries; boundaries
along which plates move toward one
another are called convergent boundaries;
and boundaries along which plates slide past
one another are called #ransform boundaries
(Fig. 17.2).

Plates are internally rigid. Most deformation
resulting from plate interaction occurs along
plate margins; such regions are called mobile
belts. Deformation does sometimes occur
within the interior of a plate, but such deform-
ation tends to be of lower magnitude and to
occur at slower rates than deformation at
plate margins.

mid-ocean ridge
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=
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upwelling asthenosphere

a Divergent boundary

oceanic magmatic arc
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subduction zorie l l asthenosphere
l magma

b Convergent bundary

transform fault

¢ Transform boundary

Fig. 17.2 Plate boundaries. (a) Divergent-plate boundary.

form boundary.

(b) Ocean—continent convergent-plate boundary. (c) Trans-
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Plate boundaries

Plates move away from one another at oceanic
spreading centers. Basaltic magmatism, induced
by partial melting of material within the astheno-
sphere, erupts at the axis of a ridge, thereby creat-
ing new oceanic lithosphere as plates diverge from
one another. The mid-ocean ridges are sites of
volcanism, extensional faulting, and the creation
of new oceanic lithosphere (Fig. 17.2a).

Where an oceanic plate and a continental plate
converge, the denser oceanic plate sinks beneath
the more buoyant continental plate in a process
called subduction (Fig. 17.2b). Subduction causes
earthquakes at the interface between the two plates
and magmatism in the overriding plate. In this
manner oceanic lithosphere is recycled into the
asthenosphere. Oceanic trenches are the bathymet-
ric manifestation of the subduction process. Where
two continental plates converge, one plate may
partially subduct beneath the other. However, this
process is not very efficient because the two plates
have similar densities. The result of continent—con-
tinent convergence is a collisional boundary
marked by mountain building, thrust faulting,
and limited amounts of granitic magmatism.
Where two oceanic plates converge, the older
plate is generally subducted beneath the younger
one because the older plate is cooler and denser.

Two plates slide past one another at transform
boundaries (Fig. 17.2c). Transform boundaries are
strike-slip faults that link other types of plate
boundaries, most commonly ridge segments.
Transform boundaries are sites of earthquakes
but little or no volcanic activity. Lithosphere is
neither created nor destroyed at these boundaries.

Triple junctions

The intersection of three plates is called a triple
junction. Consider the simple triple junction in
Fig. 17.3a. Each plate is separated from its neigh-
bors by an oceanic ridge, and the three ridges meet
at a point. This is a stable and viable plate-bound-
ary configuration. If the rates and directions of
relative plate motion across any two boundaries
are known, then the rate and direction of motion
across the third boundary can be calculated by
constructing a velocity triangle, as explained in
the two examples below. The construction of vel-
ocity triangles can help determine the relative rates
and directions of plate motions where other inde-
pendent means of determining plate motions are
not available.

Example |

Suppose, as shown in Fig. 17.3a, that the relative
rate of spreading between plate A and plate B is
6 cm/yr, and the relative rate of spreading between
plate B and plate Cis also 6 cm/yr. What is the rate
of relative motion between plate A and plate C?

Solution (Fig. 17.3b)

—

Arbitrarily hold one plate fixed — say, plate A.
2 Leta point represent the fixed plate, and plot a
vector, in true map orientation, that corres-
ponds to the motion of plate B relative to
plate A. The point at the end of the vector
represents plate B, and the length of the vector
corresponds to the rate of relative plate mo-
tion. In Fig. 17.3b the A — B vector points due
east and is 6 units long.
3 Now, hold plate B fixed, and draw a vector
from point B that describes the motion of plate
C relative to plate B. The direction of motion
between these plates is measured on the map
with a protractor.

6 cm/yr

Y

Plate - Plate

6 cm/yr

7 cmiyr Plate

cm/yr

Fig. 17.3 (a) Ridge-ridge-ridge triple junction. Arrows
show relative movement of adjacent plates at the rates
indicated. (b) Velocity triangle for plate configuration
shown in (a). See text for discussion.
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4 To complete the velocity triangle, plot the re-
sultant vector from point A to point C. In this
example the vector is oriented 147° and is 7
units long, indicating that plate C is moving
away from plate A at a rate of 7 cm/yr.

Example 2

Suppose, as shown in Fig. 17.4, plate B is moving
away from plate A ata rate of 4 cm/yr, and plate Cis
being subducted (somewhat obliquely) beneath plate
Batarate of 2 cm/yr (Fig. 17.4a). What type of plate
boundary occurs between plates A and C,and whatis
the rate of motion between these two plates?

Solution (Fig. 17.4b)

1 Construct the two sides of the velocity triangle
that describe the direction and rate of movement
between plates A and B and plates B and C.

2 Plot the resultant vector from point A to point
C. This vector indicates that plate C is moving
4.6 cm/yr in a direction 035° relative to plate

4 cmlyr

A //\A/\/\/\Zcm/yr
2

Plate

C
4.6 cmlyr /
N35E /
et
A

0o 2 4
[
cmlyr

B

b

Fig. 17.4 Sketch showing the use of a velocity triangle
to determine the type of plate boundary. The relative
motions of plate A with respect to plate B, and plate B
with respect to plate C, are known. But the relative
motion of plate A with respect to plate C is unknown.
(b) Construction of a velocity triangle indicates that the
boundary between plates A and C is a transform fault.
See text for discussion.

A. This direction is parallel to the boundary
between plates A and C, which tells us that the
boundary between plates A and C is a trans-
form fault.

Problem 17.1

Given the plate tectonic configuration shown in
Fig. G-57a (Appendix G), determine the type of
plate boundary and the relative rate of motion be-
tween plates B and C.

Problem 17.2

Given the plate configuration shown in Fig. G-57b,
determine the type of plate boundary and the relative
rate of motion between plates B and C.

Focal-mechanism solutions
(“beach-ball’’ diagrams)

During an earthquake, seismic waves are gener-
ated at the hypocenter, or focus, of the earthquake.
These waves radiate in all directions; the wave
front travels through the earth and defines an
imaginary, expanding spherical surface called the
focal sphere (Fig. 17.5). The actual seismic ray
paths are perpendicular to the wave front. The
point on the earth’s surface directly above the
hypocenter is the epicenter.

Auxiliary
plane
A B
wave fronts
at 1y, 1o, 1,
—> —>Fault plane
e -
ray paths Focal sphere
D C

Fig. 17.5 Seismic energy released at the hypocenter (cen-
ter of diagram) releases waves that propagate in all dir-
ections. The wave front defines spherical surfaces that
increase in radius with time. The ray paths are shown
as straight lines perpendicular to the wave front. The
focal sphere is the wave front at any time of interest.
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Fig. 17.6 Map view of a right-slip fault showing the
quadrants of compression (gray) and dilation (white).
Within each quadrant is a schematic representation of
the first motion on the needle of a seismograph. Moving
from left to right, the first motion is “down” if the seismic
station lies within a dilational quadrant; it is “up” if the
seismic station lies within a compressional quadrant.

When the wave front arrives at a seismic station
on the earth’s surface, a key aspect of the data
recorded is the direction — either up or down —
of the first motion of the needle of the seismo-
graph. Whether the needle’s first motion is up or
down is determined by the nature of the first
ground motion experienced at the site. There are
two possibilities: a push (compression) or a pull
(dilation). If the first ground motion is compres-
sional the first motion of the needle is upward, and
if the first ground motion is dilational the first
motion of the needle is downward.

The direction of the first ground motion de-
pends on: (1) the position of the recording station
relative to the hypocenter, and (2) the type of
faulting that occurred — normal, thrust, or
strike-slip. Analysis of earthquake first-motion
data from many seismic recording stations pro-
vides information about the fault attitude and the
direction of slip. Such analyses — called first-
motion studies — are particularly valuable in the

w Earthquake epicenter

B

face R
garth suf S - i I i

~
~~ K
e Earthquake hypocenter

Station A

azimuth = 270° \\
i = 68°
FM = compressional

a

many cases in which an earthquake does not cause
surface rupture. First-motion studies are also used
to determine relative motions of lithospheric
plates where plate boundaries are not directly ob-
servable, such as on the seafloor.

Consider Fig. 17.6, which is a map view of a
vertically dipping, right-slip fault. An earthquake
has just occurred below the epicenter in the center
of the map. The map is divided into four quad-
rants: A, B, C, and D. Seismic recording stations in
quadrants B and D lie “in the direction” of the slip
vector and hence experience a compressional first
ground motion, recorded as an upward first
motion on the seismogram. Stations in quadrants
A and C, on the other hand, lie “behind” the
earthquake; they experience a dilational first
ground motion, recorded as a downward first mo-
tion on the seismogram. Conventional notation
for first motion is a closed circle for compression
and an open circle for dilation.

In addition to recording first-motion data, a seis-
mic station (along with data from other stations)
records its location relative to the hypocenter. The
two parameters used to record a station’s location
are the azimuth of the station relative to the epicen-
ter and the angle of incidence (i) that the ray vector
makes relative to the vertical (Fig. 17.7a). These
data are plotted on a lower-hemisphere, equal-area
projection as shown in Fig. 17.7b.

When first-motion data are recorded at many
stations and plotted together, the distribution of
points defines four quadrants, two of which are
compressional and two dilational (Fig. 17.8).
In the case of a large earthquake, these quadrants
may extend around the globe (Fig. 17.9).
Compressional quadrants are conventionally col-
ored black or gray, while the dilational quadrants
are white.

E
Station B
azimuth = 90°
i= 28°
FM = dilational

b

Fig. 17.7 (a) East-west cross section of a seismically active normal fault. An earthquake at the hypocenter radiates

seismic energy in all directions. Seismic waves are recorded at stations A and B. FM, first motion; 7, angle of incidence.
(b) Lower-hemisphere plot showing orientation of the fault and the positions of stations A and B relative to the
earthquake focus. A seismic station at the epicenter, directly above the hypocenter, would plot at the center of the
projection. The solid circle at station A indicates a compressional first motion; the open circle at station B indicates a
dilational first motion.



% wlion lo WPate Tectonics 757

Nodal plane
(auxiliary plane)

Nodal plane

(fault plane)

Fig. 17.8 Focal-mechanism solution, in which each seismic station is plotted on the lower-hemisphere projection
according to its location relative to the earthquake focus (see text for discussion). Compressional first motions are
indicated by solid circles; dilational first motions are indicated by open circles. Nodal planes are then chosen to
separate fields of opposite first motions. Geologic data must be used to determine which of the nodal planes is the fault
plane. Note that the P axis (P for pressure) bisects the dilational quadrant and the T axis (T for tension) bisects the

compressional quadrant.

The boundaries between the quadrants are two
perpendicular planes called the nodal planes (Figs
17.8 and 17.9). These are planes on which the first
motion is undefined. One of the nodal planes is
always the fault plane; the other is termed the
auxiliary plane. The auxiliary plane is perpendicu-
lar to both the fault plane and the slip direction.
Occasionally, a station may record a very weak
first arrival that is feebly compressional or dila-
tional. This indicates that that particular station
coincides with one of the nodal planes. If one or
more stations exhibit a nodal first motion, the
nodal planes may be plotted directly. If no stations
record a nodal first motion, then the seismologist
must select nodal planes that best fit the data. The
resulting plot is called a focal-mechanism (or fault-
plane) solution (Fig. 17.8).

Depending on the orientation of the nodal
planes and the location of the earthquake epicen-
ter, the quadrant pattern of a focal-plane solution
resembles a beach ball; hence, they are sometimes
informally called “beach-ball” diagrams. But it is
important to remember that focal-plane solutions
are lower-hemisphere, stereonet plots, involving
the same techniques discussed in Chapter S.

Note that a focal-mechanism solution does not
distinguish uniquely between the fault plane and
the auxiliary plane. The seismologist must take
into consideration the geologic setting in which
the earthquake occurred, and then select the
nodal plane that is most reasonably interpreted

to be the fault plane. Look at Fig. 17.9, for ex-
ample. This figure is not a lower-hemisphere pro-
jection, so it is not a focal-mechanism solution; it
is simply a map of a portion of the earth showing
compressional and dilational quadrants. The epi-
center in this figure is on the San Andreas Fault,
which is known to be oriented approximately
north—-south. This knowledge allows us to pick
the north—south nodal plane as the fault plane,
leaving the east—-west nodal plane as the auxiliary
plane.

Focal-mechanism solutions provide additional
information about fault movement during an
earthquake. By analogy with laboratory tests of
rock failure, we may define axes of infinitesimal
shortening (P for pressure) and extension (T for
tension). In each case, the axis lies in a plane
perpendicular to the nodal planes; the P axis bi-
sects the dilational quadrants and the T axis bi-
sects the compressional quadrants. If this
relationship between the P and T axes and the
quadrants sounds backwards, consider that just
prior to rupture, the particles that lie parallel to
the P axis move away from the shortening direc-
tion (“dilational” behavior). Particles that lie nor-
mal to the P axis are forced toward one another
(“compressional” behavior).

We can also use focal-mechanism solutions to
determine the trend and plunge of the slip direc-
tion, or slip line, of a fault if the attitude of the
fault plane is known. The slip line lies within the
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Seismograms

epicenter

fault plane —~"

N -
\auxﬂlary

plane

g
\\ /
nodal planesJJ

Fig. 17.9 Map of a portion of the earth, showing an earthquake epicenter on the San Andreas Fault in California, and
the distribution of compressional and dilational quadrants around the globe. This is not a focal-mechanism solution
because it is not a lower-hemisphere projection, but it shows many of the features of a focal-mechanism solution. After

Sherburne and Cramer (1984).

fault plane and is the pole of the auxiliary plane.
Thus, if the compressional and dilational quad-
rants are well defined, the slip direction and type
of movement along the fault can easily be deter-
mined. This type of analysis represents the overlap
of seismology and structural geology.

Study the examples in Fig. 17.10, which illus-
trate how focal-mechanism solutions can be used
to interpret fault motion associated with an earth-
quake. One must always use geologic information
to determine which nodal plane is the fault plane
and which is the auxiliary plane. For each diagram
in Fig. 17.10, try to visualize both possible fault
planes. Remember that each diagram is a lower-
hemisphere projection and that the P axis bisects
the dilational (white) quadrants.

K Problem 17.3

Figure G-58 contains three focal-mechanism solu-
tions. Beneath each diagram write a description of
the two possible interpretations for fault orientation
and sense of motion (normal, reverse, oblique, etc.),
as in the example of Fig. 17.10. Measure the fault
strikes precisely with a protractor, but use the tem-
plate to determine the approximate dip. In the case of
oblique movement specify both components of mo-
tion, e.g., “left-reverse movement” or “dominantly
q)rmal with a component of right slip.”

Example 3

Suppose you map a seismically active fault that
strikes 030° and dips 60°SE. Slickenlines on the
exposed fault surface indicate that the motion on
the fault is pure dip slip, but you are unable to
determine from field evidence whether it is a
normal fault or a reverse fault. An earthquake on
the fault is recorded at seismic station “A.” The
first motion is compressional, the azimuth from
the epicenter to the station is 175°, and the angle
of incidence is 35°. Determine whether the motion
on the fault is normal or reverse.

Solution

1 On the stereonet, draw the great circle that
represents the fault plane (Fig. 17.11a).

2 Draw the point on the fault plane that repre-
sents the slip line (determined by the pitch
of the slickenlines in the fault plane). In this
case, we know that the motion is pure dip
slip, so the pitch of the slickenlines is 90°;
thus the slip-line point is plotted at the
mid-point of the fault-plane great circle
(Fig. 17.11a).

3 The slip-line point represents the pole to the
auxiliary plane. Use the location of the slip-
line point to draw the great circle representing
the auxiliary plane (Fig. 17.11a).
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Right-slip fault that strikes 335° and dips 90° ~ Normal fault that strikes 045° and dips 65°SE Oblique-dip fault (reverse, right dlip)
OR OR that strikes 030° and dips 75°SE
Left-dip fault that strikes 065° and dips 90° Normal fault that strikes 045° and dips 35°NW OR

Oblique-dip fault (reverse, left dip)
that strikes 308° and dips 61°SW

Fig. 17.10 Alternative interpretations for three focal-mechanism solutions. The two possible interpretations for fault
orientation and motion are given beneath each plot.

4 Plot seismic station “A” on the stereonet, using
the azimuth and incidence data. (Refer to the
way seismic stations are plotted in Fig. 17.7.)
In the present case, the azimuth from the epi-
center to the seismic station is 175°, so the
station lies somewhere on the line that runs awiliary plane
from the center of the net to the 175° point on
the perimeter of the net. The angle of inci-
dence is 35°, which tells us the distance from
the center of the net to the seismic station -
(Fig. 17.11b). It turns out that station “A”
lies within the quadrant that occupies the mid-
dle of the stereonet. We know from the first
motion on the station “A” seismogram that it
lies within a compressional quadrant, so this
quadrant is colored gray on Fig. 17.11b; the
adjacent two quadrants are dilational, so they dilational
are white. quadrants

5 Knowing that the central quadrant is a com-
pressional quadrant allows us to now draw a
slip direcFion arrow, which must point into a compressional
compressional quadrant (Fig. 17.11b). We can quadrant
also now plot the axes of maximum shorten-
ing (P) and extension (T), which lie on a plane
perpendicular to the nodal planes, each bisect-
ing a quadrant (Fig. 17.11b).

6 The slip-direction arrow indicates the slip dir-
ection of the hanging wall of the fault. In this
example the hanging wall is sliding up the
fault plane, thus the motion on this fault is
reverse. As a general rule, slip-direction

o <—dlip line

fault plane

arrows of normal faullts pqint 'Fowa.rd the per- Fig. 17.11 Lower-hemisphere plot showing the solu-
imeter of the net, while slip-direction arrows tion to Example 3. (a) Plot of fault plane, slip-line
of reverse faults point toward the center of the point, and auxiliary plane. (b) Completion of Example 3.

net (cf. Fig. 10.4). See text for discussion.
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Problem 17.4

Sketch the focal-mechanism solutions for earth-
quakes that would be expected to occur at each of
the plate boundaries in Problems [7.1 and 17.2
(Fig. G-57). Be sure to label the fault plane, the
auxiliary plane, and the P and T axes.

/ Problem 17.5

Figure G-59 contains a map showing the position of
the Mendocino triple junction off the coast of north-
ern California. The Mendocino triple junction is the
point of intersection of the Pacific, North American,
and Juan de Fuca Plates. Two earthquakes (event A
and event B) occurred near the triple junction. They
could have been centered on either of two transform
boundaries or on the convergent boundary between
the Juan de Fuca and North American Plates. The
table presents data for the two earthquakes recorded
at 25 seismic stations. Using two sheets of tracing
paper (one sheet for each event) and your equal-area
net (Fig. G-11), do the following: for each earth-
quake: (1) construct a focal-mechanism plot, (2)
determine the plate boundary along which the earth-
quake occurred, (3) determine the attitude of the
fault plane, (4) use arrows to show the slip sense
along the fault, and (5) plot the P (shortening) and T

&xtension) axes.

Earth magnetism

It has long been known that the earth possesses a
magnetic field. Although the origin of the mag-
netic field is controversial, many observations sup-
port the hypothesis that it is generated by moving
currents in the liquid-metal outer core. The con-
figuration of the earth’s magnetic field is the same
as one produced by iron shavings around a mag-
net; that is, it approximates the field that would
result if a giant bar magnet were present at the
center of the earth. Figure 17.12 shows the lines of
force associated with the present-day magnetic
field. Note that at the north magnetic pole, the
lines of force are directed downward toward the
center of the earth and that at the south magnetic
pole the lines of force are directed upward, away
from the center of the earth. At the equator, the
lines of force are horizontal and point toward the
north magnetic pole.

North magnetic pole

direction of
magnetic lines
magnetic pole of force
? )"( magnetic equator T

N

South magnetic pole

Fig. 17.12  Schematic diagram of the earth showing the
orientation of the earth’s magnetic field at various lati-
tudes (arrows). N, magnetic latitude; I, inclination. See
text for discussion.

At any point on its surface, the earth’s magnetic
field can be expressed in terms of two compon-
ents: declination and inclination. Declination is
the angle between geographic north and magnetic
north. The orientation of the earth’s magnetic field
(and thus the declination) varies with time. How-
ever, the mean magnetic dipole field, averaged
over time spans of about 10,000 years, appears
to be very close to the geographic pole.

Inclination is simply the angle that the field
makes with the horizontal. By convention, a
downward inclination is considered positive in
sign. Note that there is a systematic relationship
between inclination and latitude (Fig. 17.12). Be-
cause the earth is nearly spherical, the relationship
between latitude and inclination is not linear but is
expressed by the equations:

I=tan ' (2tan\)

A =tan"! [(tan])/2]

where [ is the magnetic inclination and \ is the
latitude relative to the magnetic pole.

Note that in the time-averaged case where the
geographic and mean magnetic poles coincide,
geographic and “magnetic” latitude will also
coincide. There is considerable evidence that the
magnetic field of the earth sometimes changes
polarity; that is, the north magnetic pole becomes
the south magnetic pole and vice versa. These
magnetic reversals are not sudden, catastrophic
events. It appears that the intensity of the magnetic
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field progressively weakens in one direction,
ultimately reaching zero, then it progressively
strengthens in the opposite orientation. Magnetic
reversals do not occur with any regularity, but a
given polarity interval seems to persist in the order
of 10*—10° years.

K Problem 17.6

Determine the inclination of the earth’s magnetic
field at the following latitudes:

20°N

45°S

78°N

\ 10°S. }

Paleomagnetism

In igneous rocks, magnetic minerals acquire a
magnetization parallel to the prevailing magnetic
field once they cool below the Curie temperature
(580°C for magnetite). Many sedimentary rocks
contain small amounts of magnetite or other mag-
netic iron oxides. During deposition of fine-
grained sediments in quiet water settings, these
minerals align themselves parallel to the earth’s
magnetic field. Thus, under the proper conditions,
many rocks preserve a record of the orientation of
the earth’s magnetic field at the time they formed.
The study of ancient or fossil magnetism in rock is
called paleomagnetism. Paleomagnetic studies
were instrumental in leading to the widespread
acceptance of plate tectonics, and such studies
provide critical data for ancient plate reconstruc-
tions as discussed below.

M agnetic profile

Al Vel

Magnetic stripes on the ocean floor

Magnetic surveys of the ocean floor show a mag-
netic signature that is symmetrically disposed about
the mid-ocean ridges. Basaltic crust that forms at the
axis of an active oceanic ridge will acquire a mag-
netization at the time that it cools through the Curie
temperature. Because the earth’s magnetic field re-
verses polarity from time to time, the basalt may
show either normal or reversed polarity in accord
with the magnetic field at the time it cools. Spread-
ing away from the ridge axis is bilateral, so basalts of
the same age will lie at equal distances from the ridge
and show the same magnetic polarity. The continu-
ous outpouring of basalt at ocean ridges thus serves
as a tape recorder, faithfully recording the polarity of
the earth’s magnetic field through time (Fig. 17.13).
Recognition of these magnetic “stripes,” or mag-
netic anomalies, of alternating normal and reversed
polarity led to widespread acceptance of the concept
of “seafloor spreading” in the late 1960s. Recogni-
tion and dating of distinct magnetic anomalies on
the ocean floor also allow us to determine the rate of
movement between diverging plates.

Example 4

Across a particular ocean ridge, the distance be-
tween magnetic anomaly number 25 on one side
of the ridge and the same anomaly on the opposite
side of the ridge is 3360 km. The rocks are 56
million years old. What is the time-averaged rate
of spreading between the two oceanic plates?

Solution
The rate of relative motion is simply the distance
between the anomalies divided by time or

(3.36 x 10°km) / (5.6 x 107 years) = 6.0 x 1073
km /yror6cm/yr.

/\V/-/l (e e m/\/\“/\n

\VAVAR/AV AR VAR

VAU AAVAVRA VA V

Reversed polarity

Oceanic crust

Asthenosphere

Fig. 17.13  Cross section through a mid-ocean ridge. Note the symmetry of the magnetic profile with respect to the axis
of the mid-ocean ridge.
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paleomagnetic pole indicated

P =

by all samples

sample site
(samples 1, 2, 3, 4, 5)

Sample Age Inclination Paleolatitude Rate
number (Ma) (degrees) (degrees) (mml/year)
1 0 49 30 0
2 15 49 30 0
3 25 49 30 0
4 40 49 30 0
5 45 49 30 0

Fig. 17.14 Sample sites and calculated paleomagnetic poles for a fixed plate. The table provides age and inclination

data.

Apparent polar wander

Because the time-averaged position of the earth’s
magnetic poles coincides with the geographic
poles, we can use paleomagnetic inclination to
determine the paleolatitude of a region of interest.
Note, however, that paleomagnetic data cannot
provide any information regarding paleolongi-
tude. Paleomagnetic studies can therefore docu-
ment plate motions in a north-south direction
(changes in latitude), but not motions in an east—
west direction (changes in longitude).

If a plate were to remain fixed in position (lati-
tude), or move only in an east-west direction,
rocks of all ages from that plate would show
exactly the same magnetic inclination. This is an-
other way of saying that all rock samples would
define the same paleomagnetic pole (Fig. 17.14).

If a plate moves from a high-latitude position
toward the equator over time, younger rocks will
show progressively more gently plunging magnetic
inclinations. In this case, from the point of view of a
“fixed” plate, the calculated paleomagnetic poles

from progressively younger samples would appear
to move “away” from the plate or northward in the
northern hemisphere (Fig. 17.15). This apparent
movement of paleomagnetic poles is termed appar-
ent polar wander. Conversely, if a plate moves pole-
ward from equatorial latitudes with time, younger
rocks will show progressively steeper magnetic in-
clinations. By studying systematic changes in mag-
netic inclination through time, paleomagnetists can
track the north—-south motion of a plate.

An important limitation to this technique is that
we cannot always be certain whether a given rock
was magnetized in a normal or a reverse sense.
Therefore the sign of the inclination (positive for
northern hemisphere and negative for southern)
cannot generally be determined. We can only say
that the plate resided at, for example, either 30°
north latitude or 30° south latitude at a particular
time. Independent data must be used to distinguish
between the two possibilities.

By collecting paleomagnetic data from samples
with the same range of ages from two plates, we
can “track” the motion of the two plates relative to
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sample site

Sample 1 - calculated pole

Sample 2 - calculated pole

/Sample 3 - calculated pole

n A\/7\Sample4 - calculated pole
~4————<Sample 5 - calculated pole

_/

Sample Age Inclination Paleolatitude ~ Minimum rate
number (Ma) (degrees) (degrees) (mm/year)

1 (present 0 49 30 14

position)

2 15 55 36 56

3 25 60 41 67

4 40 67 50 22

5 45 68 51

Fig. 17.15 Sample sites and calculated paleomagnetic poles for a plate that has moved southward with time. The table

provides age and inclination data.

one another. For example, at the begining of the
Cenozoic era, prior to its collision with Asia, India
lay about 30° farther south than its present lati-
tude. Paleomagnetic data from rocks that formed
early in the Cenozoic era in southern Asia and
northern India yield paleomagnetic poles that dif-
fer by 30°, reflecting the difference in latitude of
the two continents at that time. As India ap-
proached Asia throughout the Cenozoic, the dif-
ference in latitude decreased, as did the difference
in paleomagnetic poles determined from succes-
sively younger rocks on the two plates. Very
young rocks sampled from the two plates near
the suture would show essentially the same pole.
In similar fashion, one could paleomagnetically

document a continental rifting event. Rocks on
either side of the rift would show equivalent paleo-
magnetic poles prior to rifting. Rocks that formed
after the rifting event would show progressively
more divergent paleomagnetic pole positions.

/ Problem 17.7

The distance between magnetic anomalies number
12 (34 Ma) and 23 (52 Ma) on a single oceanic plate
is 810 km. What is the time-averaged rate of spread-
ing across the ridge during this interval? (Consider
the symmetry of marine magnetic anomalies.)
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/ Problem 17.8

Paleomagnetic determinations were conducted on
three suites of rocks from the Bree Creek Quadrangle.
A sandstone unit within the 60 Ma Edoras Formation
yielded average inclinations of 46°; tuffaceous beds
within the 38 Ma Dimrill Dale Diatomite yielded
inclinations of 33°; and the Rohan Tuff (18 Ma)
yielded an average inclination of 25°. Independent
evidence suggests that the Bree Creek Quadrangle
remained north of the equator for its entire history.
I Calculate the starting and ending latitudes for
the block of continental crust on which this
quadrangle lies for each of the two stages of
movement.
2 Calculate the minimum rate of movement of the
block for each stage of movement.
3 Explain why your answer to question 2 is a
minimum.
4 Use Fig. G-60 to sketch figures showing: (1)
apparent motion of the paleomagnetic pole in
a “fixed” plate reference frame, and (2) latitu-
dinal motion of the plate with respect to the

\ fixed pole.

/ Problem 17.9: The “plate game”

The map in Fig. G-61 depicts the “present-day”
distribution of hypothetical continents and oceans.
The map contains geologic information as well as
seismicity patterns, focal-mechanism solutions, and
paleomagnetic sample sites. The dashed lines show
traverses from which marine magnetic anomaly data
were acquired, and the marine magnetic anomaly
patterns for traverses A-B through K-L are shown
adjacent to the map. The table summarizes paleo-
magnetic data from sites PI-P6. Spreading is parallel
to the transform faults and perpendicular to the
ocean ridges.
I Outline all the plate boundaries using all avail-
able information.
2 Name each plate or tectonic feature for use in
your discussion. Be creative.
3 Fix one plate. Describe all the other plate mo-
tions in terms of this “fixed plate” reference
frame.
4 Wirite a plate tectonic history of the region
shown on this map. Be succinct but be com-
plete. Make sure that your history incorporates
all of the geologic and geophysical information

k available to you.
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Measuring attitudes with a Brunton compass

It is often in their structural geology course that
students get their first experience with geologic
mapping. This appendix is included to facilitate
the inclusion of fieldwork in the structure course.
We recommend that students practice measuring
the attitudes of planes and lineations in the labora-
tory before going to the field. One convenient way
to do that is with hinged boards that can be set up
in the classroom (Rowland, 1978).

In North America the traditional instrument for
measuring attitudes is the Brunton compass,
which requires the strike and dip to be measured
separately. There is an instrument, called the Clar
compass, that allows the geologist to measures the
dip direction (90° from strike) and angle of dip in a
single operation (see Suppe, 1985, fig. 2.2). The
following explanation assumes the use of the
Brunton compass. Only the relatively simple
cases of measuring strike and dip of an exposed
plane and trend and plunge of a lineation on an
exposed plane will be considered here. For other
aspects of compass craft, refer to a book on field
geology (e.g., Compton, 1985).

Strike is measured by placing an edge (not a
side) of the compass along the plane and leveling
the bull’s-eye level (Fig. A-1). Either end of the
needle may be used to read the strike. It is often
useful to place a map board or field book against
the plane to flatten out irregularities.

Dip is measured by placing the flat side of the
Brunton against the plane and rotating the arm on
the back of the compass until the tube level is level.
The face of the compass must be vertical. A common
error is failure to make the face vertical. The angle of
dip is read on the inner scale of the compass face.

Orientations of lineations in a plane are most
easily determined by first measuring the attitude
of the plane. Then draw a horizontal line on the
plane, and, with a protractor, measure the pitch of
the lineation within the plane (Fig. A-2). The trend
and plunge of each lineation is then determined
with an equal-area net (see Chapter 5, Fig. 5.11).
Alternatively, the trend and plunge of a lineation
may be measured directly by placing your map
board vertically and coplanar with the lineation.

After measuring the attitude of a feature in the
field, record it in your field notes and immediately
plot it on your map. Then orient the map
and confirm that it is correct. It is exceedingly
easy to incorrectly record the dip to the southeast,
for example, when it really dips to the northwest.
If you do not double check that it looks right on
your map while you are still at the outcrop, you
may never realize your error. If you are measuring
more than one feature at the same outcrop (e.g.,
orientations of three joint sets), make a neat sketch
in your notebook showing the relationships of the
various features and their attitudes.
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Fig. A-1 Measuring strike with a Brunton compass.

Horizontal line Pitch of

\ lineation
Lineation in /
bedding plane

Fig. A-2 Measuring pitch of lineartions within a dipping plane.
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Greek letters and their use in this book

Letter Use

a (alpha) Apparent dip (Chapters 1, 2)

B (beta) Angle between the strike of a plane and the trend of an apparent dip (Chapter 1)

v (gamma) Shear strain (Chapter 14)

d (delta) Plunge of true dip (Chapters 1, 2, 3)

¢ (epsilon) Strain (Chapter 12)

€ Strain rate (Chapter 12)

M (eta) Coefficient of viscosity (Chapter 12)

0 (theta) Trend of apparent dip (Chapters 1, 2)
Angle between a plane and direction of o3 (Chapter 13)

\ (lambda) Magnetic latitude (Chapter 17)

W (mu) Coulomb coefficient (Chapter 13)

 (pi) Pole of foliation attitude (Chapter 7)

o (sigma) Stress (Chapters 10, 12)

o, Axial load (Chapter 13)

o Confining pressure (Chapter 13)

on Normal stress (Chapter 13)

o Shear stress (Chapter 13)

ay Yield stress (Chapter 12)

T (tau) Same as o

¢ (phi) Angle of internal friction (Chapter 13)

Angular shear (Chapter 14)




Graph for determining exaggerated dips on structure
sections with vertical exaggeration

Nominal dips are indicated on curved lines. To ation, a 20° dip must be drawn at 55° (Dennison,
determine exaggerated dip, carry the vertical ex- 1968). Alternatively, the exaggerated dip can be
aggeration horizontally across the graph until it calculated trigonometrically using the following
intersects with the desired dip. The exaggerated relationship: tan exaggerated dip = (tand)x (ver-
dip lies on the horizontal axis below. For example, tical exaggeration).

on a structure section with 4.0 vertical exagger-
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Conversion factors

Length

linch (in.) = 2.54 cm
1cm=0.3937in.
1m=239.37in.=3.28 ft
1 foot (ft) =30.48 cm

1 mile (mi.) = 1.609 km
1 km =0.6214 mi.

Force

1 newton (N) = 10°dyne (dn) = 0.1020 kg wt = 0.2248 Ib
1 pound (Ib) = 4.448 N = 0.4536 kg wt
1 kg wt =2.205 Ib =9.807 N

Pressure

1 pascal (Pa) = 1 N/m? = 9.869 x 1076 atm = 2.089 x 102 |b/ft?
1 megapascal (MPa) = 106 Pa = 10 bar = 1.02 x 10° kg/m?

1 atmosphere (atm) = 1.013 x 10° N/m? = 1.013 bar

1 bar = 10°Pa
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Common symbols used on geologic maps

[N
S

@ X &= X

w

&

AT B R

OO W W

Strike and dip of bedding
Overturned bedding

Vertical bedding

Horizontal bedding

Crumpled bedding

Trace of contact

Less well-located contact
Covered contact

Fault contact with dip

Sense of slip on strike-slip fault

Sense of slip on dip-slip fault
(D =down, U = up)

Thrust fault, barbs on upper plate

Bearing and plunge of fold
axis or lineation

Strike and dip of foliation,
cleavage, or schistosity

Vertical foliation,
cleavage, or schistosity

Strike and dip of joints or dikes
Vertical joints or dikes

Trace of axial surface or crest
of anticline, with plunge

Trace of axial surface or trough
of syncline, with plunge

Anticline with overturned limb
Syncline with overturned limb

Trace of axial surface with bearing
and plunge of fold axis

Overturned anticline with bearing
and plunge of fold axis
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Diagrams for use in problems



Name

Fig. G-1 Geologic map for use in Problem 2.1. Formation A is the oldest map unit. Contour interval is 100 m.






Wy
3

Sea Leve
-
"W

500
40

300
200
100

Fig. G-2 Block model to accompany Problem 2.1. Cut out the diagram, fold on the dashed lines, and glue the tabs.
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Fig. G-3 Map to accompany Problem 2.2. This map represents the northeastern corner of the Bree Creek Quadrangle,
which is discussed later in this chapter. The numbers on the map represent the elevation in feet of the upper surface of
the Bree Conglomerate, the outcrop pattern of which is shown. The points that do not lie on the line represent the
elevation of the top of the Bree Conglomerate in the subsurface, as measured in drill holes.






Name

A

m<

1000 feet

500

1000

Fig. G-4 Map for use in Problem 2.3.
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Problem 3.1
Thd

Northeastern fault block

Northern exposures

Southern exposures

Central fault block
Northern area
Galadriel's Ridge

Southwestern area

Western fault block
Gandalf's Knob

Southern exposures

Problem 3.2
Tmm

Tm

Tts

Thb

Te

Problem 3.3
Thd
Gollum Ridge
Gandolf's Knob
Galadrid's Ridge
Mirkwood Creek

N. of Edoras Crk.

Tr

Tr

Tg

Tg

Fig. G-6 Answer sheet for Problems 3.1-3.3.
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Fig. G-7 Three geologic maps, each with two topographic profiles and space to explain which interpretation you

consider most likely, and why. For use in Problem 3.4.
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Fig. G-8 Map and topographic profile for use in Problem 4.1.
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Fig. G-9 Map and topographic profile for use in Problem 4.2.
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Fig. G-10 Map, topographic profile, and well log for use in Problem 4.3.






1

| 11—
14 —t—
= -
—t R
1T (T H
£a - — | ]
L1
1 -
1"
-
—t— 11 (11 -
1 L u_.IT [
) mE b1 ] -
faw jasm H
uE 11— =
4 [ = —
- | —1 F—
- - =
o T A
- b 11 - -
fﬂl. — -y
1 -
] SeEEmEERs
= ] 11
- 11T 1T L1
= B EEsEEs
L I, o oy
T » —1 L1
- | T
[~ L 1 paEES
=t ——— —11 B
T —+—— [
/ |1
— SR
- —
t—

Equal-area net.

Fig. G-11






Fig. G-12 Block model to be cut out and folded for use in Problem 6.1.
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Drawing of folds to be used in Problem 6.2. Adapted from Internal Processes, Open University Press (1972).

Fig. G-13
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Fig. G-14 Slabs of folds for use in Problem 6.3. Photographed from the collection of O.T. Tobisch.






Fig. G-15
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Geologic maps for use in Problem 6.4.







L eave this edge attached to page

Fig. G-16 Layout of block diagram to be constructed in Problem 6.5. After Dahlstrom (1954) in Whitten (1966).






Name

Fig. G-17 Geologic map for use in Problem 7.1.
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Fig. G-18 Center counter and peripheral counter to be cut out and used for constructing contour diagrams (Chapter 7).
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Fig. G-19 Grid for use in constructing contour diagrams (Chapter 7).
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Gollum Ridge Fault
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Fig. G-20 Map of separate fault blocks of the Bree Creek Quadrangle. For use in Problem 7.2.






Name

A : " / &~
7 - @&

ils
W A@% /s il Xh

pile M WA " " P "
=2 N ' A )
o = v
a
60
STZ $70 ]
35
ad ] |65 - A

Fig. G-21 (a) Oblique view, (b) geologic map, and (c) topographic profile for structure section A-A’. For use in

Problem 8.1.






Name

Fig. G-22 An outcrop in the Transantarctic Mountains of Antarctica, showing bedding (dipping toward the right) and
well-developed cleavage. Arrow points to ice axe handle, which is about 90 ¢cm long. For use in Problem 8.2. Photo by
E. Duebendorfer.
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Fig. G-23 Geologic map showing attitudes of bedding and cleavage. For use in Problem 8.3.






Name

Fig. G-24 Slab of rock that experienced two generations of folding. For use in Problem 8.4. Photographed from the

collection of O. T. Tobisch.
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NFault C

A\ s 7/
N kilometers

Tm - Miocene Tr - Triassic )’8 Strike and dip of bedding
Tmm - Middle Miocene PP - Pennsylvanian ﬁf Dip of fault (arrow) and
Tml - Lower Miocene D - Devonian 5 plunge of fault striae (line)
To - Oligocene S - Silurian _~ Contact
Te - Eocene O - Ordovician )
J - Jurassic € - Cambrian o« Fault, high angle

f Fault, low angle

(hachures on upper plate)
Fault A Fault B Fault C Fault D Fault E

1. Type of fault:
Age of faulting:

locality a locality b locality ¢ locality d

2a Type of contact:
locality e locality f locality g locality h
2b. Name the structure:

5. Minimum amount of displacement on fault C:

6. Geologic history:

Fig. G-25 Geologic map for use in Problem 9.5.






Name

Fig. G-26 Three pairs of conjugate shear surfaces. For use in Problem 10.1.
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Fig. G-27
For use in Problem 10.4. Generalized from Nelson (1971).

(a) Generalized geologic map and (b) structure section of a portion of the Inyo Range of eastern California.
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Fig. G-28 Generalized map of late Cenozoic structural features of the Basin-and-Range province in the southwestern
USA. Field I is characterized by listric normal faults. Field II is characterized by a combination of normal faults and

sinistral and dextral strike-slip faults. For use in Problem 10.6. After Wright (1976).






Name

Explanation for conversion of a strike-dip fault from sinistral to dextral during one tectonic episode:

Speculations about the geologic factors involved in the structural development of this region:

Fig. G-29 Schematic block diagrams showing the main characteristics of faulting at Hoover Dam. For use in Problem
10.7. After Angelier et al. (1985).
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Summary of the evolution of the orientation of the stress ellipsoid in southeastern Asia in response
to the collision of India:

Fig. G-30 Geologic map of southeastern Asia showing the major active faults. For use in Problem 10.8. After Molnar
and Tapponnier (1975); Tapponnier et al. (1982).






Name

Fig. G-31 Three stages of an experiment in which plasticene was deformed in a way to simulate the collision of India
with Asia. In this particular experiment the layers of plasticene are confined at the top and on the left side, but they are
unconfined on the right side. For use in Problem 10.8. After Tapponnier et al. (1982).
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Fig. G-32a Rheologic model, stress—time graph, and strain—time graph for a standard linear solid. For use in

Problem 12.1.

Fig. G-32b Sketch of a folded and fractured rock layer. For use in Problem 12.3.
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Fig. G-33 (a) Five planes and the oy and o3 stresses they are experiencing. (b) Mohr diagram on which to plot the
normal and stresses experienced by the five planes shown above. Plane 1 has already been plotted. For use in Problem
13.2.
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Coulomb coefficient =

Explanation

Fig. G-34 Sketch of a block of fine-grained limestone that was experimentally shortened about 1% at room
temperature. For use in Problem 13.6. After Hobbs et al. (1976).
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Fig. G-35 (a) Failure envelope of a petroleum reservoir rock. For use in Problem 13.7. (b) Map of the Johnson Valley
Fault in southern California. For use in Problem 13.8.
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Fig. G-36 Photographs, all at the same scale, of slabs of breccia from the Alps. Undeformed (a) and in varying stages of
deformation (b—d). For use in Problem 14.2. Photographed from the collection of O. T. Tobisch.
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' ~ ) Q The boomerang-shaped object in ths rock slab is

/ not a boudin; but a cross section through a dome.
) \ Field no. because

This rock has a lumpy surface. Next to the main
rock are two cross-section views cut at different
angles.

Field no. because

This is another sample of the deformed breccia seen
in Fig. 14.13. Focus only on elongate grains; ignore
fractures parallel to 1 + es.
Field no. because

Fig. G-37 Photographs of deformed structures. For use in Problem 14.3. Photographed from the collection of O. T.
Tobisch.
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Fig. G-38 Table for recording and graphing data from Experiments 14.1 and 14.4.
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Fig. G-39 Sketch of a dike and sill complex. For use in Problem 14.4.
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Fig. G-40 Photograph of a slab of rock containing several pieces of deformed trilobites. For use in Problem 14.6.






Fig. G-41 Four block diagrams of deformed rocks. For use in Problem 14.7.
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Fig. G-42 Diagrams, tables, and graph for Problem 14.8.
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Fig. G-43 For use in Problem 15.1. Adapted from Marshak and Woodward (1998).
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Fig. G-44 For use in Chapter 15.
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Fig. G-45 For use in Problem 15.3.
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Fig. G-46 For use in Problem 15.4.
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Fig. G-47 For use in Problem 15.5.
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Fig. G-48 For use in Problem 15.6. Tml, Tertiary lower Miocene; Tmu, Tertiary upper Miocene; To, Tertiary
Oligocene; Tp, Tertiary Pliocene.






Name

Fig. G-49 Photomicrograph for use in Problem 16.1. F, feldspar; Q, quartz. Crossed polars. Scale bar is 0.5 mm.

Fig. G-50 Photomicrograph for use in Problem 16.2. C, calcite; K, potassium feldspar; P, plagioclase; Q, quartz.
Crossed polars. Scale bar is 1 mm.

Fig. G-51 Photomicrograph for use in Problem 16.3. Crossed polars. Scale bar is 1 mm.






Name

Fig. G-52a Field photograph for use in Problem 16.4. The protolith of this rock was a coarse-grained granite. Scale bar
is 2 cm.

Type of fault rock:

Diagnostic features:

Fig. G-52b Field photograph for use in Problem 16.5. The protolith of this rock was a porphyritic granite. Coin is
2.4 cm in diameter.

Description of principal microstructures
in quartz and feldspar and interpretation
of mechanisms:

Approximate range of temperatures and
evidence:

Sense of shear:

Fig. G-53 Photomicrograph for use in Problem 16.6. F, feldspar; Q, quartz. Plane polarized light. Scale bar is 0.5 mm.






Name

Type of porphyroclast:

Description of type of movement
in the shear zone:

Fig. G-54a Field photograph of a large porphyroclast in a vertical cliff face, for use in Problem 16.7. You are looking
parallel to the strike of the shear zone (toward 050°). NW, northwest; SE, southeast. Scale bar is 5 cm.

Description of type of
movement in the shear zone:

Fig. G-54b Field photograph of mylonitic megacrystic granite for use in Problem 16.8. You are looking parallel to the
strike of the shear zone (toward 330°). NE, northeast; SW, southwest. Scale bar is 2 cm.
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Deformational history of map area:
Fig. G-55 Tectonic map for use in Problem 16.9.
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Fig. G-56 Samples from shear zones for use in Problem 16.9. All views are of the XZ plane of the strain ellipsoid. (a)
Quartz-feldspar mylonite from shear zone A. The view is of a horizontal outcrop surface with east on the right side of
photo. Scale bar is 2 cm. (b) Mylonitic amphibolite from shear zone B. Cross-sectional view to the northeast. Scale bar
is 2 cm. (c) Muscovite-quartz mylonite from shear zone C. Cross-sectional view to the east. Scale bar is 0.5 mm.
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Fig. G-57a For use in Problems 17.1 and 17.4.
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Fig. G-57b For use in Problems 17.2 and 17.4.

Name

Type of plate boundary between plates
B and C:

Relative rate of motion between plates
B and C:

Type of plate boundary between plates
B and C:

Relative rate of motion between plates
B and C:
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Fig. G-58 For use in Problem 17.3.
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Data recorded at twenty-five seismic stations for
two earthquakes with epicenters near the M endocino
triple junction.

Azimuth Incidence First motion First motion

()] 0
c_‘B’ Subgéjl%lon Station (degrees) (degrees) Event A Event B
o o
~a 8 1 269 45 D N.D.
I 2 262 48 C D
o 3 255 44 C N.D.
Pacific Plate © Oregon 4 256 31 C C
8 B\ Californig 5 28 % C c
= 6 254 21 D C
— 7 258 14 D C
transform— <— 8 244 17 N C
North 9 218 21 D C
triple junction \\Amencan ﬂ 142 3(9) E g
Plate 12 0 40 c c
San Andreas Faul 13 347 31 N.D. C
(transform) 14 66 73 C D
15 290 51 D D
16 46 14 C C
17 271 85 C D
18 275 61 D D
19 261 64 C D
20 266 50 N.C. D
21 116 34 N.D. C
22 101 51 C N.C.
23 232 56 C D
24 157 55 D C
25 161 88 D N.C.

C, compression first motion; D, dilational first motion;
N, nodal; N.C., nodal (weakly compressional); N.D., nodal
(weakly dilational)

Event A Event B

Plate boundary

Attitude of fault plane

(attach focal-mechanism plots)

Fig. G-59 For use in Problem 17.5.
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Fig. G-60 For use in Problem 17.8.
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P6 2 52.0

Fig. G-61 For use in Problem 17.9.
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fault contacts 26-27
fault gouge 145
fault plane 76
fault-plane solutions 157
fault-propagation fold 133, 135-136
fault rocks, classification of 144-145
fault slip, measurement of 78-79
fault tip 135
fault trace 77
fault zone 76
faults
defined 76, 144
description of 76-78
dip-slip 76
dynamic analysis of 85-89
kinematic analysis of 90-93
map patterns of 82-83
oblique-slip 76
strike-slip 76
timing of 83
finite strain ellipse
coaxial 124
noncoaxial 126
firmoviscous deformation 104
first motion studies 156
flats 131
Flinn diagram 129
focal-mechanism solutions 155-158
focal sphere 155
focus (of an earthquake) 155
fold axis
defined 54

determination through stereographic analysis 61-62

folds
asymmetric 54
axial plane of 54
axial surface of 54
classification based on dip isogons 56-57
descriptive terminology 53-55
down-plunge viewing of 59
fault-bend 133-135
fault-propagation 133, 135-136
interlimb angle of 55
kink 54
“M” folds 54
outcrop patterns of 57-58
overturned 55
parasitic 69-70
profile plane of 54
reclined 55
recumbent 55
“S” folds 54
vertical 55
“Z” folds 54
foliation
axial planar 69-70
cataclastic 145
footwall block 77
foreland 131
fossils (use in strain measurement) 127-128
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fracture processes 141
fracture strength 112

geologic map interpretation 21-30
geologic time scale 167

geometric lines 123

girdle 67

great circles 38-39

Greek letters used in this book 168

hanging-wall block 77
heave 77

hinge 132

hinge line 53

hinge point 53
hinterland 133
Hookean body 100
Hooke’s law 100
hydraulic fracturing 116
hypocenter 155

incidence, angle of 156
inclination (magnetic) 160
incremental strain ellipse 123
infinitesimal strain ellipse 123
inflection, line of 53
inflection point 53
interlimb angle of a fold
defined 55

measurement of using stereographic

projection 67-68
internal friction
angle of (¢) 113
coefficient of 114

intracrystalline plastic deformation 141-142

intrusions
contacts of 26, 28

presentation on structure sections 33

ionic diffusion within grains 142

Kamb contouring method 93
Kelvin body 104

kinematic analysis of faults 90-93
kinematic compatibility 92
kinematic indicators 146-147
kink fold 54

kink-fold method of thrust-fault analysis 133

klippe 83

Lambert equal-area net 38-39
listric fault 77

lithosphere 152

longitudinal strain 118-119
loose line 137

“M” folds 69

magnetic reversals 160-161
magnetic stripes 161
magnetism 160-163
mantle 152

material lines 123
Maxwell body 103
median surface 53

mica beards 142-143
microstructures 141-150
mid-ocean ridges 154
Mohr, Otto 109

Mohr circle 110

Mohr diagram 109
Mohr envelope of failure 111
movement plane 91
mylonite 145

Nabarro-Herring creep 142
neoblasts 144
Newtonian fluids 100
nodal planes 157-158
nomograms 9-10
noncoaxial strain 122, 125-127
nonconformity 26-27
noncylindrical fold 54
non-Newtonian fluids 101
normal faults

defined 77

map patterns of 82

stress orientation of 86
normal stress 86, 107

oblique-slip fault 76
offset 77

0oids (used in strain measurement) 129

orthographic projection 3

use in apparent dip problems 4-7

use in thickness determinations 25
outcrop patterns

description of 11

examples 12-14

use in determining attitude 31-33
overturned fold 55

P axis 157

paleomagnetism 161

panel 132

parallel folds 57

parasitic folds 69-70

pi axis 62

pi circle 62

pi diagrams 62

piercing points 76

pin line 137

pitch 1

plane strain 129, 147

plastic deformation 101

plate tectonics 152-164
principles of 152-153

play dough 118, 121-124

plunge 1

pore pressure 115-117

porphyroclasts 145, 148-149

preexisting planes of weakness 87
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pressure solution 142
primitive circles 38-39
principal strain axes 119

principal stresses (o1, 02, 03) 85-86

profile plane of a fold 54
protomylonite 145
pure shear 122

quadrant method 2
quartz ribbons 142
quicksand 101

rake 1
ramps 131
Rangely experiment 116
reclined fold 55
recrystallization 141, 143-144
recumbent fold 55
report writing 95-98
retrodeformability 31, 136
reverse faults
defined 77
map patterns of 82-83
stress orientation of 86
rheological models 99-106
rheology 99
right-hand rule 3
rotational fault 77, 80

“S” folds 69
San Andreas fault 76, 157-158
S-C fabric 147
S-C mylonites 147
Schmidt net 38-39
scissor fault 77, 80
shear
angular () 119, 125-126
antithetic 149
pure 122
sense of 146-147
simple 125, 147
shear fractures 86
shear strain (y) 119
shear stress (o or T) 86, 107
shear surfaces, conjugate 86

shear thickening and thinning 101

shear zone 144
shortening axis 91

sigma porphyroclasts 148
Silly Putty 99, 105
similar folds 57

simple shear 125, 147
sinistral slip 176
slickenlines 77, 146
slickensides 77

slip line 157

slip vector 76

small circles 38-39
standard linear solid 105
static recrystallization 144

stereographic analysis of folds 61-68

stereographic nets 38-39
stereographic projection 38-51
angle within a plane 43
drill hole problem 48-51
line projection 40
line rotation 46-47
plane 40
plane intersection 42-43
pole 42
two-tilt problem 47
strain (g) 99
coaxial 121-125
longitudinal 118-119
measurement methods
fossils 127-128
ooids 129
noncoaxial 122, 125-127
plane 129, 147
shear (y) 119
strain ellipse 119
incremental 123
infinitesimal 123
total (finite)
coaxial 124
noncoaxial 122, 125-127
strain ellipsoid 128
strain fields 120-121
strain rate 102
StrainSim 122

stratigraphic column, construction of 28-30
stratigraphic thickness, determination of 23-25

stress (o) 99
differential 107
effective 116
normal (o) 86, 107
principal (o1, 02, 03) 85-86
shear (o or 1) 86, 107
stress ellipsoid 86-87
strike
defined 1

determination from outcrop pattern 21-23

methods of expressing 2-3
strike separation 77
strike-slip faults

defined 76

outcrop patterns of 83

stress orientation of 86
structural synthesis 95-98
structure contours 14-20
structure sections 31-37

arc method 33

format of 36-37

involving folded layers 32-33

involving intrusive bodies 33
stylolites 142
subduction 154
subgrains 143
superimposed strain 124
superposed folds 72



symbols
used on geologic maps 171
used to characterize folds 70
symmetric folds 54
syncline 55
synform 54
synoptic diagram 96

T axis 157
tear (strike-slip) faults 76
three-point problems 15-16
throw 77
thrust faults 77, 197

blind 132

emergent 132

map patterns of 82-83

stress orientation of 86
tilting of fault blocks 82
topographic profiles 34-36
total strain ellipse

coaxial 124

noncoaxial 126
transform boundaries 154
translational faults 77
trend

defined 1

methods of expressing 2
trigonometry

S 307

use in analysis of geologic maps 21-24
use in apparent-dip problems 8-9

triple junction 154

trough 53

trough surface 54

trough trace 54

true dip, plunge of (3) 4

twinning 143

two-tilt stereonet problem 47

ultramylonite 145
unconformities 26-27
undulose extinction 143

V patterns in outcrop 11-14

vertical exaggeration 36, 169
vertical fold 55

viscous deformation 100-101

Weber Sandstone 116

Wellman technique 128

wrench (strike-slip) faults 76

writing style for geologic reports 97-98
Wulff net 38-39

yogurt, rheological behavior of 101

“Z” folds 69
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