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1. INTRODUCTION

Numerous solar radiation models (SRMs) have been
developed, calibrated, and evaluated to estimate solar
radiation incident on the earth’s surface (Rg, MJ m–2

d–1) as a function of extraterrestrial (Angot) solar radi-
ation at the top of the atmosphere (Ra, MJ m–2 d–1) and
atmospheric conditions (Angstrom 1924, Davies 1965,
Bristow & Campbell 1984, Martinez-Lozano et al. 1984,
Allen 1995, 1997, Meza & Varas 2000). The Ra parame-
ter is a general function of the solar constant (1370 W
m–2), the ratio of the annual mean to the actual earth-

sun distance, latitude, solar elevation angle, and solar
declination angle (Meza & Varas 2000).

Empirical algorithms have been proposed relating
Rg or the Rg/Ra ratio to weather parameters (Meza &
Varas 2000), most commonly the daily or monthly
mean maximum (Tmax) and minimum (Tmin) air temper-
atures and temperature range (Tmax – Tmin) (Liu & Jor-
dan 1963, Reddy 1971, Goldberg et al. 1979, Bristow &
Campbell 1984, Hargreaves et al. 1985, Richardson
1985, Allen 1995, 1997, Goodin et al. 1999), as well as
other parameters such as daylength (Angstrom 1924,
Martinez-Lozano et al. 1984), precipitation (McCaskill

© Inter-Research 2004 · www.int-res.com*Corresponding author. Email: krreddy@ra.msstate.edu

Assessment of solar radiation models and temporal
averaging schemes in predicting radiation and
cotton production in the southern United States

A. G. Richardson, K. Raja Reddy*

Department of Plant and Soil Sciences, Box 955, 117 Dorman Hall, Mississippi State University, Mississippi State, 
Mississippi 39762, USA

ABSTRACT: Crop models require daily weather input data for solar radiation (I rad), minimum and
maximum air temperatures, precipitation, and windspeed; but measured I rad may not be available at
some locations, necessitating I rad estimates. A total of 28 scenarios (7 solar radiation models [SRMs] ×
4 temporal-averaging schemes [TASs]) were examined to estimate I rad and cotton (Gossypium hirsu-
tum L.) yield at 10 U.S. locations. The SRMs showed positive correlations of I rad with daylength and
temperature range (Tmax – Tmin), and were relatively accurate in predicting I rad and yield. The I rad esti-
mation accuracy depended on SRM, TAS, and location. Temporal averaging smoothed out short-term
fluctuations, resulting in decreased temporal scatter in the weather parameters. The combination of
Tmin, Tmax, precipitation and wind (TmRnWn) model performed best, and I rad estimation accuracy was
highest in Shafter, California, and Maricopa, Arizona. Highest I rad estimation accuracy was obtained
with the TmRnWn model, using a double TAS, in Maricopa (r2 = 0.99). Geographical variability in I rad

was observed, showing effects of regional climate on measured I rad and on I rad estimation accuracy.
Yield estimation accuracy depended on I rad estimation accuracy and yield response to I rad changes,
and depended more strongly on location and management practice (rainfed [RF] versus irrigated
[IRR]) than on SRM and TAS. All 7 SRMs performed comparably well in predicting RF and IRR yields.
Estimation accuracies for I rad and RF + IRR cotton yields among the 28 scenarios were highest for
Shafter and Maricopa (e.g. r2 > 0.99 for yield). Coupled with crop simulation models, SRMs are use-
ful for predicting I rad and crop yields, particularly in regions with unavailable measured I rad data.

KEY WORDS:  Temporal-averaging scheme · TAS · Solar radiation model · SRM · Crop simulation
model · CSM · GOSSYM · Cotton

Resale or republication not permitted without written consent of the publisher



Clim Res 27: 85–103, 2004

1990a,b), and both temperature and precipitation
(DeJong & Stewart 1993, Hunt et al. 1998, Liu & Scott
2001). Once calibrated, evaluated, and incorporated
into SRMs, these algorithms are useful particularly in
regions lacking measured solar radiation data (Hooke
& McClendon 1992).

To potentially improve solar raadition prediction, a
new SRM model, TmRnWn model, is introduced and
compared with the above SRMs. Two additional
weather parameters (along with Tmax and Tmin) are
incorporated into the new model: precipitation (PPT)
and windspeed (WIND). The ‘TmRnWn’ notation refers
to ‘Tm’ = temperature, ‘Rn’ = rain (precipitation), and
‘Wn’ = windspeed. Justification for including these
parameters is that solar radiation is correlated with
PPT and WIND, as well as with air temperature. High
PPT is associated with frequent cloud cover and hence
lower solar radiation; and high WIND is associated
with strong air pressure gradients, fronts, and storm
systems, which in turn are associated with lower solar
radiation. Thus, solar radiation typically correlates
negatively with both PPT and WIND.

In addition to predicting solar radiation, SRMs are
also useful when coupled with crop simulation models
(CSMs) to predict crop production. Variability in cli-
mate and weather parameters, including solar radia-
tion, governs crop production variability. Crop re-
sponse to environmental (climate) change is an
important global issue among agriculturists, climatolo-
gists, economists, and policy makers. Several CSMs
have been developed to simulate crop performance
and response to changes in weather/climate, manage-
ment, soil properties, and crop cultivar properties. Cli-
mate change sensitivity studies have been conducted
to assess crop response under various projected future
climate scenarios (IPCC 2001). Assessment accuracy is
governed by accuracies of future climate projection,
CSM parameterization of physical/physiological pro-
cesses and plant-soil-atmosphere interactions, and
CSM input data including daily solar radiation, mini-
mum and maximum air temperatures, precipitation,
and windspeed. Historical weather data are available
at many U.S. weather stations. Crop production is esti-
mated by incorporating location-specific weather data
into the CSM. However, for locations lacking mea-
sured solar radiation data, SRMs can be used to esti-
mate solar radiation, which can be incorporated (in lieu
of measured solar radiation) into the CSM to run crop
simulations for natural resource management.

Objectives of this research were to: (1) statistically
assess SRM accuracy in predicting solar radiation and
cotton yield; (2) assess the accuracy of several avail-
able SRMs and a new SRM (i.e. TmRnWn) in predict-
ing solar radiation at 10 locations under various tempo-
ral-averaging schemes (TASs); and (3) illustrate the

potential usefulness of these SRMs to crop growers and
managers by assessing their accuracy in predicting
cotton yield under rainfed (RF) and irrigated (IRR) con-
ditions.

2. MATERIALS AND METHODS

Symbols used in this article are listed in Table 1.
2.1. Solar radiation (I rad) models. Numerous SRMs

describe the ratio of surface-incident solar radiation
(Rg) to extraterrestrial (Angot) solar radiation at the top
of the atmosphere (Ra) as a function of several weather
parameters. In this study, I rad denotes surface-incident
solar radiation (i.e. I rad = Rg). Seven SRMs were exam-
ined, including Angstrom (1924), Bristow & Campbell
(1984), and Allen (1997), 3 hybrid models each involv-
ing a combination of these models (i.e. Angstrom-BC,
Angstrom-Allen, and BC-Allen), and a regression SRM
(TmRnWn) developed by the current authors.

The Angstrom model describes a linear relationship
between Rg/Ra ratio and the ratio of actual (n) to poten-
tial (N) daylength:

Rg/Ra =  a + b (n/N) (1)

where a and b are empirical regression coefficients
(Angstrom 1924). Angstrom initially suggested typical
empirical values of a = 0.2 and b = 0.5 (which are the
values used in this study), but model calibration at dif-
ferent locations by various researchers in later years
(Penman 1948, Turc 1961, Bennett 1962, Davies 1965,
Monteith 1966, Castillo & Santibanez 1981) showed
significant geographical variability in these 2 coeffi-
cients (Doorenbos & Pruitt 1975). In their model appli-
cation to 21 locations in Chile, Castillo & Santibanez
(1981) observed a range of empirical values (a = 0.22 to
0.29 and b = 0.44 to 0.57) among these locations. In this
study, both a and b were adjusted in r2 maximization
(least squares error minimization) to obtain the curve
of best fit.

The model of Bristow & Campbell (1984) describes
daily solar radiation as an exponential asymptotic
function of daily temperature range dT:

Rg/Ra =  A{1 – exp[–B(dT)C]} (2)

where dT = (Tmax – Tmin); Tmax and Tmin are daily maxi-
mum and minimum air temperatures (°C); and A, B,
and C are empirical regression coefficients. Asymptote
A represents the theoretical maximum (clear-day)
radiation, whereas B and C govern the function’s
shape (i.e. sensitivity of Rg/Ra to changes in dT). Typi-
cal values are A = 0.7, B = 0.004 to 0.010, and C = 2.4
(Bristow & Campbell 1984), which were the values
used in this study. Meza & Varas (2000) observed geo-
graphical variations in B from 0.00150 to 0.01944
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across 21 Chilean locations. In this study, A and C
were fixed at 0.7 and 2.4, respectively; and B was
adjusted to obtain the curve of best fit. The Bristow-
Campbell model (Eq. 2) is based on the energy budget
at the earth’s surface, the partitioning of incoming
solar radiation to various heat terms (e.g. sensible and
latent heats, terrestrial infrared radiation), and the
daily Bowen ratio (Bristow & Campbell 1984). Since air
temperature is governed by the earth’s surface energy

budget, it is possible to obtain an
empirical relationship between solar
radiation and temperature variations.
Higher solar radiation during the day
(e.g. clear skies) produces greater dif-
ferences between daytime and night-
time temperatures, since the absence
of cloud cover enhances both down-
ward surface-incident solar radiation
during the day (increasing Tmax) and
upward escape of terrestrial infrared
radiation from the surface at night
(decreasing Tmin).

The model of Allen (1997) describes
a power-law relationship between
daily solar radiation and monthly
mean maximum and minimum tem-
peratures (°C):

Rg/Ra =  K r (Tmax – Tmin)0.5 (3)

where Kr is a function of atmospheric
pressure P : Kr = Kra(P/Po)0.5, K ra is an
empirical coefficient, and Po is sea-
level pressure (Po = 101.325 kPa). Typ-
ical values of K ra are 0.17 and 0.20 for
interior and coastal regions, re-
spectively (Allen 1997). Meza & Varas
(2000) observed geographical varia-
tions in Kra from 0.0114 to 0.4717
across 21 Chilean locations. In this
study, P was assumed equal to Po; and
K ra was adjusted to obtain the curve of
best fit.

The 3 hybrid models (Angstrom-BC,
Angstrom-Allen, and BC-Allen) incor-
porate functional algorithms of 2 of the
3 above-described models (Eqs. 1 to
3), to potentially improve model flexi-
bility (by increasing the number of
empirical coefficients, parameters,
and degrees of freedom), accuracy,
and reliability in predicting solar
radiation. The Angstrom model
(Eq. 1) incorporates one parameter
(daylength), whereas the Bristow-
Campbell (Eq. 2) and Allen (Eq. 3)

models each incorporate 2 parameters (Tmin and Tmax).
Thus, the hybrid BC-Allen model (a weighted average
of Eqs. 2 & 3) similarly contains 2 parameters (Tmin and
Tmax), whereas the hybrid Angstrom-BC model (a
weighted average of Eqs. 1 & 2) and Angstrom-Allen
model (a weighted average of Eqs. 1 & 3) each contain
3 parameters (daylength, Tmin, and Tmax).

A new SRM (TmRnWn) is introduced in this study
and compared with the other SRMs for relative solar
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Symbol Name (units)

ao Empirical intercept coefficient in the linear regression equation
a1 Empirical slope coefficient in the linear regression equation
AED Atmospheric evaporative demand
CSM Crop simulation model
DL Daylength (h)
EAP Envelope of acceptable precision
EPI Environmental productivity index
ET Evapotranspiration
FSQ First square
FBL First bloom
FOB First open boll
GOSSYM Cotton growth simulation model
GOS Gossypium (cotton genus name)
SYM Simulation

I rad Daily or monthly mean solar radiation (MJ m–2 d–1)
I rad,meas Measured solar radiation
I rad,pred Solar radiation predicted by a given solar radiation model (SRM)

IR Irrigated conditions
Kr Function of atmospheric pressure (P)
Kra Empirical coefficient
LAI Leaf area index
LCS Lack of correlation weighted by standard deviations
LSRA Linear least squares regression analysis
MSD Mean squared deviation
MSV Mean squared variance
Nyr Number of years simulated for a given location
P Atmospheric pressure
Po Sea-level pressure
PNS Photosynthesis
PPT Daily or monthly mean precipitation (mm d–1)
r2 Determination coefficient
RF Rainfed conditions
SB Squared bias
SDSD Squared difference between standard deviations
SRM Solar radiation model
Tavg Average daily or monthly mean air temperature (°C)
Tmax Maximum daily or monthly mean air temperature (°C)
Tmin Minimum daily or monthly mean air temperature (°C)
TmRnWn A regression-based solar radiation model
Tm Temperature
Rn Rain or precipitation
Wn Windspeed

WIND Daily or monthly mean windspeed (km d–1)
x Independent variable in the linear regression equation
y Dependent variable in the linear regression equation
Y Yield (kg ha–1)
Ysim,meas GOSSYM-simulated yield driven by measured solar radiation
Ysim,pred GOSSYM-simulated yield driven by SRM-predicted solar radiation

Table 1. Identification of nomenclature and symbols used in text
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radiation estimation accuracy. The TmRnWn model is
a linear regression model that incorporates Tmin (°C),
Tmax (°C), precipitation (PPT, mm d–1), and windspeed
(WIND, km d–1) into a flexible functional algorithm
describing I rad (MJ m–2 d–1):

Irad =  ao + a1·Tmin + a2 ·Tmax + a3·PPT + a4·WIND (4)

In calibrating the TmRnWn SRM, empirical regres-
sion coefficients (ao, a1, a2, a3, a4) were derived from
historical weather data from Stoneville, Mississippi, via
linear least squares regression analysis (LSRA), and
the calibrated model was then applied to the Stoneville
data (a ‘fudged’ validation) as well as the other 9 loca-
tions (‘pure’ validation) to assess model performance
accuracy in predicting I rad. The advantage of the
TmRnWn model over the other 6 SRMs is its superior
flexibility as a result of incorporating 4 weather para-
meters (Tmin, Tmax, PPT, and WIND) and 5 adjustable
parameters, whereas the other SRMs contain fewer
weather parameters (Tmin, Tmax, and/or daylength) and
only 1 to 3 adjustable parameters. Increasing the num-
ber of adjustable parameters increases degrees of
freedom, flexibility, and hence model performance (as
reflected in increased r2).

2.2. The GOSSYM cotton growth model. Cotton
(Gossypium hirsutum L., Upland midseason variety)
simulations were conducted in this study using
GOSSYM, a previously validated dynamic, physical,
physiological, phenological, mechanistic, process-
level, material-balance, cotton growth model (Baker et
al. 1983, Reddy et al. 1997, Hodges et al. 1998). The
name ‘GOSSYM’ is derived from ‘GOS’, for Gossypium
(a cotton genus name), and ‘SYM’, for simulation. Dri-
ven by input data for geography, daily weather, soil
type and hydrology, management practices, and culti-
var properties, GOSSYM uses a daily time step to sim-
ulate cotton growth, phenology, and yield during the
growing season. GOSSYM calculates the dates and
durations of various phenostages, including first
square (FSQ), first bloom (FBL), first open boll (FOB),
and time to maturity. Other calculated parameters
include plant height, mainstem node number, leaf area
index (LAI), biomass accumulation (for whole plant
and individual organs), number of plant organs, vege-
tative and fruiting branches, inter-organ partitioning of
photoassimilates and nutrients, and number of water-
and N-stress days during the growing season.
GOSSYM incorporates the environmental productivity
index (EPI) concept, which is a measure of the magni-
tude of a particular environmental stress in reducing
actual growth/photosynthesis below the potential
value: EPI values range from 0 (maximum stress) to 1
(zero stress). To assess water and nutrient status,
GOSSYM formulates material balances and calculates
supply:demand ratios for water, carbon, and nitrogen.

Additional information on GOSSYM and its subrou-
tines is discussed in Baker et al. (1983) and Hodges et
al. (1998).

2.3. Historical weather data. Historical weather data
for daily I rad, Tmin and Tmax, PPT, and WIND were col-
lected from 10 weather stations across the U.S. Cotton
Belt: Stoneville, Mississippi; Meridianville, Alabama;
Shafter, California; Corpus Christi, Texas; Florence,
South Carolina; Lubbock, Texas; Artesia, New Mexico;
Maricopa, Arizona; Portageville, Missouri; and Spring-
field, Illinois. Daily average temperature (Tavg) was cal-
culated as a weighted arithmetic average of daily Tmin

and Tmax: Tavg = (DL/24) ·Tmax + [(24 – DL)/24] ·Tmin,
where DL = daylength (h), which varies with latitude,
time of year, and solar declination angle. Locations,
years, geographical coordinates (longitude and lati-
tude), and prevalent soil types for each location are
summarized in Table 2. Locations were chosen for their
proximity to reliable weather stations and to assess
geographical and associated climatic variabilities in
weather parameters, cotton yield, and cotton response
to the environment. Years for each location were cho-
sen based on historical weather data availability. Pre-
dicted datasets were generated for each SRM by
applying its algorithm to calculate daily I rad from his-
torical (measured) daily air temperatures and/or pre-
cipitation and windspeed (depending on the SRM). For
each SRM, I rad estimation accuracy was assessed by
regressing daily predicted I rad versus measured I rad;
and yield estimation accuracy was assessed by
regressing GOSSYM yields driven by measured I rad

versus yields driven by SRM-predicted I rad.
2.4. GOSSYM simulations. Driven by weather, initial

soil fertility and hydrology, management, and cultivar
input data, GOSSYM simulated cotton yield at 10 loca-
tions (Table 2). Simulations were conducted from
1 May to 31 October (183 d growing season) under
ambient atmospheric CO2 concentration (360 µl l–1)
and optimal (stress-free) environmental conditions.
Management practices included a single pre-planting
N fertilizer application of 202 kg ha–1, a 96.5 cm row
spacing, and a planting density of 101 894 plants ha–1.
For the irrigation simulations, 0.75 in (1.905 cm) irriga-
tion water was applied via sprinkler on days when the
daily drought stress index decreased below 0.75,
reflecting significant drought stress. Environmental
conditions and management practices used in the sim-
ulations are summarized in Table 2. Baseline simula-
tions involved running GOSSYM with daily historical
solar radiation (I rad,meas). To assess yield estimation
accuracy of a given SRM and TAS, the I rad,meas input
dataset was replaced with the SRM-generated solar
radiation (I rad,pred) dataset; and simulated yields driven
by I rad,pred for the given SRM were compared with sim-
ulated yields driven by I rad,meas. Technological trends in
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yield were removed in the GOSSYM simulations. For
example, cotton cultivar and fertilization rates were
held constant; and no pesticides, plant growth regula-
tors, liming, or soil amendments were used in the sim-
ulations.

2.5. Temporal-averaging schemes. Each SRM con-
tains an empirical algorithm describing I rad as a function
of environmental parameters such as daylength
(Angstrom model), Tmin and Tmax (Bristow-Campbell and
Allen models), a combination of these parameters (3
hybrid models), or a combination of Tmin, Tmax, PPT, and
WIND (TmRnWn model). These parameters can be de-
fined and expressed on various time scales (e.g. diurnal,
monthly mean, annual mean, or interannual averages)
for use in the SRMs. Temporal averaging, conducted as
an academic exercise, smooths out short-term fluctua-
tions by averaging extreme-weather days with normal
days, thus reducing the weather parameters’ variability,
which is expected to improve SRM estimations. Tempo-
ral variability decreases as time scale of temporal
averaging increases. Daily parameters show greater
variability (due to extreme weather events) than monthly
means, the latter of which average anomalous effects of
a few extreme-weather days with more numerous
normal-weather days over the month.

In generating an I rad,pred dataset, a given SRM calcu-
lates I rad for all 365 days of each year examined for
each location (Table 3). However, coefficient values in
the SRM’s algorithm depend on the TAS (e.g. daily,
monthly mean, interannual average) used in calculat-
ing the weather parameters. Four TASs were exam-

ined with each of the 7 SRMs via a box factorial exper-
imental design, generating 4 × 7 = 28 scenarios
(Table 3). Scheme 1, involving no temporal averaging,
incorporates daily measured weather parameters into
the SRM’s algorithm to calculate daily I rad. To calculate
the SRM’s coefficients, daily measured I rad was
regressed against the SRM-specific function of rele-
vant daily measured weather parameters. The number
of data points on the plot is 365 × Nyr, where Nyr is the
number of years examined for the given location
(Table 3). LSRA was applied to generate a curve of best
fit, from which the SRM’s coefficients were calculated,
yielding an empirical algorithm describing I rad as a
function of other weather parameters.

Scheme 2 involved monthly averaging, in which
monthly means were calculated from daily measured
weather parameters. Monthly mean I rad was regressed
against the SRM-specific function of monthly mean
weather parameters, yielding a plot with 12 × Nyr data
points. In Scheme 3, interannual averaging was con-
ducted by averaging daily measured weather para-
meters over Nyr to obtain interannual averages for
each day of the year. These 365 interannual average
daily I rad values were regressed against the SRM-
specific function of interannual average daily weather
parameters, yielding a plot with 365 data points.
Scheme 4 involved both monthly and interannual aver-
aging, in which monthly means were averaged over
Nyr (analogous to Scheme 3), to obtain interannual
averages for each month of the year. These 12 interan-
nual average monthly mean I rad values were regressed
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Location State Latitude, Longitude Years of Total no. of Prevalent
(°N, °W) weather data years soil type

Stoneville Mississippi 33.25, 90.55 1964–1993 30 Bosket
Meridianville Alabama 34.51, 86.34 1992–1998 7 Decatur
Shafter California 35.50, 119.27 1983–1998 16 Panoche
Corpus Christi Texas 27.70, 97.29 1980–1996 17 Victoria
Florence South Carolina 34.18, 79.78 1986–1997 12 Eunola
Lubbock Texas 33.58, 101.87 1987,90,94–99 8 Amarillo
Artesia New Mexico 32.40, 104.24 1983–1997 15 Reagan
Maricopa Arizona 33.34, 112.49 1987–2000 14 Casa Grande
Portageville Missouri 36.42, 89.70 1989–91,95–99 8 Tiptonville
Springfield Illinois 39.78, 89.66 1989–1998 10 Dundee

Environmental conditions and management practices

Cultivar Gossypium hirsutum (Upland midseason variety)
Atmospheric CO2 concentration 360 ppm
Growing season 1 May to 31 October (183 d)
Irrigation (if applicable) Sprinkler, 19.05 mm, applied when stress index < 0.75 mm
Fertilizer application 30 April, single broadcast application of 202 kg ha–1 N
Row spacing 96.5 cm (38 in)
Planting density 101 894 plants ha–1

Table 2. Geographical locations, environmental conditions, and management practices used in the GOSSYM cotton simulations
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against the SRM-specific function of interannual aver-
age monthly mean weather parameters, yielding a plot
with 12 data points. For each of these 4 TASs, LSRA
was applied. Similar TASs were conducted by Meza &
Varas (2001), who applied the Angstrom and Allen
models to both daily and mean monthly weather data,
and the Bristow-Campbell model to only the daily
data, to predict solar radiation at 21 Chilean locations.

In summary, empirical regression plots for Schemes
1, 2, 3, and 4 contain 365 × Nyr, 12 × Nyr, 365, and 12
data points, respectively (Table 3). For the geographi-
cal composite, Nyr,comp is equal to the number of years
examined for each location, summed over all 10 loca-
tions (i.e. Nyr,comp = 137 yr). Thus, the composite plots
contain 50 005 (=137 × 365), 1644 (=137 × 12), 3650
(=365 × 10), and 120 (=12 × 10) data points for
Schemes 1, 2, 3, and 4, respectively. Algorithms
describing daily I rad versus other relevant measured
parameters were generated for all 28 scenarios. The
algorithm was applied to the historical daily weather
data to calculate daily predicted I rad (I rad,pred) from rel-
evant daily measured weather parameters, generat-
ing a daily I rad,pred dataset for each scenario and loca-
tion.

2.6. Statistical methods for scenario performance
assessment. Three statistical methods were used to
assess the empirical algorithm of each scenario for I rad

and cotton yield estimation accuracies at each location
as well as the geographical composite: (1) LSRA;
(2) deviation-based graphical analysis using an enve-
lope of acceptable precision (EAP) of 15% (Reddy &
Boone 2002); (3) mean-squared-deviation (MSD)
method of Kobayashi & Salaam (2000). 

To assess scenario accuracy in predicting I rad, I rad,pred

(MJ m–2 d–1) for each scenario was regressed against
measured I rad (I rad,meas, MJ m–2 d–1): I rad,pred = ao + a1

Irad,meas, generating a plot with 365 × Nyr data points
(e.g. Nyr = 30 and 137 yr for Stoneville and the geo-
graphical composite, respectively). Scenario perfor-
mance was assessed by evaluating the regression coef-
ficients (ao, a1) and coefficient of determination (r2). To
account for differences in numbers of data points and
parameters, the adjusted r2 is used to provide a stan-
dard baseline for comparison. The closer the values of
ao, a1, and r2 to 0, 1, and 1, respectively the greater the
scenario’s estimation accuracy. Deviations from these
ideal values reflect data scatter, decreased scenario
accuracy, and/or invalid concepts used in SRM devel-
opment. Regression plots of I rad,pred versus I rad, meas, as
well as deviation plots of I rad,pred – I rad,meas versus
Irad,meas, were constructed. In the deviation plots, the
greater the relative number of data points within the
EAP (15% error), the more accurate is the given
scenario.

To assess scenario accuracy in predicting yield, 2
sets of GOSSYM simulations were conducted: (1) using
I rad,pred to simulate scenario-predicted yield (Ysim,pred);
and (2) using I rad,meas to simulate yield based on mea-
sured I rad (Ysim,meas). Simulations were conducted under
both rainfed (RF) and irrigated (IRR) conditions. For
each scenario, Ysim,pred (kg ha–1) was regressed against
Ysim,meas (kg ha–1): Ysim,pred = bo + b1Ysim,meas, generating
a plot with 2 × Nyr data points (accounting for both RF
and IRR yields). Separate linear regressions were con-
ducted using RF data only, IRR data only, and both RF
and IRR (RF + IRR) data. For each regression, bo, b1,
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Solar radiation ao a1 r2 MSV MSD SB/ SDSD/ LCS/ ao a1 r2 MSV MSD SB/ SDSD/ LCS/
model MSD MSD MSD MSD MSD MSD

Scheme 1 (50 005 data points) Scheme 2 (1644 data points)
Angstrom 6.830 0.606 0.600 25.396 25.396 0.000 0.118 0.882 1.187 0.932 0.927 2.911 2.911 0.000 0.015 0.985
Bristow-Campbell 7.217 0.574 0.614 24.624 24.645 0.001 0.184 0.815 2.521 0.844 0.913 3.695 3.724 0.008 0.146 0.846
Allen 7.256 0.571 0.615 24.627 24.653 0.001 0.190 0.809 2.475 0.847 0.914 3.638 3.668 0.008 0.143 0.849
Angstrom-BC 6.436 0.629 0.626 23.743 23.744 0.000 0.112 0.888 1.195 0.931 0.928 2.881 2.881 0.000 0.016 0.984
Angstrom-Allen 6.447 0.628 0.626 23.732 23.732 0.000 0.113 0.887 1.186 0.931 0.928 2.870 2.870 0.000 0.016 0.984
BC-Allen 7.187 0.576 0.616 24.506 24.529 0.001 0.184 0.815 2.415 0.851 0.914 3.607 3.633 0.007 0.134 0.858
TmRnWn 6.282 0.630 0.652 22.085 22.097 0.001 0.139 0.861 1.389 0.916 0.936 2.595 2.600 0.002 0.044 0.954

Scheme 3 (3650 data points) Scheme 4 (120 data points)
Angstrom 1.114 0.936 0.924 3.123 3.123 0.000 0.009 0.991 0.088 0.996 0.988 0.438 0.438 0.001 0.000 0.999
Bristow-Campbell 2.298 0.857 0.910 3.814 3.833 0.005 0.110 0.885 1.192 0.922 0.977 0.998 1.017 0.019 0.167 0.814
Allen 2.187 0.864 0.912 3.732 3.750 0.005 0.099 0.896 1.223 0.920 0.976 1.040 1.061 0.021 0.169 0.811
Angstrom-BC 1.110 0.937 0.926 3.050 3.050 0.000 0.010 0.990 0.010 1.000 0.991 0.361 0.362 0.001 0.003 0.997
Angstrom-Allen 1.104 0.937 0.926 3.037 3.037 0.000 0.010 0.990 0.018 1.000 0.991 0.345 0.345 0.001 0.002 0.997
BC-Allen 2.118 0.869 0.913 3.656 3.672 0.004 0.092 0.903 0.841 0.945 0.977 0.891 0.899 0.009 0.080 0.911
TmRnWn 1.095 0.935 0.937 2.587 2.587 0.000 0.019 0.981 0.142 0.991 0.994 0.238 0.239 0.001 0.006 0.993

Table 3. Linear (LSRA) regression coefficients, determination coefficients (r2), mean square variance and deviation coefficients
(MSV, MSD, SB, SDSD, LCS) for predicted versus measured solar radiation, for the given solar radiation model and
temporal-averaging scheme, for the geographical composite. Daily predicted solar radiations were calculated from algorithms
describing daily solar radiation for each year (y = ao + a1·x1), where y = solar radiation estimated by the given solar radiation 

model (MJ m–2 d–1) and x1 = observed solar radiation (MJ m–2 d–1). See Table 1 for definitions
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and r2 were calculated, and compared to assess sce-
nario performance. Regression plots of Ysim,pred versus
Ysim,meas, and deviation plots of Ysim,pred – Ysim,meas ver-
sus Ysim,meas, were constructed for each scenario.

In summary, accuracies of 28 scenarios in predicting
I rad and yield were assessed via a 3-step regression
process. Algorithms were derived by regressing mea-
sured I rad versus relevant measured weather parame-
ters in the first step, and these algorithms were then
applied to the measured weather datasets to generate
I rad,pred, which was regressed against I rad,meas in the sec-
ond step. Each scenario was thus characterized by a
specific I rad estimation accuracy for the given location
and the geographical composite. This accuracy was
then propagated to the third step, which involved run-
ning GOSSYM using both I rad,pred and I rad,meas, and
regressing I rad,pred-driven yields (Ysim,pred) against
I rad,meas-driven yields (Ysim,meas). Errors in I rad estima-
tions were propagated and reflected in the yield esti-
mations. Thus, a given scenario’s yield estimation
accuracy depends in part on its I rad estimation accu-
racy, as well as on yield response (sensitivity) to
changes in I rad as parameterized in GOSSYM.

Using the statistical MSD-based approach of
Kobayashi & Salaam (2000), the ratios of squared bias
(SB) to MSD, of squared difference between standard
deviations (SDSD) to MSD, and of lack of correlation
weighted by standard deviations (LCS) to MSD were
calculated, where MSD correlates negatively with the
degree of agreement between simulation and mea-
surement:

MSD  =  SUM (xi – yi)2/n =  SB + SDSD + LCS (5)

where SUM denotes a summation, xi = predicted or
estimated solar radiation (MJ m–2 d–1) or yield (kg
ha–1), yi = measured solar radiation (MJ m–2 d–1) or
yield (kg ha–1), i = index denoting day, month, or year
(depending on TAS), and n = number of data points.
The SB represents the bias of the estimate from the
measurement:

SB  =  (ybar – xbar)2 (6)

where ‘bar’ denotes average value. The SDSD repre-
sents the difference in magnitude of fluctuation
between estimate and measurement, and correlates
negatively with the scenario’s ability to simulate the
fluctuation magnitude:

SDs =  [SUM (xi – xbar)2/n]0.5 (7)

SDm =  [SUM (yi – ybar)2/n]0.5 (8)

SDSD  =  (SDs – SDm)2 (9)

where SDs and SDm are the standard deviations of the
estimate (xi) and the measurement (yi), respectively,
about their respective average values (xbar and ybar).

The LCS term correlates negatively with the scenario’s
ability to simulate the fluctuation pattern across the
number of measurements:

LCS  =  2SDs · SDm · (1 – r) (10)

where r = correlation coefficient between estimate and
measurement. Mean squared variance (MSV) is:

MSV  =  SDSD + LCS = MSD – SB (11)

For each scenario, the LSRA slope, intercept, r2,
SB/MSD, SDSD/MSD, and LCS/MSD ratios were
calculated for the 10 locations and the geographical
composite to assess performance in predicting solar
radiation and yield. These statistical methods assess
scenario accuracy and identify sources of variation
between estimations (I rad,pred, Ysim,pred) and measure-
ments (I rad,meas, Ysim,meas).

3. RESULTS AND DISCUSSION

3.1. Empirical relationships between solar radiation
and weather parameters

For each SRM, the Angstrom model predicted a neg-
ative correlation between I rad and inverse daylength
(i.e. positive correlation with daylength); and the Bris-
tow-Campbell and Allen models predicted a positive
correlation between I rad and air temperature range (i.e.
difference between Tmax and Tmin, on daily/monthly
time scales). That is, I rad increased as both daylength
and Tmax – Tmin increased. This correlation depended
on time of year. High I rad is associated with clear skies,
which allow high solar (visible) radiation to reach the
earth’s surface (due to a high direct/diffuse radiation
ratio), allowing rapid warming of the surface and
atmosphere (high Tmax), but which also allow terres-
trial infrared radiation to escape into space at night,
allowing rapid cooling of the surface and atmosphere
(low Tmin), resulting in a large (Tmax – Tmin) range. Con-
versely, cloudy skies (low I rad) reduce daytime surface-
incident solar radiation (due to a low direct/diffuse
radiation ratio), generating a lower warming rate
(lower Tmax), and also absorb and emit more terrestrial
radiation at night, restricting the cooling rate (higher
Tmin), resulting in a lower Tmax – Tmin range. This phys-
ical reasoning, describing physical (not just statistical)
relationships among weather parameters (e.g. I rad ver-
sus a function of air temperatures) justifies the choice
of specific weather parameters in the various SRMs
(e.g. use of temperature range Tmax – Tmin in the Allen
model, as opposed to only Tmin or only Tmax).

Results of this study are in reasonable agreement
with those of other studies, which similarly observed
negative correlations between I rad and daylength for

91



Clim Res 27: 85–103, 2004

the Angstrom model (Angstrom 1924, Penman 1948,
Turc 1961, Bennett 1962, Davies 1965, Monteith 1966,
Castillo & Santibanez 1981), and positive correlations
between Irad and temperature range Tmax – Tmin for the
Bristow-Campbell model (Bristow & Campbell 1984)
and Allen model (Allen 1995, 1997). In this study, opti-
mal coefficients for each SRM varied significantly with
geography, as observed in these other studies and in
Meza & Varas (2001) and Doorenbos & Pruitt (1975).
Mahmood & Hubbard (2002) observed a seasonal bias
in I rad estimations from temperature in the Northern
Great Plains.

3.2. Solar radiation estimations

Linear regression coefficients (ao, a1) from plots of
I rad,pred versus I rad,meas were calculated for the 7 SRMs,
4 TASs, 10 locations, and the geographical composite.
The MSV, MSD, and the SB/MSD, SDSD/MSD, and
LCS/MSD ratios were also calculated. For the sake of
brevity, only the geographical composites are summa-
rized in Table 3. Geographical composite regression
plots for the 7 SRMs are shown in Figs. 1, 2, & 3 for
Schemes 2, 3, and 4, respectively. Analogous plots for

the 10 locations were omitted for clarity; and plots for
Scheme 1 were omitted due to the extremely large
number of data points (50 005) on the geographical
composite plots. The I rad estimation accuracy
depended on TAS, SRM, and location.

3.2.1. Temporal-averaging effects. Higher r2 reflects
decreased data scatter and increased scenario accu-
racy. For a given SRM and location, r2 for I rad estima-
tions was lowest for Scheme 1 and highest for
Scheme 4, showing temporal averaging effects of
smoothing out short-term fluctuations and associated
I rad variability (i.e. reducing temporal scatter). For
Scheme 1, the geographical composite r2 ranged from
0.600 (Angstrom model) to 0.652 (TmRnWn model)
(Table 3), suggesting a moderate (though relatively
weak) correlation between I rad,pred and I rad,meas. Im-
proved results in daily I rad predictions were obtained in
the application of the Bristow-Campbell model (Bris-
tow & Campbell 1984) in the Great Plains (Mahmood &
Hubbard 2002). In contrast to Scheme 1, the geo-
graphical composite r2 for Scheme 4 ranged from 0.976
(Allen model) to 0.994 (TmRnWn model), showing
reduced scatter in the I rad data and a stronger correla-
tion between I rad,pred and I rad,meas, as a result of double-
temporal averaging (i.e. interannual averaging of
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Fig. 1. Regression plots of model estimated versus observed solar radiation across 10 locations, for 7 solar radiation models and 
Scheme 2 (monthly averaging)
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Fig. 2. Regression plots of model estimated versus observed solar radiation across 10 locations, for 7 solar radiation models and 
Scheme 3 (interannual averaging)

Fig. 3. Regression plots of model estimated versus observed solar radiation across 10 locations, for 7 solar radiation models and 
Scheme 4 (monthly and interannual averaging)
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monthly mean I rad). Effects of monthly averaging only
(Scheme 2) and interannual averaging only (Scheme 3)
the single TASs are reflected in r2 values and ranges
intermediate between Scheme 1 (no temporal aver-
aging) and Scheme 4 (monthly-plus-interannual aver-
aging) (Table 3). Slightly higher r2 for Scheme 2 com-
pared to Scheme 3 reflect slightly greater temporal
smoothing achieved via monthly averaging compared
to interannual averaging.

For the geographical composite, LCS was the major
statistical source of variation (>80%) between pre-
dicted and measured solar radiation for all 28 scenarios,
with minor contributions from SDSD (<20%) and SB
(<2%) (Table 3). Sources of variation between I rad esti-
mations and measurements were in the order LCS >
SDSD > SB. Relative ratios depended on SRM and TAS.
For example, for the TmRnWn model, LCS contribu-
tions ranged from 86.1% (Scheme 1) to 99.3% (Scheme
4). Among the 7 SRMs, LCS contributions were greater
(and SDSD contributions correspondingly less) for
Schemes 2, 3, and 4 than for Scheme 1, whereas SB
contributions were constant and insignificant across the
28 scenarios. The SDSD results illustrate the effect of
temporal averaging in smoothing out (reducing) fluctu-
ations between predicted and measured solar radia-
tions, thus enhancing the scenario’s ability to simulate
the fluctuation magnitude. MSV and MSD were great-
est for Scheme 1 (ranging from 22 to 26), intermediate
for Schemes 2 and 3 (2.5 to 3.8), and smallest for
Scheme 4 (0.23 to 1.06), showing the temporal averag-
ing effect of reducing variance and deviations between
predicted and measured solar radiations.

Temporal averaging over one or more time scales
(i.e. monthly, interannual) smooths out shorter-term
fluctuations, resulting in decreased temporal scatter in
weather parameters. In absence of temporal averag-
ing, extreme-weather days may exist in the historical
data, and daily I rad and other weather parameters are
more difficult to predict on extreme-weather days
(resulting in high data scatter and low r2). Temporal
averaging suppresses anomalous extreme-weather
days by averaging them with normal days, generating
a smoother, more predictable temporal profile. A
smooth temporal profile is easier to predict, resulting in
low data scatter and high r2. Daily weather parameters
(Scheme 1) exhibit greater scatter (due to extreme-
weather days) than monthly means (Scheme 2), and
interannual averaging of daily parameters (Scheme 3)
smoothes out anomalous extreme-weather days in iso-
lated years (Scheme 1). Two-step temporal averaging
(Scheme 4) smoothes out the weather profile further by
averaging extreme-weather events of longer duration,
resulting in additional reductions in temporal scatter.

3.2.2. Comparison among solar radiation models
and locations. The TmRnWn and Angstrom models

exhibited the highest and lowest r2, respectively
(Table 3). Apparently TmRnWn was the most accurate
in predicting I rad, compared to the other 6 SRMs. The
TmRnWn model incorporates a greater number of
adjustable parameters (ao, a1, a2, a3, a4; Eq. 4) in its
algorithm compared to the other 6 SRMs. The
Angstrom model contains only 1 adjustable parameter,
which probably explains its relatively low perfor-
mance. The Bristow-Campbell and Allen models each
contain 2 adjustable parameters, and the 3 hybrid
models contain either 2 (BC-Allen) or 3 (Angstrom-BC,
Angstrom-Allen) adjustable parameters. As the num-
ber of adjustable parameters in a model’s algorithm
increases, model flexibility and degrees of freedom
increase, and hence model performance is expected to
increase, assuming physically realistic fundamental
model principles.

For a given SRM and TAS, I rad estimations were most
accurate (i.e. highest r2) for Shafter, followed by Mari-
copa (data not shown). For Shafter and Maricopa (as
with the geographical composite; Table 3), r2 values
among the 7 SRMs were highest for Scheme 4 and low-
est for Scheme 1, showing temporal averaging effects
in reducing temporal variability in I rad. These 2 arid
locations (Shafter and Maricopa) exhibit high air tem-
peratures, low precipitation, a large annual number of
sunny days, and hence highly predictable weather,
particularly in regard to I rad. Such high predictability
as affected by climate and geography renders I rad esti-
mations relatively more accurate .

For a given SRM and TAS, the geographical compos-
ite r2 was intermediate among the r2 values for the 10
locations (Table 3). For the TmRnWn model and
Scheme 1, the geographical composite r2 was 0.652
(Table 3), whereas r2 ranged from 0.594 (Portageville)
to 0.908 (Shafter) among the 10 locations (data not
shown). Similar trends were observed for the other
SRMs and TASs (Table 3). Scatter of location-specific r2

values about the geographical composite r2 reflect
geographical variability in I rad, which in turn illustrates
effects of geography and associated changes in re-
gional climate on measured I rad and on I rad estimation
accuracy. Each SRM was empirically parameterized,
calibrated, and evaluated with experimental data cov-
ering a wide range of environmental parameters typi-
cally encountered under field conditions. While each
SRM was sufficiently evaluated to be applied to all 10
locations, these locations exhibited different ranges of
environmental parameters that depend on associated
regional climate differences. Typical daily air tempera-
ture ranges in northern locations (Portageville and
Springfield) are different (i.e. centered toward lower
temperatures) compared to southern locations.

Some SRMs do not parameterize any additional
weather parameters beyond daylength, Tmin, and Tmax
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in their algorithms describing I rad. In
addition to daylength, Tmin, and Tmax,
other parameters potentially correlat-
ing with I rad include PPT and WIND
(both of which are included along with
Tmin and Tmax in the TmRnWn model),
as well as humidity. These weather
parameters exhibit geographical vari-
ability (e.g. lower PPT in the arid
Southwest than in the humid South-
east; negative correlation between air
temperature and latitude), which con-
tributes to geographical variability in
measured I rad and in predicted I rad for
a given SRM and TAS. A given SRM
and TAS may thus predict I rad with
high accuracy when applied to indi-
vidual locations (as reflected in high r2

in the regression plot of I rad,pred versus
I rad,meas), but differences in I rad behav-
ior between locations (due to climatic
differences) may contribute to geo-
graphical scatter (reduced r2) when
the I rad,pred versus I rad,meas data from
different locations (covering a wide
range of geography and climate) are
included on the same regression plot
(geographical composite).

3.2.3. Best solar radiation estima-
tions. Comparing all 4 TASs, 7 SRMs,
and 10 locations, the best performance
in predicting I rad was obtained with
the TmRnWn model using Scheme 4 in
Maricopa (r2 = 0.999). Geographical
composite r2 values for the 28 scenar-
ios, with an indication of the best and
worst SRM in predicting solar radia-
tion for each of the 4 TASs, are given in Table 4.
Among the 7 SRMs, the TmRnWn model performed
the best in all 4 TASs (r2 = 0.652, 0.936, 0.937, 0.994)
(Table 4). The combination of an accurate, reliable,
realistic, highly parameterized SRM, a double TAS to
smooth out short-term temporal fluctuations in I rad

(Scheme 4), and an arid location with high air temper-
atures, low precipitation, a large annual number of
sunny days, and highly predictable weather (Mari-
copa) contributed to high I rad estimation accuracy.
Integrated across all 10 locations, the most accurate I rad

estimations were obtained with the TmRnWn-Scheme
4 scenario (composite r2 = 0.994; Table 4).

Similar studies on Angstrom, Bristow-Campbell, and
Allen model predictions of I rad, using different TASs,
were conducted by other researchers (Angstrom 1924,
Bristow & Campbell 1984, Allen 1995, 1997, Meza &
Varas 2001), who observed geographical variability in

the SRMs’ empirical coefficients as well as variable
performances among the SRMs depending on TAS and
temperature range (Tmax – Tmin). However, these stud-
ies did not address the further applicability of these
SRMs in predicting crop yields when coupled to CSMs.
This study explores this additional application with the
aid of GOSSYM, as discussed in the following section.

3.3. Cotton yield estimations

Linear regression coefficients (bo, b1, r2) from plots of
Ysim,pred versus Ysim,meas were calculated for the 7 SRMs,
4 TASs, 10 locations, and the geographical composite.
The MSV, MSD, and the SB/MSD, SDSD/MSD, and
LCS/MSD ratios were also calculated. For the sake of
brevity, only the geographical composite results for the
28 scenarios are summarized in Table 5a and 5b. The
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Model Scheme 1 Scheme 2 Scheme 3 Scheme 4

Solar radiation 
Angstrom b0.600b 0.927 0.924 0.988
Bristow-Campbell 0.614 b0.913b b0.910b 0.977
Allen 0.615 0.914 0.912 b0.976b

Angstrom-BC 0.626 0.928 0.926 0.991
Angstrom-Allen 0.626 0.928 0.926 0.991
BC-Allen 0.616 0.914 0.913 0.977
TmRnWn a0.737a a0.936a a0.937a a0.994a

Rainfed cotton yield
Angstrom 0.931 0.936 a0.931a a0.936a

Bristow-Campbell 0.943 0.931 0.926 0.923
Allen b0.926b b0.917b b0.911b 0.915
Angstrom-BC a0.950a a0.939a 0.929 0.931
Angstrom-Allen 0.934 0.933 0.918 0.931
BC-Allen 0.941 0.924 0.920 b0.914b

TmRnWn 0.933 0.933 0.929 0.929

Irrigated cotton yield
Angstrom b0.816b b0.813b a0.816a a0.813a

Bristow-Campbell 0.863 a0.845a 0.814 a0.823a

Allen 0.856 0.839 0.802 0.814
Angstrom-BC 0.862 0.831 0.811 b0.795b

Angstrom-Allen 0.869 0.836 0.800 0.806
BC-Allen a0.873a 0.836 0.802 0.809
TmRnWn 0.827 0.823 b0.792b 0.811

Rainfed + irrigated cotton yield
Angstrom b0.947b 0.947 a0.947a a0.947a

Bristow-Campbell 0.959 0.948 0.941 0.939
Allen 0.948 b0.938b b0.930b b0.933b

Angstrom-BC a0.962a a0.952a 0.944 0.942
Angstrom-Allen 0.954 0.949 0.935 0.943
BC-Allen 0.959 0.942 0.935 b0.933b

TmRnWn 0.948 0.949 0.943 0.946
aBest model for the given temporal-averaging scheme
bWorst model for the given temporal-averaging scheme

Table 4. Summary of solar radiation model performances in predicting solar
radiation and cotton yields (indicated by geographical composite r2 values) and 

identification of the best model for the given temporal-averaging scheme
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coefficients are summarized for RF, IRR, and both RF
and IRR (RF + IRR) cotton yields. Geographical com-
posite regression plots for the 7 SRMs are shown in
Figs. 4, 5, 6, & 7 for Schemes 1, 2, 3, and 4, respectively.
Analogous plots for the 10 individual locations were
omitted for clarity. In each of the regression plots, 2 lin-
ear regression lines were drawn, representing RF and
IRR data. Accuracy of yield estimations depended on
TAS, management practice (RF, IRR), SRM, and loca-
tion.

3.3.1. Temporal-averaging effects: Yield and I rad

estimation comparisons. Among the 4 TASs, 7 SRMs,
and 10 locations, estimation accuracies were higher for
RF and IRR yields than for I rad, particularly for Scheme
1, which showed the lowest I rad estimation accuracy
among the 4 TASs. For example, for the TmRnWn
model, geographical composite r2 = 0.933, 0.827, and

0.948 for predicting RF, IRR, and RF + IRR yields
(Table 5a), compared to 0.652 for predicting I rad

(Table 3).
For the geographical composite, LCS was the major

statistical source of variation (>65%) between pre-
dicted and measured RF/IRR yields for all 28 scenarios,
with minor contributions from SB (<34%) and SDSD
(<4%) (Table 5b). Sources of variation between yield
estimations and measurements were in the order LCS
> SB > SDSD (compared to the order LCS > SDSD > SB
for I rad estimations and measurements; Table 3). Rela-
tive ratios depended on SRM, TAS, and management
practice (RF, IRR). For the TmRnWn model, LCS contri-
butions ranged from 77.6% (Scheme 3) to 93.4%
(Scheme 1) for RF yield, and ranged from 69.5%
(Scheme 4) to 98.7% (Scheme 1) for IRR yield. For a
given scenario, LCS contributions were greater (and
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Solar radiation Rainfed Irrigated Rainfed + Irrigated
model ao a1 r2 ao a1 r2 ao a1 r2

Scheme 1
Angstrom 81 1.005 0.931 281 0.898 0.816 106 0.983 0.947
Bristow-Campbell 29 0.985 0.943 89 0.987 0.863 11 1.017 0.959
Allen 94 0.974 0.926 130 0.945 0.856 106 0.959 0.948
Angstrom-BC 39 0.986 0.950 145 0.950 0.862 36 0.998 0.962
Angstrom-Allen 79 0.975 0.934 200 0.912 0.869 93 0.963 0.954
BC-Allen 57 0.977 0.941 109 0.965 0.873 51 0.989 0.959
TmRnWn 79 0.969 0.933 107 0.951 0.827 85 0.963 0.948

Scheme 2
Angstrom 78 1.018 0.936 260 0.910 0.813 109 0.986 0.947
Bristow-Campbell 127 0.982 0.931 179 0.935 0.845 148 0.954 0.948
Allen 119 0.997 0.917 193 0.923 0.839 155 0.950 0.938
Angstrom-BC 72 1.003 0.939 221 0.922 0.831 93 0.984 0.952
Angstrom-Allen 71 1.014 0.933 269 0.894 0.836 106 0.977 0.949
BC-Allen 112 1.000 0.924 190 0.927 0.836 146 0.956 0.942
TmRnWn 51 1.015 0.933 270 0.900 0.823 77 0.993 0.949

Scheme 3
Angstrom 81 1.005 0.931 281 0.898 0.816 106 0.983 0.947
Bristow-Campbell 127 0.986 0.926 223 0.915 0.814 155 0.953 0.941
Allen 133 0.993 0.911 261 0.893 0.802 174 0.943 0.930
Angstrom-BC 95 1.006 0.929 282 0.895 0.811 127 0.973 0.944
Angstrom-Allen 107 1.004 0.918 288 0.886 0.800 146 0.961 0.935
BC-Allen 126 0.998 0.920 268 0.890 0.802 169 0.946 0.935
TmRnWn 75 1.012 0.929 300 0.891 0.792 104 0.986 0.943

Scheme 4
Angstrom 78 1.018 0.936 260 0.910 0.813 109 0.986 0.947
Bristow-Campbell 136 0.995 0.923 230 0.911 0.823 174 0.946 0.939
Allen 111 1.011 0.915 249 0.903 0.814 156 0.956 0.933
Angstrom-BC 90 1.013 0.931 239 0.918 0.795 120 0.980 0.942
Angstrom-Allen 86 1.017 0.931 249 0.913 0.806 120 0.980 0.943
BC-Allen 113 1.011 0.914 238 0.913 0.809 152 0.963 0.933
TmRnWn 62 1.019 0.929 270 0.916 0.811 82 1.005 0.946

Table 5a. Linear (LSRA) regression coefficients and determination coefficients (r2) for simulated cotton yields using predicted ver-
sus measured solar radiation, for the given solar radiation model and temporal-averaging scheme, for the geographical compos-
ite. Daily predicted solar radiations were calculated from algorithms describing daily solar radiation for each year (y = ao + a1·x1)
(137 data points). LSRA: y = ao + a1·x1, where y = simulated yield (kg ha–1) using solar radiation predicted by the given solar radi-

ation model and x1 = simulated yield (kg ha–1) using measured solar radiation
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SB contributions were correspondingly less) for IRR
than for RF yields, whereas SDSD contributions were
constant and insignificant between RF and IRR yields.

Differences in geographical composite estimation
accuracies between yield and I rad were less significant
for Schemes 2, 3, and 4 than for Scheme 1, with accu-
racy differences between yield and I rad estimations
depending on SRM and management practice. For the
TmRnWn-Scheme 4 scenario, geographical composite
r2 was 0.929, 0.811, and 0.946 for predicting the 3 types
of yields (Table 5a), compared to 0.994 for predicting
I rad (Table 3), showing that this scenario predicted I rad

better than the yields. Thus, temporal averaging
appears to improve the accuracy of a given SRM’s I rad

estimations relative to yield estimations.
Yield estimation accuracy depended on location and

management practice and was relatively insensitive to
TAS and SRM, as shown by relatively constant r2

among the 4 TASs (Table 5a). The following general-
izations can be drawn regarding effects of temporal

averaging on I rad and yield estimation accuracies: (1)
estimation accuracy was higher for yield than for I rad

among the TASs, SRMs, and locations; (2) temporal
averaging significantly improved I rad estimation accu-
racy (Table 3); (3) temporal averaging had a negligible
effect on yield estimation accuracy (Table 5a); (4) tem-
poral averaging decreased the difference in estimation
accuracies between yield and I rad.

As discussed earlier, a source of low I rad estimation ac-
curacy was high temporal variability in daily weather pa-
rameters. Scatter reduction via temporal averaging over
monthly and/or interannual time scales improved I rad

estimation accuracy, as shown by comparing r2 values
among the 4 TASs (Table 3). Apparently the propagation
of a given accuracy in I rad estimations (via substituting
I rad,meas with I rad,pred to drive GOSSYM) to generate yield
estimations smoothes out adverse effects of high tempo-
ral variability in daily weather parameters (which
generated low I rad estimation accuracies), resulting in
improved yield estimations over I rad estimations
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Solar radiation Rainfed Irrigated Rainfed + Irrigated
model MSV MSD SB/ SDSD/ LCS/ MSV MSD SB/ SDSD/ LCS/ MSV MSD SB/ SDSD/ LCS

MSD MSD MSD MSD MSD MSD MSD MSD MSD

Scheme 1
Angstrom 30307 27872 0.200 0.019 0.782 20725 25863 0.199 0.000 0.801 25574 31867 0.197 0.002 0.801
Bristow-Campbell 24127 24281 0.006 0.004 0.990 16641 20518 0.189 0.020 0.791 21006 22399 0.062 0.031 0.907
Allen 30954 35099 0.118 0.002 0.880 16514 16827 0.019 0.003 0.978 24279 25963 0.065 0.004 0.931
Angstrom-BC 21024 21570 0.025 0.003 0.972 15758 17616 0.105 0.003 0.891 18488 19593 0.056 0.007 0.936
Angstrom-Allen 27811 30327 0.083 0.001 0.916 14361 14707 0.024 0.003 0.973 21335 22517 0.053 0.004 0.943
BC-Allen 24514 25401 0.035 0.001 0.964 14667 16031 0.085 0.007 0.908 19603 20716 0.054 0.002 0.944
TmRnWn 27672 29609 0.065 0.000 0.934 20640 20680 0.002 0.011 0.987 24510 25144 0.025 0.002 0.972

Scheme 2
Angstrom 28951 38545 0.249 0.029 0.723 21330 26862 0.206 0.000 0.794 25279 32703 0.227 0.002 0.771
Bristow-Campbell 29161 40476 0.280 0.003 0.717 17646 19637 0.101 0.002 0.897 24356 30057 0.190 0.006 0.804
Allen 36492 49867 0.268 0.014 0.718 18244 19426 0.061 0.000 0.939 29020 34646 0.162 0.005 0.833
Angstrom-BC 26722 32506 0.178 0.016 0.806 19262 22807 0.155 0.001 0.844 23060 27656 0.166 0.001 0.832
Angstrom-Allen 30130 37590 0.198 0.026 0.775 18013 20675 0.129 0.003 0.869 24374 29132 0.163 0.000 0.837
BC-Allen 33337 45940 0.274 0.014 0.711 18687 20242 0.077 0.001 0.922 27337 33091 0.174 0.003 0.823
TmRnWn 30118 34670 0.131 0.030 0.839 19826 23935 0.172 0.000 0.828 24975 29303 0.148 0.006 0.846

Scheme 3
Angstrom 30307 37872 0.200 0.019 0.782 20725 25863 0.199 0.000 0.801 25574 31867 0.197 0.002 0.801
Bristow-Campbell 31731 44099 0.280 0.006 0.714 21287 23555 0.096 0.001 0.903 27520 33827 0.186 0.004 0.809
Allen 39146 54897 0.287 0.012 0.701 22387 24079 0.070 0.000 0.930 32546 39488 0.176 0.006 0.818
Angstrom-BC 31503 41831 0.247 0.018 0.735 21257 25563 0.168 0.000 0.831 26704 33697 0.208 0.000 0.792
Angstrom-Allen 36857 49298 0.252 0.019 0.728 22470 25403 0.115 0.000 0.884 30486 37351 0.184 0.001 0.816
BC-Allen 35224 50400 0.301 0.013 0.686 22319 23958 0.068 0.000 0.931 30482 37179 0.180 0.006 0.814
TmRnWn 31715 39610 0.199 0.025 0.776 23722 29496 0.196 0.000 0.804 27760 34553 0.197 0.003 0.800

Scheme 4
Angstrom 28951 38545 0.249 0.029 0.723 21330 26862 0.206 0.000 0.794 25279 32703 0.227 0.002 0.771
Bristow-Campbell 33872 50873 0.334 0.010 0.655 20000 22140 0.097 0.000 0.903 28705 36507 0.214 0.007 0.779
Allen 38902 54333 0.284 0.025 0.691 21094 23417 0.099 0.000 0.901 31443 38875 0.191 0.001 0.808
Angstrom-BC 31269 42295 0.261 0.025 0.715 24136 29212 0.174 0.003 0.823 27988 35754 0.217 0.001 0.782
Angstrom-Allen 31456 42666 0.263 0.028 0.709 22441 27423 0.182 0.001 0.817 27260 35044 0.222 0.001 0.777
BC-Allen 39029 54751 0.287 0.024 0.688 21986 25536 0.139 0.001 0.860 31590 40143 0.213 0.000 0.787
TmRnWn 32413 39483 0.179 0.034 0.787 21737 31246 0.304 0.001 0.695 27120 35364 0.233 0.015 0.752

Table 5b. Mean square variance and deviation coefficients (MSV, MSD, SB, SDSD, LCS) for simulated cotton yields using pre-
dicted versus measured solar radiation, for the given solar radiation model and temporal-averaging scheme, for the geographical
composite. Daily predicted solar radiations were calculated from algorithms describing daily solar radiation for each year (137
data points). Y = simulated yield (kg ha–1) using solar radiation predicted by the given solar radiation model and x1 = simulated 

yield (kg ha–1) using measured solar radiation
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Fig. 4. Regression plots of simulated cotton yields driven by model estimated versus observed solar radiation across 10 locations, 
for 7 solar radiation models and Scheme 1 (no temporal averaging)

Fig. 5. Regression plots of simulated cotton yields driven by model estimated versus observed solar radiation across 10 locations, 
for 7 solar radiation models and Scheme 2 (monthly averaging)
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Fig. 6. Regression plots of simulated cotton yields driven by model estimated versus observed solar radiation across 10 locations, 
for 7 solar radiation models and Scheme 3 (interannual averaging)

Fig. 7. Regression plots of simulated cotton yields driven by model estimated versus observed solar radiation across 10 locations, 
for 7 solar radiation models and Scheme 4 (monthly and interannual averaging)
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(Scheme 1). However, if I rad variability was previously
smoothed out by temporal averaging (to generate
improved I rad estimation accuracies), propagation
resulted in smaller and/or negligible improvements in
accuracy of yield estimations over Irad estimations
(Schemes 2 to 4). Thus, temporal averaging of daily
weather parameters improves I rad estimations signifi-
cantly but yield estimations only negligibly.

The extent of the smoothing (dilution) effect brought
about by propagating I rad estimation accuracy to gen-
erate yield estimations via GOSSYM depends on yield
response to changes in I rad and other environmental
parameters. One contributing factor is the fact that
numerous other parameters besides I rad (e.g. other
weather parameters, management, soil, and cultivar
properties) affect yield. These other factors were held
constant in the GOSSYM simulations while only the
I rad input datasets were varied between I rad,meas and
I rad,pred. In addition, while some of the physiological
processes affecting yield depend on I rad (e.g. photosyn-
thesis [PNS], evapotranspiration [ET]), other physio-
logical growth and development processes (e.g. root
growth and development, phenology, leaf initiation,
stem elongation) affecting yield are independent of
I rad. Under conditions where these light-independent
processes significantly affect yield, such that yield is
relatively less sensitive to light-dependent processes,
yield response to changes in Irad is expected to be rela-
tively small. As yield sensitivity to changes in light-
dependent processes (relative to light-independent
processes) increases, yield is expected to become more
sensitive to changes in I rad.

GOSSYM’s parameterization of light-dependent
processes exhibits sensitivities to changes in I rad that
depend on I rad level. PNS shows a positive hyperbolic
response to increases in I rad, and ET (atmospheric
evaporative demand AED) correlates positively and
linearly with I rad. These 2 physiological processes
exhibit opposing effects on yield, with PNS being ben-
eficial via enhanced carbon supply and fixation, and
AED/ET being adverse via drought stress exacerba-
tion. Their net effect on yield depends on their relative
magnitudes, which in turn depend on I rad level and
management practice. As I rad increases, yield can
increase or decrease, depending on I rad level. At low
I rad, PNS is relatively sensitive to I rad and usually more
sensitive than ET, hence the beneficial effect > adverse
effect, resulting in a positive yield-I rad correlation. In
contrast, at high I rad, PNS is relatively insensitive to I rad

compared to ET, hence the adverse effect > beneficial
effect, resulting in a negative yield-I rad correlation. At
moderate I rad (depending on management practice),
the beneficial and adverse effects are approximately
balanced, resulting in a negligible yield response to
changes in I rad.

These cases are particularly valid under RF (drought
stress) conditions. However, under IRR (alleviated
drought stress) conditions, the adverse AED/ET effect
on yield reduction is suppressed. Thus, yield response
to changes in I rad is more closely correlated with PNS
response under IRR conditions than under RF condi-
tions. Interaction effects exist between I rad and drought
stress, such that yield response to I rad differs between
optimal (IRR) and drought-stress (RF) conditions. Under
IRR conditions, yield correlates positively with I rad over
the entire range of I rad, whereas under RF conditions,
yield correlates positively with I rad at low I rad (due to the
beneficial PNS effect predominating over the adverse
AED/ET effect), becomes insensitive to I rad at moderate
I rad, and then correlates negatively with I rad at high I rad

(due to the AED/ET predominating over PNS).
As I rad increases, IRR yield increases whereas its sen-

sitivity to I rad decreases (hyperbolic response), mimick-
ing the PNS response. Under light-saturation, IRR
yield (like PNS) is insensitive to changes in I rad, hence
a given change in I rad estimations (via substituting
I rad,meas with I rad,pred to drive GOSSYM) will translate to
relatively little change in IRR yield estimations. As I rad

decreases toward light-limitation, IRR yield (like PNS)
becomes more sensitive to changes in I rad, and hence
(depending on yield sensitivity to changes in PNS rela-
tive to changes in ET and in light-independent pro-
cesses) IRR yield estimations become more sensitive to
changes in I rad estimations. The RF yield response to
changes in I rad depends on its sensitivity not only to
changes in PNS and light-independent processes, but
also to changes in ET.

Yield response to changes in I rad depends on limiting
factors (environmental stresses, such as drought, tem-
perature, and nutrients) governing yield. Interaction
effects exist among various environmental parameters,
such that yield response to changes in one parameter
(e.g. I rad) depends on the levels of other parameters
(e.g. Tavg, PPT). Drought stress is greater under RF
than under IRR conditions, particularly for drought-
prone regions such as the arid Southwest. Differences
between RF and IRR yields reflect drought stress
effects. As observed in the regression results
(Table 5a), yield estimation response to changes in I rad

estimations is different between RF and IRR condi-
tions, due to drought stress differences and interac-
tions among various parameters affecting yield. The
difference in yield estimation response (to changes in
I rad estimations) between RF and IRR conditions
depends on drought stress, which exhibits geographi-
cal (and associated regional climatic) variability. As
drought stress increases, the difference between the
RF and IRR yield estimation responses increases.

In summary, among the 4 TASs, 7 SRMs, 10 loca-
tions, and 2 management practices (RF and IRR), yield
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estimation accuracy depended on I rad estimation accu-
racy as well as on yield response (sensitivity) to
changes in I rad, the latter of which depends on the
following factors:
(1) Other parameters (i.e. weather, management, culti-

var) besides I rad affect yield.
(2) Light-independent (as well as light-dependent)

processes affect yield, whose overall response to
changes in I rad depends on its relative responses to
these 2 types of processes.

(3) Among light-dependent processes, yield response
to changes in I rad depends on I rad level (i.e. light-
limitation versus light-saturation) and management
practice (i.e. RF versus IRR); and on the sensitivity
of light-dependent processes to changes in I rad.

(4) Interaction effects among various parameters and
the presence/magnitude of limiting factors (envi-
ronmental stresses) affect yield response to
changes in a given parameter (e.g. I rad).

3.3.2. Comparison of rainfed and irrigated yields,
solar radiation models, and locations. Relative accu-
racies between RF and IRR yield estimations depended
predominantly on location, and less so on SRM and
TAS. RF yield was predicted more accurately than IRR
yield at some locations, whereas vice versa was true for
other locations. For the TmRnWn model-Scheme 1 sce-
nario, IRR yield (r2 = 0.843) was predicted more accu-
rately than RF yield (r2 = 0.632) at Stoneville, whereas
RF yield (r2 = 0.925) was predicted more accurately
than IRR yield (r2 = 0.321) at Meridianville (data not
shown). For most of the 28 scenarios, RF yield was pre-
dicted more accurately than IRR yield at Meridianville,
Florence, Lubbock, Artesia, Maricopa, and Spring-
field, whereas IRR yield was predicted more accurately
than RF yield at Stoneville, Shafter, Corpus Christi,
and Portageville.

For a given SRM and TAS, geographical composite
estimations were more accurate (higher r2) for RF
yields than for IRR yields (Table 5a). For example, for
the TmRnWn-Scheme 1 scenario, geographical com-
posite r2 was 0.933 and 0.827 for RF and IRR yields,
respectively (Table 5a). Yield estimation accuracies
were higher than I rad estimation accuracies; and effects
of propagation of I rad estimation accuracies to generate
yield estimations via GOSSYM depend on factors gov-
erning yield response to changes in I rad. One of these
factors, enumerated earlier, is interaction among envi-
ronmental parameters and the influence of environ-
mental stresses. Yield response to changes in I rad

(hence yield estimation accuracy in response to
changes in I rad estimations) is different between water-
limited (RF) and water-sufficient (IRR) conditions.
Stress reduces yield and its response to changes in
other parameters, resulting in lower yield variability.
For a given change in I rad, RF yield changes by a

smaller amount than IRR yield; and variability is lower
for RF yield than for IRR yield. Decreased variability in
yield facilitates higher yield estimation accuracy, just
as decreased variability in daily weather parameters
facilitates higher I rad estimation accuracy. Thus,
decreased variability in RF yield relative to IRR yield
(due to drought stress) results in increased estimation
accuracies for RF yield compared to IRR yield, on aver-
age across geography, as shown by generally higher
geographical composite r2 for RF yield than for IRR
yield (Table 5a).

For a given TAS and location, all 7 SRMs performed
comparably well in predicting both RF and IRR yields,
as shown by relatively narrow ranges of r2 (Table 5a).
Relative performances of the 7 SRMs depended on
management strategy and location. For most of the 28
scenarios, the geographical composite r2 exceeded
0.80 for RF yield, IRR yield, and RF + IRR yield. For a
given model, geographical composite r2 for RF, IRR,
and RF + IRR yields showed little differences among
the 4 TASs. Temporal averaging, while improving I rad

estimation accuracy (Table 3), had a relatively negligi-
ble effect on yield estimation accuracy (Table 5a),
probably because of the relative importance of other
parameters and processes (besides I rad) affecting yield,
as well as I rad level and/or limiting factors (environ-
mental stresses), as discussed in Section 3.3.1.

For a given SRM and TAS, RF + IRR yield estimations
were most accurate (highest r2) for Shafter, followed by
Maricopa (data not shown). These 2 locations also
showed the highest I rad estimation accuracies among
the 10 locations. For all 28 scenarios, r2 for RF + IRR
yield for these 2 locations were consistently on the
order of 0.99 or higher, and were relatively insensitive
to SRM and TAS. As mentioned earlier, these 2 arid
locations (Shafter and Maricopa) exhibit high air tem-
peratures, low precipitation, and a large annual num-
ber of sunny days. The resultant highly predictable
weather as affected by climate and geography pro-
duced superiorly accurate I rad estimations compared to
other locations (Table 3), which were propagated to
GOSSYM to generate similarly superior accuracies in
yield estimations (Table 5a).

3.3.3. Best yield estimations. Comparing the 10 loca-
tions, 7 SRMs, and 4 TASs, best performances in pre-
dicting RF + IRR yield were obtained in Shafter and
Maricopa, where all 28 scenarios performed compara-
bly well and were reasonably accurate in predicting
RF + IRR yields, as shown by r2 values on the order of
0.99 or higher. Geographical composite r2 values for
the 28 scenarios, with an indication of the best and
worst SRM in predicting RF and IRR yields for each of
the 4 TASs, are given in Table 4. The combination of an
accurate, reliable SRM, a double TAS to smooth out
short-term temporal fluctuations in I rad (Scheme 4),
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and an arid location with highly predictable weather
(Maricopa) contributed to high I rad estimation accu-
racy, which was propagated to GOSSYM to generate
similarly high RF + IRR yield estimation accuracy.

4. CONCLUSIONS

A total of 28 scenarios (7 SRMs × 4 TASs) were
assessed for I rad and RF/IRR cotton yield estimation
accuracies at 10 U.S. locations and the geographical
composite. The SRMs showed positive correlations of
I rad with daylength and temperature range (Tmax –
Tmin), and were reasonably accurate in predicting I rad

and yield. The SRM I rad estimation accuracy depended
on TAS and location, whereas yield estimation accu-
racy depended more strongly on location and manage-
ment practice than on TAS. The TmRnWn model per-
formed best in predicting I rad, whereas all 7 SRMs
performed comparably well in predicting yield.

I rad estimation accuracy depended on SRM, TAS,
and location. High r2 and low MSD for Scheme 4, low
r2 and high MSD for Scheme 1, and intermediate r2 and
MSD for Schemes 2 and 3 for a given SRM and location
show effects of temporal averaging in smoothing out
short-term fluctuations and reducing temporal vari-
ability in I rad. The TmRnWn model performed best for
all 4 TASs for the geographical composite and the
highest I rad estimation accuracies were obtained in
Shafter and Maricopa. High I rad estimation accuracies
at these 2 arid locations are due to their highly pre-
dictable weather. Such high predictability as affected
by climate and geography renders I rad estimations rel-
atively more accurate for a given SRM and TAS. Lower
geographical composite r2 relative to location-specific
r2 reflect geographical variability in I rad, which in turn
illustrates effects of geography and associated changes
in regional climate on measured I rad and on I rad esti-
mation accuracy. The highest I rad estimation accuracy
was obtained with the TmRnWn-Scheme 4 scenario in
Maricopa (r2 = 0.999). For the geographical composite,
the TmRnWn-Scheme 4 scenario was most accurate
(r2 = 0.994); and among the 7 SRMs, the TmRnWn
model was most accurate for all 4 TASs. Due to error
propagation, yield estimation accuracy depended on
I rad estimation accuracy, as well as on yield response to
changes in I rad as parameterized in GOSSYM.

Yield estimation accuracy depended on location and
management practice (RF, IRR) and was relatively
insensitive to SRM and TAS. Estimation accuracies
were generally higher for yield than for I rad. Temporal
averaging improved I rad estimation accuracy but negli-
gibly affected yield estimation accuracy, decreasing
the estimation accuracy difference between yield and
I rad. Sources of variation between estimations and

measurements were in the order LCS > SDSD > SB for
I rad, and LCS > SB > SDSD for the RF and IRR yields,
with LCS being the predominant contribution.

Yield estimation accuracy depended on I rad estima-
tion accuracy and on yield response to changes in I rad,,
which depends on several factors. Various other para-
meters (i.e. weather, management, cultivar) besides
I rad affect yield. Several light-independent (as well as
light-dependent) processes also affect yield, whose
response to changes in I rad depends on its response to
these 2 types of processes. Among light-dependent
processes, process sensitivity to changes in I rad

depends on I rad level; and yield response to changes in
I rad depends on the sensitivity of light-dependent pro-
cesses to changes in I rad. Interaction effects among var-
ious parameters and the presence of limiting factors
(environmental stresses) affect yield response to
changes in a given parameter.

All 7 SRMs performed comparably well in predicting
both RF and IRR yields, with relative performances
depending on management practice and location. The
RF + IRR yield estimations were most accurate for
Shafter, followed by Maricopa. These 2 locations also
showed the highest accuracies in I rad estimations. At
these 2 locations, all 28 scenarios performed compara-
bly well and were reasonably accurate in predicting
RF + IRR yields.

Results of this research provide information on the
performance of 7 SRMs and 4 TASs in predicting I rad

and cotton yield. Coupled with CSMs, SRMs are useful
in predicting both I rad and crop yield, particularly in
regions where measured I rad data are not available.
Future studies should examine the feasibility of incor-
porating these and other SRMs into various CSMs (in
addition to GOSSYM) to predict yields of other crops
(in addition to cotton).
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