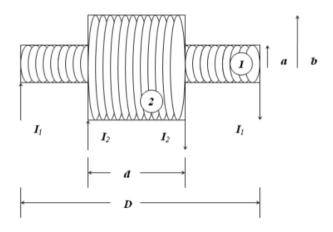
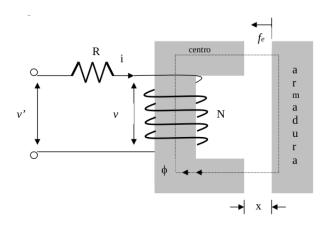

FI2002 - Electromagnetismo

27 de diciembre de 2011

Auxiliar 10: Inductancias y acoplamiento magnético


Profesor: Simón Casassus Auxiliares: Sebastián Derteano y Mauricio Morales

P1. Se tiene un sistema formado por dos bobinas de N_1 y N_2 vueltas enrolladas en un núcleo de fierro toroidal de permitividad según se muestra en la Figura 3. El circuito 1 (de la izquierda) es alimentado por una fuente sinusoidal, mientras que el circuito 2 se encuentra cortocircuitado.



Suponiendo que los circuitos 1 y 2 tienen resistencias R_1 y R_2 respectivamente, se pide:

- I. Calcular el valor de las corrientes $I_1(t)$ e $I_2(t)$ cuando ha pasado mucho tiempo desde que se conectó la fuente de voltaje V(t).
- II. Suponga ahora que cuando por el circuito 1 se encuentra circulando la corriente máxima se produce un cortocircuito, de modo que los puntos A y B quedan unidos entre sí en forma instantánea (puede suponerse que mediante un conductor de resistencia nula). En estas condiciones se pide determinar las corrientes I_1 e I_2 en función del tiempo. ¿Qué ocurre cuando ha pasado mucho tiempo?
- P2. I. Calcule la inductancia mutua M del circuito de la figura si la bobina 2 posee N espiras, y la 1 n espiras por unidad de largo.
 - II. Calcule el coeficiente de acoplamiento $k=M/\sqrt{L_1L_2}$ del circuito. ¿Qué fenómeno físico expresa este coeficiente?

P3. Un voltaje sinusoidal de amplitud V_0 y frecuencia ω es aplicado a la bobina de la figura, cuya área transversal es A. La resistencia del cable puede despreciarse, mientras la permeabilidad del núcleo de acero es μ y en los entrehierros hay aire, que puede suponerse con permeabilidad μ_0 . ¿Cuántas vueltas debe tener la bobina para crear una fuerza promedio F? Para los cálculos de la fuerza puede suponer que la inductancia no cambia con el tiempo y $\mu \to \infty$.

