Clase Auxiliar FI2001 Mecánica

Profesor: Claudio Romero

Auxiliar: Francisco Sepúlveda

21/Octubre/2011

P1. Se observa una partícula en movimiento desde un sistema de referencia inercial. La trayectoria está determinada por las siguientes ecuaciones (en coordenadas cilíndricas):

$$\rho = Ae^{k\theta}, z = h\rho$$

Sabiendo que la rapidez de la partícula es conocida e igual a v_0 , determine:

- a) la velocidad \vec{v} de la partícula.
- b) la aceleración \vec{a} .
- c) demuestre que $\vec{a} \perp \vec{v}$.
- d) encuentre $\theta = \theta(t)$.

 $\mathbf{P2}$. La trayectoria de un punto P, en coordenadas cilíndricas, se defíne con:

$$\rho(t) = \rho_0, \quad \theta(t) =?, \quad z(t) = h - B\theta(t)$$

Se sabe que $\theta(t)$ es una función monótona, $\theta(0) = 0$ y que $\dot{\theta}(0) = \omega_0$, y donde h, B y ω_0 son cantidades positivas conocidas.

- a) Obtenga las expresiones para el vector velocidad y aceleración en este ejemplo.
- b) Obtenga una expresión para el vector tangente \hat{t} y para la rapidez de P. Comente sobre los signos de estas cantidades.
 - c) Obtenga expresiones para las aceleraciones centrípetas y tangencial.

$$\vec{a} = \vec{a}_{cent}(t) + \vec{a}_{tq}(t)$$

d) ¿Cuál es la función $\theta(t)$ si se sabe que la aceleración apunta todo el tiempo perpendicular al eje Z?