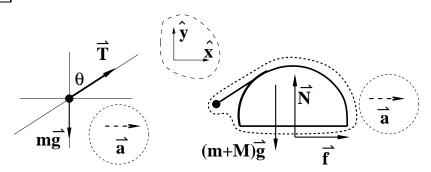
SOLUCION CONTROL No 2 INTRODUCCION A LA FISICA – OTOÑO 2001

Por: H. F. A.

Departamento de Física, FCFM, Universidad de Chile

PROBLEMA 1



- ullet Las fuerzas que actúan sobre la carga: tensión $ec{T}$ y peso $mec{g}$. La aceleración $ec{a}$ es horizontal.
- Ecuación de movimiento y proyecciones según \hat{x} e \hat{y} :

$$\vec{T} + m\vec{g} = m\vec{a} \Rightarrow \tag{1}$$

$$T\sin\theta = ma \pmod{\hat{x}}$$
 (2)

$$T\cos\theta - mg = 0 \quad (\text{según } \hat{y})$$
 (3)

• De la ecuación (3) se obtiene

$$T = rac{mg}{\cos heta}$$

• Podemos despejar la aceleración:

$$\underline{a = g \tan \theta} \tag{4}$$

- Para la parte B consideramos "tortuga⊕carga" como UN cuerpo. Las interacciones desde el exterior son: peso $(m+M)\vec{g}$, contacto con el piso (normal \vec{N} y roce \vec{f}).
- La ecuacion del movimiento (del cuerpo de masa M+m) y sus proyecciones según \hat{x} e \hat{y} :

$$(m+M)\vec{g} + \vec{N} + \vec{f} = (m+M)\vec{a} \Rightarrow$$
 (5)

$$0 + 0 + f = (m + M)a \quad (\text{según } \hat{x}) \tag{6}$$

$$-(m+M)g+N+0 = 0 \quad (\text{según } \hat{x}) \tag{7}$$

• Tracción a punto de resbalar (ó resbalando) $\Rightarrow f = \mu N \Rightarrow a = \mu g$; combinando con resultado para la aceleración $a = g \tan \theta$ se obtiene:

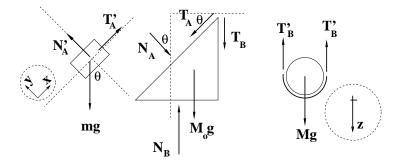
$$g an heta = \mu g \quad \Rightarrow \quad \overline{\overline{ an heta_{max} = \mu}} \; ,$$

que determina el ángulo máximo θ_{max} .

• En el caso $\theta \to \pi/2$ se ve que $T = \frac{mg}{\cos \theta} \to \infty$. O sea, si la cuerda queda horizontal la tensión es infinitamente grande. Ello ocurre si la tortuga pudiese acelerar infinitamente (necesitaría zapatillas de atletismo!).

PUNTUACION: 1Pto DCL correcto + 1Pto ecuaciones correctas + 1Pto despeje de T correcto + 1Pto DCL y ecuaciones correctas para sist compuesto + 1Pto ángulo max + 1Pto discusión aceptable.

PROBLEMA 2



ullet Sobre el cubo actúan tension de la cuerda $ec{T}_A'$ (de magnitud $oldsymbol{T}$), el peso del cubo $oldsymbol{m} ec{oldsymbol{g}}$ y la normal de la cuña sobre el cubo N_A' (magnitud N). Ecuación del movimiento (considerando aceleración \vec{a}_c de componente según el plano a) y proyecciones:

$$\vec{T}_A' + m\vec{g} + N_A' = m\vec{a}_c \implies (8)$$

Según
$$\hat{x}$$
) $T - mg \sin \theta + 0 = ma \rightarrow T - mg \sin \theta = ma$ (9)

Según
$$\hat{y}$$
) $0 - mg\cos\theta + N = 0 \rightarrow N = mg\cos\theta$ (10)

ullet Sobre la cuña actúan el contacto con el cubo (normal $ec{N}_A$ de magnitud N), la cuerda en el canto de la cuña (tensiones \vec{T}_A oblicua y \vec{T}_B vertical, ambas de magnitud T), gravedad sobre la cuña $(M_0\vec{g})$, y normal con el piso $(\vec{N}_B$ de magnitud N_B . Ecuación del movimiento (reposo) y proyección según la horizontal:

$$\vec{N}_A + \vec{T}_A + \vec{T}_B + M_{\circ} \vec{g} \vec{N}_B = 0 \qquad \Rightarrow \tag{11}$$

$$-N\sin\theta + T\cos\theta + 0 + 0 + 0 = 0 \qquad \rightarrow T\cos\theta = N\sin\theta \tag{12}$$

ullet Sobre la carga (y pedazo de cuerda en contacto con ella) actúan la tensión $ec{T}_B'$ en ambas puntas (magnitud T) y el peso de la carga $(M\vec{g})$; la aceleración de la carga es \vec{a}_0 de magnitud a/2. La ecuación del movimiento y proyección según z:

$$\vec{T}'_B + \vec{T}'_B + M\vec{g} = M\vec{a}_0 \Rightarrow (13)$$

$$-2T + Mg = M(a/2) \rightarrow 2Mg - 4T = Ma$$
(14)

$$-2T + Mg = M(a/2) \rightarrow 2Mg - 4T = Ma \tag{14}$$

• Buscamos ángulo $\boldsymbol{\theta}$. Primero usar Ec. 10 para \boldsymbol{N} en Ec. 12 ...

$$T\cos\theta = (mg\cos\theta)\sin\theta \rightarrow T = mg\sin\theta$$
 (15)

• Sustituir este valor para T en Ec. 9 para T ...

$$(mg\sin\theta) - mg\sin\theta = ma \rightarrow \overline{\underline{a=0}}.$$
 (16)

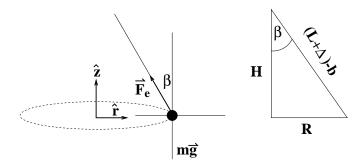
• Reemplazar a = 0 y $T = mg \sin \theta$ en Ec. 14 ...

$$2Mg - 4(mg\sin\theta) = m0 \quad \to \quad \overline{\sin\theta = \frac{M}{2m}}$$
 (17)

• Caso $\theta \sim \pi/2 \Rightarrow \sin \theta \sim 1 \Rightarrow M \sim 2m$. Este caso corresponde a bloque suspendido por carga en polea. En tal caso la aceleración nula sólo es compatible con $M \sim 2m$.

PUNTUACION: (0.6 + 0.7 + 0.6) Ptos por DCL's correctos + 2Ptos ecuaciones correctas (con proyecciones) + 1Pto por despeje (correcto) de a y $\sin \theta$ + 1Pto discusión aceptable.

PROBLEMA 3



• Considerando la bolita como el objeto a estudiar, las fuerzas sobre ésta son: fuerza del elástico $(\vec{F_e}; \text{ magnitud } k\Delta)$ y el peso $m\vec{g}$. Ecuación de movimiento y proyecciones según \hat{r} y \hat{z} :

$$\vec{T} + m\vec{g} = m\vec{a} \Rightarrow \tag{18}$$

$$-k\Delta\sin\beta = -m\omega^2R \quad (\text{según } \hat{r}) \tag{19}$$

$$k\Delta\cos\beta - mg = 0 \quad (\text{según } \hat{z}) \tag{20}$$

• R es el radio de la órbita. El tramo de elástico fuera del tubo es $L + \Delta - b$; el radio es $(L + \Delta - b) \sin \beta$. Sustituyendo en las ecuaciones 19 y 20 se tiene

$$k\Delta = m\omega^2(L + \Delta - b) \tag{21}$$

$$k\Delta\cos\beta = mg \tag{22}$$

• Combinando estas dos últimas ecuaciones obtenemos:

$$\omega^{2} = \frac{mg/\cos\beta}{m(L + mg/k\cos\beta - b)} \quad \rightarrow \quad \overline{\omega^{2} = \frac{g}{(L - b)\cos\beta + mg/k}}$$
(23)

- Para la energía mecánica total E consideramos: $E = K + U_g + U_e$
- Energía cinética **K**

$$K = \frac{1}{2}m\omega^2 R^2 = \frac{1}{2}mg\left[(L-b)\cos\beta + \frac{mg}{k}\right]\tan^2\beta \tag{24}$$

• Energía elástica U_e : Utilizando $\Delta = mg/k \cos \beta$,

$$U_e = \frac{1}{2}k\Delta^2 = \frac{1}{2}mg\left(\frac{mg}{k}\right)\frac{1}{\cos^2\beta}$$
 (25)

• Energía gravitacional U_g Sea H la profundidad de la bolita c/r boca del tubo y H_0 la misma profundidad pero con bolita colgando, entonces:

$$H = (L + \Delta - b)\cos\beta \tag{26}$$

$$H_{\circ} = (L + \Delta_{\circ} - b) = (L + mg/k - b),$$
 (27)

Con ésto la energía gravitacional es

$$U_g = -mg(L + \Delta - b)\cos\beta + mg(L + mg/k - b) = mg(L - b)(1 - \cos\beta)$$
 (28)

• Si $k \to \infty$ entonces la velocidad angular $\omega^2 \to g/(L-b)\cos\beta$; si además $\beta \to \pi/2$ entonces $\omega^2 \to \infty$. Se trata entonces de una cuerda ideal que para estar horizontal debe rotar con velocidad angular infinita.

PUNTUACION: 1Pto DCL correcto + 1Pto ecuaciones correctas (con proyecciones) + 1Pto despeje de ω^2 correcto + 2/3 Pto por cada termino de energía + 1Pto discusión aceptable.