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FUZZY CLUSTERING ALGORITHMS

An effective approach to the identification of complex nonlincar systems is to partition
the available data into subsets und approximate cach subset by a simple model. Fuzzy
clustering can be used as a tool to obtain a partiuoning of data where the transitions
between the subsets are gradual rather than abrupt. This chapter gives an introduction
to the basic concepts of fuzzy clustering, and simultaneously serves as a reference
io clustering algorithms thal can be used to construct fuzzy models [rom data. The
basic notions of clustering and the different types of partitions are defined in Sections
1.1 and 3.2. Section 3.3 presents the basic idea of fuzzy clustering with objective
function and the fuzzy c-means algorithm. Sections 3.4 and 3.5 address algorithms
which can detect clusters contained in linear subspaces of the data space. These
methods include clustering with an adaptive distance measure, clustering with lincar
prototypes, and fuzzy regression clustering, Section 3.6 presents the approach known
as possibilistic clustering. Section 3.7 addresses the determination of an appropriate
mumber of clusters and Section 3.8 deals with pre-processing of the data. The aim of
this chapter is to explain clustering at a tevel necessary to understand the subscquent
chapters. For a more detailed treaument of the subject, the reader may refer to the
classical monographs by Duda and Hart (1973), Bezdek (1981} and Jain and Dubes
(1988). A more recent averview can be found in a collection of Bezdek and Pal (1992),
and the monograph by Backer (1995). The notation and terminology in this chapter
closely lollows Bezdek (L981).



5] FUZZY MODELING FOR CONTROL,

3.1 Cluster Analysis

The objective of cluster analysis is the classification of objeéis according to similarities
among them, and the organizing of data into groups. Clustering techniques arc among
the wnsupervised (learning) methods, since they do not use prior class identifiers,
Most clustering algorithms also do not rely on assumplions conumon to conventional
statistical methods, such as the underlying statistical distribution of data, and therefore
they are uscful in situations where little prior knowledge cxists. The potential of
clustering algorithis to reveal the underlying structures in data can be exploited, not
only for classification and pattern recognition, but also for the reduction of complexity
in modeting and optimization.

4.1.1 The Data

Clustering techniques can be applicd to data thatis quantitative (numerical), qualitative
(categoric), or a mixture of both. In this book, the clustering of quantitative dala is
considered.  The data are typically observations of some physical process. Each
observation consists of n measured variables, grouped inlo an re-dimensional column
veelor zp = [Z14,....202]T, 2k € R™. A set of N observations is denoted by

Z ={zi|k =1,2,..., N}, and is represented as an 7 % N matrix:
11 22 - By
725 R (3.1
Z’r.u Za;,z : ZH-N

Tn the pattern recognition terminology, the columns of this matrix are called patterns
or objects, the rows are called the features or attributes, and Z is called the pattern ot
data matrix, The meaning of the columns and rows of % depends on the conlext. In
medical diagnosis, for instance, the columns of Z may represent paticnts, and the rows
are then symptoms, or lahoratory measurements for these patients. When clustering
is applied to the modeling and identification of dynamic systems, the columns of Z
contain samples of time signals, and the rows are, for instance, phystcal variables
observed in the system {position, velocity, temperature, ele.). In order to represent the
system's dynamics, past values of the variables are typicaily included in Z as well.
More details an the choice of an appropriate representation for dynamic systems are
given In Scetion 4.2,

3.1.2  Whai Are Clusters?

Various definitions of a cluster can be formulated, depending on the ohjective of
clustering. Generally, one may accept the view that a cluster is a group of objects that
are more similar to one another than to members of other clusters (Bezdek, 1981; Jain
and Dubes, 1988). The term “similarity” should be understood as mathematical
similarity, measured in some well-defined sense. In metric spaces, similarity is often
defined by means of a distance norm. Distance can be measured among the dala
vectors themselves, or as a distance from a data vector to some prototypical object of
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the cluster. The prototypes are usually not known beforehand, and are sought by the
clostering algorithms simultanecusty with the parlilioning of the data. The prototypes
may be vectors of the same dimension as the data objects, but they can also be delined as
“higher-level” geometrical ohjects, such as linear or nonlincar subspaces or functions,
see Section 3.5.

Data can reveal clusters of different geometrical shapes, sizes and densities as
demonstrated in Figure 3.1. While clusters (a) are spherical, clusters (h) to {d) can
be characterized as linear and nonlinear subspaces of the data space. Algorithms that
can detect subspaces of the data space are of particular interest for identification and
will be discussed in detail later on. The performance of mosi clustering algorithms is
influenced not only by the seametrical shapes and densities of the individual clusters
but also by the spatial relations and distances among the clusters. Clusters can be
well-separated, continuously connected to each other, or overlapping each other. The
separation of clusters is influenced by the scaling and normalization of the data, as
discussed in Section 3.8,
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Figure 3.1. Clusters of different shapes and dimensions in E?. After Jain and Dubes
(1988).

3.1.3 Clustering Methods

Many clustering algorithms have been introduced tn the literature. Since clusters can
formally be seen as subsets of the data set, one possible classification of clustering
methads can he according to whether the subscts are fuzzy or crisp (hard). Hard
ctustering methods are based on classical set theory, and require that an cbject either
does or does not beleng to a cluster. Hard clustering means partitioning the data
into a specificd number of mutsally exclusive subsets. Fuzzy clustering methods,
however, allow the objects to belong o several clusters simulianeously, with diiferent
degrees of membership. In many situations, fuzzy clustering is more natural than hard
clustering, as objects on the boundaries between several classes are not forced to fully
helong to one of the classes, but rather are assigned membership degrees between O
and 1 indicating their partial memberships. The discrete nature of the hard partitioning
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also causes analytical and algorithmic intractability of algorithms based on analytic
functionals, since these functionals are not differentiable.

Another classification can be related 1o the algorithmic approach of the different
techniques (Bezdek, 1981). Agglomerative hierarchical methods and splitting hier-
archical methods form new clusters by reallocating memberships of one point at a
time. based on some suitable measure of similarity. With graph-theoretic methods, 7,
is regarded as a set of nodes. Edge weights between pairs of nodes are based on a meas-
ure of similarity between these nodes. The third class of clustering algorithms uses
an objective funetion lo measure the desirability of partitions. Nonlinear optimization
algorithns arc used to search for local extrema of the objective function, .

The remainder of his chapter focuses on fazzy clustering with ohjective function,
These methods lead to least-squares optimization, and hence there are close relation-
ships between clustering with fuzzy objective funclion and statistical regression and
systems identification methods. In fuzzy clusiering, the objective function is dilferen-
tiable, which is a useful property for optimization. The objective funclion methods are
also relatively well understood, and mathematical results are available concerning the
convergence propertics and cluster validity assessiment.

3.2 Hard and Fuzzy Partitions

The conceptof fiezzy pariition is essential for cluster analysis, and consequently also for
the identification techniques that are based on fuzzy clustering. Fuzzy and possibilistic
partitions can be seen as a generalization of hard partition which is formulated in terins
ol classical subsels.

3.2.1 Hard Partition

The objective of clustering is to partition the data set Z into ¢ clusters, Tor the time
being, assume that ¢ is known, based on prior knowledge, for instance. Using classical
sets, a hard partition of Z can be defined as a family of subsets {4l <¢< e} C P(Z)
wilh the following propertics (Bezdek, 1981):

U4i=2 (3.2a)
i—=1
Aina; =0, I<i#j<e (3.2b)
dC A CZ, 1<i<e, (3.2c)

Eguation (3.22) means that the subsets 4; collectively contain all the data in Z, The
subsels must be disjoint, as stated by (3.2b), and none of them is empty nor coniaing
all the data in & (3.2¢). In terms of membership functions, equations (3.2) can be
expressed as;

[
\ jeas = 1, (3.32)
i=1

fa; ey, =0, I<i#j<e {3.3b)

0 <y <1, 1<e<e. (3.3¢)
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Here 8 and 1 denote zero and one function, respectively, and pea; is the membership
function of A;. To simplify the notation, in this chapter we use j1; instead of the usual
sta.. Further, by denoting 1i{zs) by puix, partitions can be conveniently represented
i1 2 matrix notation. A ¢ x N matrix U = [pr.] represents a hard partition if and anly
it its clements satisfy the conditions:

pae € {0, 1}, 1<i<e 1<EkZN, (3.4a)
4
Somk=1  1ZkIN, (3.4b)
i—1
N
0< Y pak <N, 1<i<e, (3.4c)
k=1

which directly follow {rom equations (3.3). The ith row of the hard partition marix
17 contains values of the characteristic function of the ith subset A; of Z. The above
discussion can be summarized in the following definition of hard partitioning spacc
{Bezdek, 1981).

Definition 3.1 (Hard partitioning space) Let Z = {21,22,. -, 2} be a finite set
and 2 < ¢ < N be an integer. The hard partitioning space for Z is the sel

c N
Mye = {U € RN g € {0,311,V ks > pra = LYk 0 < S pa < N_.Vi} .

i
i=1 k=1

Example 3.1 Consider a data sel Z = {2y,%2,...,%n}, shown in Figure 3.2.

Zb
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Z, z,
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z z g 2z, Zyy
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Z, Z,

Figure 3.2. A data set in R2.

A visual inspection of this data may suggest two well-separated clusters (data poines

%) 10 74 and %7 to zyg respectively), one point in between the two ¢lusters {Z5), and an

“outlier’” zg. A possible hard partition U & My, of the data into two subsets is given
by:

U:[1111110000

o 000001111
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The first row of U defines point-wise the characteristic function for the first subset of
Z, Ay, and the second row defines the characteristic function of the sceond subset ol 7,
As». Bach sample must be assigned cxclusively to one subset (cluster) of the partition.
In this case, both the houndary point 25 and the outlier zg have been assigned to A, .
It is clear that a hard partitioning may not give a realistic picture of the underlying
data. Boundary data points may represent patterns with a mixtare of properties of data
in A and Aa, and therclore cannot be fully assigned to either of these classes. or do
they constilule a separate class. This shorlcoming can be alleviated by usin g fuzzy and
possibilistic partitions as shown in the following sections. il

3.2.2  Fuzzy Partition

Generalization ol the hard partition to the fuzzy case follows dircctly by allowing g5
to attain real vatues in [0, 1] (Ruspini, 1970). Conditions for a fuzzy partition matrix,
anatogical to (3.4) then are given by:

s €00, 1], 1<¢<e, 1<k<N, {3.5a)
> pw =1, 1< k<N, (3.5h)
i=1
N
0< ) i <N, 1<i<e. (3.5¢)
k=1

Definition 3.2 (Fuzzy partitioning space) Ler Z = {71, 29, ..., Zn } be a finite set
and let 2 < ¢ < N he an integer: The fuzzy partitioning space for 7 is the set

4 N

Mpe=qU e Ry € [0, 1LY,k > puae = 1,VE; 0 < > wik < NV

i=1 =1
The ith row of the (uzzy partition matrix U contains values of the ith niembership
Junction of the fuzzy subset A; of Z. Equation (3.5b) constrains the sum of each
column to 1, and thus the total membership of each zy, in Z equals one.

Example 3.2 Consider the data set from Example 3.1, One of the infinitely many
fuzzy partitions in 7 is:

¢ 1010 10 08 05 05 02 0.0 00 0.0

U= 06 00 00 02 05 05 08 L0+ 1.0 1.0 |-

The boundary point zs has now a membership degree of 0.5 in both classes, which
correctly reflects its position in the middle between the 1wo clusters. Note, however,
that the outlier zg has the same pair of membership degrees, even though it is further
from the two clusters, and thus can be considered less typical of both A, and A, than
Zg. This 15 becausc condition (3.5b) requires that the sum of memberships of each
point equals one. 1t can be, of course, argued that three clusters are morc apprapriate in
this example than (wo. In general, however, it is difficult 1o detect outlicrs and assign
them to extra clusters. The use of possibilistic partition, presented in the next section,
overcomnes this drawback of fuzzy partitious. 0
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49.2 Possibilistic Partition

A more general form of fuzzy pariition, the possibilistic parri!ion,l can be ohtained
by relaxing the constraint {3.5b). Thig constraint, however, cannot be completely
removed, in order to ensure that each point is assigned to at teast ane of the fuzzy
subsets with a membership greater than zero. Equation (3.5b) can e replaced by a
Jess restrictive constraint V&, 3k, Hix > 0. The conditions for a possibilistc fuzzy
partition matrix, analogical to (3.5} are:

wie € [0, 1], 1<i<e L1<E<N, {3.6m)
i, e > 0, vk, {3.6b)
N
0< > pu < N, 1<i<e 3.6¢)
=1
Definition 3.3 (Possibilistic partitioning space) Lef Z = {z1,22..-; zy} beafi-

nite set and 2 < ¢ < N be an integer. The possibilistic partition space for 7 is the
set

N
s € [0,1], Vi, ki Wk, 3, g > 00 < S pa < NV
k=1

My, = U e BROY

Fxample 3.3 An cxample of a possibilistic partition matrix for aur data set is:

_f10 10 10 1.0 05 02 00 00 00 00
=100 00 00 00 G5 02 10 1.0 10 10 |-~

Ac the sum of elements in each column of U € My, is no longer constrained, the
outlier has a membership of (1.2 in both clusters, which is lower than the membership
of the houndary point zs, reflecting a lower degree of typicality of this point for both
sets. -

3.3 Fuzzy c-Means Clustering

Most analytical [uzzy clustering algorithms (and also all the algorithms presented in
this chapter) are based on optimization of the basic ¢-means abjective function, or some
modification of it. Hence we start our discussion with presenting the fuzzy c-means
funcrional {Dunn, 1974a).

e

IThe term “possibilistic” (pactition, clustering, etc.) has been introduced by Krishaapuram and Keller
(10933, In the literalure, the terms “eonswained fuzzy partition” and ~ynconstrained fuzzy partition” are
ulen psed 1o denote partitions {3.5) and (3.6), respectively.
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3.3.1 The Fuzzy c-Means Functional

A large family of fuzzy clustering algorithms is based on minimization of the fuzzy
c-nteans functional formulated as (Bezdek, 1981):

¢ N
HZUV) = > (i)™ llzw — vill3 (3.7a)
i=1 k=1
where
U = {pu] € My, (3.7h)
is a fuzzy parlition matrix of Z,
V=[vi,ve,.... v, v;eR" (3.7¢)

is a vector of cluster prototypes (centers), which have to be determined,
2 T 2 T
Diea =lize — villa = (7 = vi)" Alze — vi) (3.74)
is a squared inner-product distance norm, and
m € [1,co) (3.7¢)

is a weighting exponent which determines the fuzziness of the resulting clusters. The
measure of dissimilarity in (3.7a) is the squared distance between cach data point zy,
and the cluster prototype v;. This distance is weighted by the power of the membership
degree of that point (si)™. The value of the cost function (3.7a) can be seen as a
measure of the total variance of z,; from v;.

3.53.2 The Fuzey c-Means Algorithm

‘The minimization of the e-means functional (3.7a) represents a nonlinear optimization
problem that can be solved by using a varicty of available methods, ranging from
grouped coordinate minimization (Bezdek, etal,, 1987; Hatbaway and Bezdek, 1991 a),
over simulated annealing (DeSarbo, 1982), o genetic algorithms (Babu and Murly,
1994). The most popular method, however, is a simple Picard iteration through the
fiest-order conditions for stationary points of (3.74), known as the fuzzy c-means (FCM)
algorithm, which is given in Algorithm 3.1.

The stationary poinis of the objective function (3.7a) can be found by adjoining the
constraint (3.5b) to J by means of Lagrange multipliers:

c N

N [
J(Z:UV,A) =373 ()" Dis + 9 A [Z par — ]} . (38
k=1 =1

i=1 k=1

and by setting the gradients of ./ with respect 1o U, V and A (o zero, If D3 > 0V
and m > 1, then (U, V) € M. x B™™¢ may minimize (3.7a) only if

1
2 it (Diga [ Dy )2 010

(i = 1<i<e 1<k <N, (3.92)
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and
J w
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This sotution also sasisfies the remaining constraints (3.5a) and (3.5¢). Note that
eq. (3.9b) gives v; as the weighted mean of the data items that belong to a cluster,
where the weights are the membership degrees. That is why the algorithm is called
“e.means”. The FCM algorithm iterates through (3.9a) and (3.5b).

l<i<e. (3.9b)

Algorithm 3.1 (Fuzzy c-means (FCM))

Given the data set Z, choose the number of clusters 1 < ¢ < &V,
the weighting exponent m > 1, the termination folerance € = 0 and
the norm-inducing matrix A, Initialize the partition matrix randomly,
such that U ¢ M,

Repeatfor/=1,2,...

Step 1: Compute the cluster profotypes (means):

{I— J-) m
b 4
ng) ZA 1U. = ” k: 1<i<e.
k"l( tL )

Step 2: Compute the distances:
Dia = (22 —vE”)TA(zk - vgl)), 1<i<e 1<h<N.

Step 3: Update the partition matrix:
itDga >0 for 1<i<e, 1<k<N,

{ L
P{)

’ ijl(DikA/DjkA)i’-/(m—l)s

otherwise

;ng =01if Djpa >0, and ,ug, [0,1] with Z;JM =1.

ontil ||UG — U1 < e

Remark 1. A singularity in FCM occurs at Siep 3 when D4 = 0 for some z;, and
one or more cluster prototypes vy, s € S5 < {1,2,... , 1. In this case, the membership
degree in (3.9a) cannot be compuied. When [hl& happens, 0 is assigned to cach i,
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i & & and the membership is distributed arbitrarily among t,; subject to the constraint
Yoees bsi = 1L, VE

Remark 2. Equations (3.9) are only first-order necessary conditions for stationary
points of the funclional (3.7a). Sufficiency of these conditions and canvergence of the
afgorithm has been proven by Bezdek (1980).

Remark 3. The alternating optimization scheme used by FCM toops through the
estimates U1 5 ¥ 5 U® and terminates as soon as U —gl=1 « ¢
Alternatively, the algorithm can be initialized with V9| loop through V-1
U@ — v and terminate on ||V — V0=1)| < ¢. The error norm in the termination
criterion is usually chosen as max; (] ,uf.? — ;L.E.i,'l) ). Different results may be obtained
with the same values of ¢, since the termination criterion used in Algorithm 3.1 requires
that mare paramelers become close to one another, The usual seliing of the termination
criterion is € = 0.001, even though € = 0.01 works well in most cases,

Remark 4. The weighting exponent m is a rather important parameter, as it
significanly infleences the resulting partition. As m approaches one from above, the
partition becomes hard (g € {0,131 and v; are ordinary means of the clusters. As
M — 00, the partition becomes maximally fuzzy (pip = 1 /c) and the cluster means
are alt equal to the grand mean of Z. These limit properties of (3.7) are independent
of the optimization method used (Pal and Bezdek, 1995). Usually, m = 2 is chosen.

Remarlk 5. The number of clusters ¢ is the most important parameler, in the sense
that the remuining parameters have secondary effects on U, compared (o the cllects of
the number of clusters. The choice of the number of clusters is discussed in Scctions 3.7
and 4.5.

3.3.3 Inner-product Norms

The shape of the clusters is determined by the choice of the matrix A. in the distance
measure (3.7d). A common choice is A = T, which induces the standard Guclidean
noarm: )

DFy = (2 — vi) (2 — vi). (3100

A can be chosen as an n x n diagonal matrix thal accounts for different variances in
the directions of the coordinate axes ol Z:

(1/a1)? U 4
Ap= : . - : (3.11)
0 0 (o)

This matrix induces a diagonal norm on B™. Finally, A can be defined as the inverse
of the n x n sample covariance matrix of Z: A = R}, with

Fi
1 o
R= z\—'_-kil(zk*—Z)(Zk—i)j . (3.12)

Here 7 denotes the sample mean of the data. In this case, A induces the Mahalanobis
normon B (Bezdek, 1981).



FUZZY CLUSTERING ALGORITIHMS 59

The norm metric influences the clustering criterion by changing the mcasure of
dissimilarity. The Buclidean norm induces hyperspherical clusters, i.e., clusters whose
surlaces of constant membership are fiypersphetes. Both the diagonal and the Mahalan-
obis norm gencrate hyperellipsoidal clusters, the difference is that with the diagonal
norm, the axes of the hyperellipsoids are parallel to the coordinate axes while with
ihe Mahalanobis norm the orientation of the hyperellipsoid is arbitrary, as shown 1
Figure 3.3. A common limitation of clustering algorithms based on a fixed distance
norm is that such a narm induces a fixed topological structurc on g and forces the
objective function lo prefer clusters of that shape even if they are not present ( sec
Example 3.4). In Section 3.4, we will see that the norm-inducing matrix A can be
adapled by using estimates of the data cevariance, and can be used to estimate the
dependence ol the data in cach cluster.

T Diagenal narm T Mahalenabis norm

Figure 3.3.  Different distance norms used in fuzzy clustering.

Example 3.4 Fuzzy c-nieans clustering. Consider a synthetic data sef in % which
contains two well-separated clusters of different shapes, as depicted in Figure 34
The samples in both clusters are drawn from the normal distribution. The standard
deviation for the upper cluster is 0.2 [or both axes, whereas in the lower cluster it
¢ 0.2 for the horizontal axis and 0.05 for the vertical axis. From the membership
jevel curves, one can see that the FCM algorithm strictly imposcs 2 circular shape on
hoth clusters, even though the lower cluster is rather clongated. The porm-inducing
matrix was sct to A = T for both clusters, the welghting exponeat was 1t = 2, and the
lermination criterion € = 0.01. The algorithm was initialized with a random patition
matrix and converged after 4 iterations,

Note that it is of no help to use another A since the clusters may differ both in shape
and orientation. Generally, different matrices A; are required for the different clusters,
but there is no guideline as to how to choose them a priori. Section 3.4.1 prescnis the
partition obtained with the Gustalson—Kessel algorithm based on an adaptive distance
NOTIIL [}

The following sections prescnt several extensions of the basic c-means algorithm.
A common feature of these algorithms is that they can detect clusters which lie in
subspaces of the data space. The methods can be broadly classified inlo two groups:

m Algorithms using an adapuve distance measure, such as the Gustatson—Kessel al-
gorithm (Gustalson and Kessel, 1979), or the fuzzy maximum likelihood estimation
algorithm {Gath and Geva, 1989). These algorithms are presented in Section 3.4.
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Figure 3.4. The fuzzy c-means algorithm imposes a spherical shape on the clusters. re-
gardless of the actual data distribution. The dots represent the data paints, ‘4 are the
cluster means. Also shown are leve! curves of the clusters. Dark shading corresponds to
membership degrees around 0.5.

7  Algorithms based on hyperplanar or functicnal prototypes, or prototypes defined by
functions. They include the fuzzy c-varielics (Bezdek, 198 1), fuzzy e-elliptotypes
(Bezdek, et al,, 1981a), and fuzzy regression models (Hathaway and Bezdek,
1993b). These methods are presented in Section 3.5,

In addition, Section 3.6 presents a class of possibilistic clustering algorithms, which
search for possibilistic partitions in the data, i.c., partitions where the constraint (3.5}
is relaxed.

3.4 Clustering with Fuzzy Covariance Matrix

A family of algorithins can be derived from the basic FCM scheme by adapting the
inner-product norm (3.7d). Two of them are presented in this section: the Gustafson—
Kesscl algorithm and the algorithm based on fuzzy maximum likelihood estimates.

3.4.1 Gustafson-Kessel Algorithm

Gustafson and Kessel (1979) extended the standard fuzzy c-means algorithm by em-
ploying an adaptive distance norm, in order to detect clusters of diff erent geometrical
shapes in one data set. Each cluster has its own norm-inducing matrix A;, which
yields the following inner-product norm:

Din, = (s = vi) T A(zy - v (3.13)

The matrices A; arc used as optimization variables in the c-means functional, thus
allowing each cluster to adupl the distance norm to the local topological structure of the
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data. Let A denote a o-tuple of the norm-inducing matrices: A=(A,As, ..., A
The ohjective lunctional of the GK algorithm is defined by:

¢ N
J(Z U VA =50 (i)™ Diga, (3.14)

is=1 =1
where U € My, V € R?™“ and m > 1. The solutions,

(U, V,A)= argmin J(Z; U,V A), {3.15)

Mo xEnxexPD®

are stationary points of J, where PD™ denotes a space of n % n positive definite
matrices. For a fixed A, conditions (3.9) can be directly applied. However, the
ohjective function (3.14) cannot be directly minimized with respect to A, since it is
linear in A;. J could be made as small as desired by making A less positive delinite.
To obtain a feasible solution, A; must be canstrained in some way. The usual way of
accomplishing this is to constrain the determinant of A;. Allowing the matrix A;
vary with its determinant fixed corresponds Lo optimizing the cluster’s shape while its
volume remains constant:

Adl=pi, pi>0, Vi (3.16)
Using the Lagrange multiplier method, the following expression for A; is obtained:
A; = [pidet(F)VFT (G.17)

where T; is the fuzzy covariance mairix of the ith cluster defined by:

Al' N
k:l(;fv{k) (zp — Vi)(zk - Vi)T

N ,
z.’::l (#'ik ) mn

Note that the substitution of equations (3.17) and (3.1 8) into (3.13) gives a generalized
squared Mahalanobis distance norm belween z; and the cluster mean v;, where the
covariance is weighted by the membership degrees in U. The GK algorithm is given
in Algorithm 3.2.

Remark 1. The same applies to the choice of m as in the case of the FCM algorithm,
see Section 3.3.2.

Remark 2. Without any prior knowledge, the cluster volumes p; are simply fixed at
| for each cluster, A drawback of the GK algorithm is that due to the constraint {3.16),
it only can find clusters of approximately equal volumes. Repetitive application of GK
clustering with varying volumes is mentioned in Section 4.5.2 in combination with a
compatible cluster merging procedure.

Remark 3. The eigenstructure of the cluster covariance matrix provides information
about the shape and oricntation of the cluster. The ratio of the lengths of the cluster’s
hyperellipsoid axes is given by the ratio of the square roots of the eigenvalucs of Fi.
The directions of the axes are given by the eigenvectors of I7;, as shown in Figure 3.5.
Linear subspaces of the data space are represented by fiat nyperellipsoids, which can

F, = (3.18)
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Algorithm 3.2 (Gustafson—Kessel (GK) algorithm)

Given the data set Z, choose the number of clusters 1 < ¢ < N,
the weighting cxponent rm > 1 and the termination tolerance ¢ > 0.
Initialize the partition matrix randomly, such that U©) ¢ My,

Repeatfor{=1,2, ..,

Step 1: Compute cluster prototypes (means):

@ 'f 1))m

_ 5—1 ,

vil = R o 1Sézc
k= 1(‘L )

Step 2: Compute the cluster covariance matrices:

N ym U] “}
F; = &= 10 )\( = o v i
' ; 1 ==
e 1(#1 ))m
Step 3: Compute the distances:
T — 1
Dia, = (o =) |(pider(F) /P, ] (2o — i),

1<i<e 1<k<N.
Step 4: Update the partition matrix:
DA, »0for 1<i<e, 1<4k <N,

o .
T Z;:](Di.l\-A‘-/DjkA;)2,-"()11—1) ’

otherwise

C
iy =00 Dya, >0, and 1) € 10,1] with Sl =1,

cuntil [UD —pl-10 <«

be seen as hyperplanes. The eigenvector correspanding to the smallest eigenvalue
determines the normal to the hyperplanc, and can be used to compute optimal local
lincar models from the covariance mattix, as shown in Lemma 5.1

Remark 4. An advantage of the GK algorithm over ECM is that GK can detect
clusters of different shape and orientation in onc data set, as demonsirated in Ex-
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£y =
d VR, T

,-‘V
\
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Figure 3.5. Equation (z — v)TT ' (x — v} = 1 defines a hyperellipsoid. The fength of
the jth axis of this hyperellipsoid is given by \/—}\j and its direction is spanned by ¢ ;. where
A; and @; are the jth eigenvalue and the corresponding eigenvector of I', respectively.

ampie 3.5. It is, however, computationally more invalved than FCM, since the inverse
and determinant of the cluster covariance matrix must be calculated in each ileration.

Example 3.5 The GK algorithm was applied 10 the data set from Example 3.4, using
the same initial settings as the FCM algorithm. Figure 3.4 shows that the GK algorithm
can adapt the distance norm to the underlying distribution of the data. One nearly
circular cluster and one clongated ellipsoidal cluster are obtained. The shape of the
clusters can be determined from the cigenstructure of the resulting covariance matrices
¥,. The eigenvalues of the clusters are:

cluster AL As \/Xl/\/rﬁg

upper (.0352 0.0310 1.0666
lower 0.0482 0.0028 41490

One can see that the ratios given in the last column reflect quite accurately the ratio of
the standard deviations in each data group (1 and 4 respectively). For the lower clusler,
the unitary eigenvector corresponding o As, @y = [0.0134, [].9999}"[', can be seen as
a normal to a line representing the second cluster’s direction, and it is, indeed, nearly
parallel to the vertical axis. [

3.4.2 Fuzzy Maximum Likelihood Estimates Clustering

The fuzzy maximum likelihood estimates (FMLE) clustering algorithim employs a
distance norm based on the fuzzy maximum likelihood estimates, proposed by Bezdek
and Dunn (1975):

[det Ez‘]!‘fg

1
2 exp E(Zk —v,;)TEi*l(zk - v} . (3.19

Dyx; =

Note that, contrary to the GK algorithm, this distance norm involves an exponential
term and thus decreases faster than the inner-product norm. 3; denotes the luzzy
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Figure 3.6. The Gustafson-Kessel algorithm can detect clusters of different shape and
orientation. The points represent the data, “+ are the cluster means. Also shown are level
curves of the elusters, Dark shading corresponds to membership degrees around 0.5,

covariance matrix of the 7th cluster, given by:

v Ef:l prin(zs -~ vi)(ze —vi)T
F N -
Z;.—:l fik

The difference between the matrix F; in (3.18) and the X; defined above is that the
latter does not involve the weighting cxponent me. This is because the two wei ghied co-
variance matrices arise as generalizations of the classical covariance from two different
concepls. £ is the prior probability of selecting cluster 4, given by:

(3.200

1 N
P = ¥ ;uik. (3.21)

The membership degrees py). are interpreted as the posterior probabilities, Lik =
h{ilzy). of selecting the ith cluster given the data point z;. The iterative scheme
of the FMLE algorithin (3.3) is very similar o that of the GK algorithm, Gath and
Geva (1989) reported that the FMLE algorithm is able to deteet clusters of varying
shapes, sizes and densities. This is because the cluster covariance matrix is used
in conjunction with an “expenential” distance, and the clusters are not constrained
in volume. However, FMLE needs a good initialization, as due to the exponential
distance norm, it tends to converge Lo a neat local optimum,

3.5 Clustering with Linear Prototypes

In the algorithms described so far, the clusters are represented by their prototypical
points (centers), v; € B™, i.e., geometrical structures of the same “type” as the data.
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Algorithm 3.3 (Fuzzy maximum likelihood estimate clustering)

Given the data set Z and a good initial partition matrix U € My,
choose the termination tolerance € > 0,

Repeat forl = 1,2,...

Step I: Compute cluster prototypes {means):

N
n _ open Hip %k ..
vy = PN"'l—(ﬁ, <iZe.
=1 Mg

Step 2: Compute cluster covariance matrices and prior
probabilities:

{1 l) AN _ KT
%= i M o EJ(Z* Vil ici<e
k=1 Hik
Z;“ Yo1gi<e.
Step 3: Compute the distances:
det(%)]'/* 1
Dys, = L—%“GXP[Q(M#VU) £ (g — v,

1<i<e 1<ESN,
Step 4: Update the partition matrix:
ifDpy, >0 for 1<i<e, 1<k<N,

. !
h E_‘Lf:l(DikE{ /-Dj.’x‘Ei )Qf(m,—l) !

otherwise

#Ei} =0if Dyx;, >0, and P ) ¢ [0,1] with Zr“:f =

i=1

until JUW - U8 Y] < e

G
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The FCM algorithm uses a fixed distance norm, and thus strongly prefers clusters ofa
seometrical shape induced by thut norm. The GK and FMLE algorithms remedy this
drawback by locally adapting the distance norm. A conceptually different approach
is to define the prototypes as r-dimensional linear or nonlinear subspaces of the data
space, where 0 < 7 < n — 1. Algorithms based on this approach are reviewed in the
following sections.

3.5.1 Fuzzy c-Varieties

The main idca of the fuzzy c-varieties (FCV) algorithm (Bezdek, et al., 1981a) is to
measure the distances ol data from 7-dimensional linear varieties, i.e., lines (r = 1),
plancs (1 = 2) ot hyperplanes (2 < r < n). This family of algorithms can detect
clusters lying in 7-dimensional linear subspaces of R™. The corresponding objective
functional is given by;

[a—

A2 UV = > (win)" Dl (3.22)

=1 k=1

where V. is a set of ¢ linear r-dimensional varieties V. = (%r1str2y-- - Pre). and D;'?ik
is a squated orthogonal distance from zg, to the lincar variety vr;:

T

D%y = llzw — vl = D (s — viysi)” - (3.23)

i=1

(81,542, ..., 5¢) is an r-tple of linearty independent vectors spanning the variety
U5, Vi is a point through which the variety passes, and {-,-) denotes the scalar product.
The functional Jv (Z; U, V) attains its local minimum with respect to U if and only
if the conditions (3.9) hold and s;; is the unit cigenvector of the clusler covariance
matrix (3.18) corresponding to the jth largest cigenvalue (Bezdek, et al., [981a}. By
substituting the distance measure (3.23) into eq. (3.9a), the FCV algorithm (3.4) follows
as & straightforward generalization of FCM. A major drawback of the FCV algorithm
is that the linear varicty is not limited in size, and thus the algorithm tends to connect
collinear clusters that may be well separated. Moreover, FCV also does not partition
correctly when the sizes of the varieties vary [rom cluster to cluster. In such case, the
algorithm usually gets stuck in poor local minima (Dave, 1992).

3.5.2 Fuzey c-Elliptotypes

The fuzzy c-elliptotypes (FCE) algorithm (Bezdek, el al., 1981b) atiempts to alleviate
some of the drawbacks of the fuzzy c-varicties algorithm by forcing cach cluster to
have a center ol gravity v;, and by measuring the distance as a convex combination of
the FCM and FCV distances:

Dyir = oDy + (1 — ) Dyig, {3.24)
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Algorithm 3.4 (Fozzy c-varicties}

Given the data set Z, choose the number of clusters 1 < ¢ < iV, the
weighting exponentm > 1, the dimension of the prototypical varicties
{ < r < nand the termination telerance e > 0. Initialize the pastition
matrix randomly, such that U9 € Mg,

Repeatfor!=1,2,...

Step 1: Compute cluster centers (means):

(-1,
L= E.k:l Hik

i N (- 1) i
k=1 ik

Step 2: Compute cluster covariance matrices:

N T VS {
IV R G i

FE”: 1<ISC.

N I— ! —
s (!‘t’gk 1) )m.

Step 3: Extract principal eigenvectors. Extract from each FE” its

r principal eigenvectors qE J}, i =1,2,...,r (eigenveclors coures-

ponding to the 7 largest eigenvalues).

Step 4: Compute the distances:

r

2 (Iip2 (1 13
o= e — v = e - v s
| P

l<i<e, 1<EEN.

Step 5: Update the partition matrix:
ifD >0 for 1<i<e 1< k<N,
o ]
ik Ej:l(Drik/Drjk}gﬂm—l) !

otherwise

M”*D if Dy > 0, and ,u(]e[(]l with Zﬂ{]*l

i=1

until UG —UE-D)| <e.

67
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where v € {0, 1], Dy is the Euclidean distance of 2z, from v, (3.10), and Dy, 1s given
by eq. (3.23). Substituting equations (3.10) and (3.23} into (3.24) yields:

T
Do = (2~ vi) (2 — vi) — Z(Zk —vi,s5)%. (3.25)

s=1

The first term in this expression measures the distance from the cluster center, and thus
restricts the cluster size. The geometric interpretation of eq, (3.25) is that the level
surfaces of the convex combinations Dy are hyperellipsoids obtained by stretching a
iypersphere defined by the Euclidean norm in the directions of vectors s4;. The FCE
algorithm 1s identical to FCV, with the cxcepiion that (3.25) is used to compute the
distances and that the mixing coefficient ¢ must be defined.

As shown in Section 4.4.2, the FCE algorithin does not completely correct the
problems of FCV. Moreover the valuc for e must be chosen carefully. If & is common
to all elusters, the algorithm will seck clusters of the same elliptical shape, Techniques
have also been proposed to adaptively select the mixing coefficient « for each cluster
(Gunderson, 1983),

3.5.3 Fuzzy c-Regression Models

The last Juzzy clustering algorithm presented in this chapter is the fuzzy c-regression
models (FCRM) algorithm proposed by Hathaway and Bezdek (1993h), This algorithm
estimates parameters of ¢ regression models together with a fuzzy c-partitioning of the
data, The regression moedels take the general form

Y = fi(x; 0:), (3.26)

where the functions f; are parameterized by @; € RP. The membership degree
fir € Uisinterpreted as a weight representing the extent to which the value predicted
by the model f;(xy; #;) matches yi. The prediction error is defined by:

Eul0) = [y — filxe: 0] 3.27)

but other measures can be applied as well, provided they fulfilt the minimizer property
stated by Halhaway and Bezdek (1993b). The family of objcctive functions for fuzzy
c-regression models is defined for U € My and (8y,...0,) € B? xRBP %, x 3re
by:
c N
Enl{U,{6:1) =5 ()" Eal6) - (3.28)
i=1 k=1

One possible approach to minimize the objective function (3.28) is the grouped co-
ordinate minimization method (Hathaway and Bezdek, 1991a), givenin Algorithm 3.5,

A specific situation for Step | of the algorithm arises when the regression functions
fi in (3.26) are linear in the parameters #,. I[n such a case, the paramelers can be
obtained as a solution of a weighted least-squares problem where the membership
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Algorithm 3.5 (Fuzzy c-regression models)

Given a set of data Z = {(x1,91),...,(Xv.yn)}. specify ¢, the
structure of the regression models (3.26) and the error measure (3.27).
Choose the weighting exponent 71t > 1 and the termination tolerance
¢ > (1. Initialize the partition matrix randomly, such that U™ € Ady..

Repeatfor! = 1,2,...

Step 1: Calculate values for the model parameters 6; (hat globally
minimize the function E,,I(U“], {6:1).

Step 2: Update the partition matrix:

[.L[-I’} = . 1 .
ik Z;=](Eik/Ejk)2/lln—l)

1<i<e 1<k<N.

if B = 0 for some 1 = g, sel prgr = 1 and . = 0, Vi # s.

until {{UN — GU-D|f < e,

degrees of the fuzzy partition matrix U serve as the weights. Define the matrix
X 2 BV*P the vectory € RY | and the matrix W; € BY*Y | as follows:

x;: Y1 il 0 e {)
x= Ty | MW= | DR T (329
XE{: .7];\-’ 0 O - plj N
The optimal parameters 8; are then computed by:
0; = [XTW.X.| " XTW.y. (3.30)

The FCRM algorithm suffers from the same drawback as the FCV algorithms, as the
clusters are not imited in size. The advantage of the algorithm is that is can also fit
locally nonlincar models to data, such as polynomials, which are still linear in their
parameters and hence lead to a linear estimation problem in Step 1 of Algorithm 3.5

3.6 Possibilistic Clustering

The clustering approaches derived from the FCM functionals use the “probabilistic”
constraint (3.5b), which states that the sum of membership degrees ol cach data point
equals one. [t has been recognirzed that the membership degrees generated by FCM-
based algorithms do not always correspond to the degree of typicality. These problems
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arise in situations, where the total membership of a data point to all the clusters does
not equal one, as in the presence of outlicrs, see Example 3.3. Several approaches have
been suggested to replace (3.5b) by a less restrictive constraint. The method proposed
by Krishnapuram and Keller (1993) uses the following objective function:

c N

J(Z, U, V) = Z Z(ﬂik)m

i=1 k=1

2

2 = villd+ Dom (L= wa)™,  (331)
i=1 k=1

where 7; are positive constants. The first term is identical to the FCM objective
function (3.7a). The second term forces the memberships g to be as large as
possible, thus avoiding the trivial solution of the optimization problem, U = 4, which
would occur after simply removing constraint (3.5b). Note that the columns in U are
now Independent, which makes it possible to decompose the global objective function
3.31) ino ¢ individual objective functions for the ¢ clusters. Differentiating with
respect to U and setting to zero leads to the following necessary condition for p;.:

1
) 2/{m=-1)"?
()

ik = (3.32)

m

where D%, , = [lz; — v;||4 is the squared inner-product norm. The necessary con-
ditions for the protolypes v; are identical to the corresponding conditions for FCM
and its derivatives. The value of 7; determines the width of the resulting possibility
distribution and simultancously specifies the relative weighting of the second term in
{3.31). The same value may be chosen for all clusters, if they all are expected to be
similar, or it can be chosen based on the initial partition, in proportion to the average

intra-cluster distance: "
o et )™ D
T = W .

r=1 ()™
The hasic “possibilistic” e-means (PCM) algorithm, which follows as a siraightforward
generalization of the FCM iteration, is given in Algorithm 3.6

Ax mentioned above, by removing the constraint (3.5b), the membership functions
of the ¢ clusters become independent of coch other. This makes PCM more sensitive
to initialization, since nothing prevents the algorithm from converging to degenerate
possibilistic partitions where all clusters are identical, or very similar to each other.
Typically, FCM may be used io find an initial partition for PCM. The concept of
possibilistic clustering has also been applied to the GK algorithm and other FCM
derivatives (Krishnapuram and Keller, 1993).

(3.33)

Example 3.6 To illustrate the dilference belween FCM and PCM, these two al-
sorithms are applied to an artificial data set, similar to the set in Example 3.1. In
hoth cases, the settings of the paramelers are: A; = I for all clusters, i = 2 and
e = (.61, The FCM algorithm is initialized with a random partition matrix, and the
PCM with the partition generated by FCM. In the foliowing, we refer {o the left cluster
as cluster [ and to the right cluster as cluster 2.

By comparing the level curves in Figure 3.7a and Figure 3.7b, one can see that
the membership degrees generated by the possibilistic algorithm correspond to the
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Algorithm 3.6 (Possibilistic c-means (PCM))

Given the data set Z and a good initial partition U € M,,. choose
the number of clusters 1 < ¢ < N, the weighting exponent m > 1,
{he termination tolerance € > 0 and Lhe norm-inducing matrix A. Es-
fimate 1; using (3.33).

Repeat for ! =1,2,...

Step 1: Compute cluster prototypes (means):

N I—1)4y
TS S0 (1) L. SR
P N J “_1 - ] -~ = cC.
2= i ))

Step 2: Compute the distances:
D2, = (z - VOV A —vl), 1Sige 1Sk N,

i

Step 3: Update the partition mairix:

() L 1<i<e 1<kE<N. ,
2/ {m—1) - —_ = H
14+ (D{k}\) .

T

until [UE U <e l

distances from the cluster prototype, and that they are not influenced by the neighboring
cluster (the levet curves generated by PCM are almost circular while in the case of
ECM they are distorted near the cluster boundary).

Note also that the performance of PCM is not influcnced by the presence of the
outhier A, As expected, the membership degrees assigned to this point by FCM are
p(A) = [0.4973, D.SOQT]T, thus approximately equal to the membership degrecs of B,
p(B) = [0.4931, 0.5069]7. Itis obvious that point B is much closer to the prototypes
of bath clusters than A, and thus should have a grealer degree of membership. The
PCM algorithm accounts for this difference by assigning much lower membership
degrees to A than 1o B (p(4) = [0.0215, 0.0244) and p(B) = [0.1147}0.1263]3",
respeetively).

Further, it is interesting to note that the possibilistic partition correctly reflects the
symmetrical form of the clusters (the level curves in Figure 3.7b are almost circular),
This observation cun be confirmed by examining the memberships of points & and
D that are both approximately at the same distance from the center of cluster 1.
Since, in the luzzy partition, the membership degrees are relative (o the distance
from a point Lo all the clusters, point (' receives greater membership in the cluster 1,
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(a) Fuzzy clustering. (b Possibilistic clustering.

Figure 3.7. Comparisen of the partitions generated by fuzzy and possibilistic c-means
algorithms.

({C) = [0.9234,0.0766]7, than point D with (D) = [0.7367,0.2633]7 which is
closer to cluster 2. The PCM algorithm considers points € and D equally typical for
ciuster | and assigns them similar membership degrees 2(C) = [0.1300,0.0177]7 and
p{D) = [0.1935,0.0832]" respectively. ]

3.7 Determining the Number of Clusters

When clustering real data without any a priori information about the data structure, onc
vsually has to make assumptions about the number of underlying subgroups (clusters)
¢ in the data. The chosen clustering algorithim then searches for ¢ clusters, regardless of
whelher they are really present in the data or not. Two main approaches to determining
the appropriate number of clusters in data can be distinguished:

B Clustering data [or different values of ¢, and using validity measures to assess
the goodness of the obtained partitions. Different scalar validity measures have
been proposed in the literature. Scetion 4.5.1 gives an overview of validity meas-
urcy used with the adaptive dislance clustering algorithms, and demenstrates their
performance on several examples.

B Starting with a sufficiently large number of clusters, and successively reducing
this number by merging clusters that are similar (compatible) with respect to some
predefined criteria. This approach, called compatible cluster merging, 1s presented
in Section 4.5.2.

3.8 Data Normalization

Distance norms are sensitive to variations in the numerical ranges of the different [ea-
tures. The Euclidean distance, for cxample, assigns more weighting to features with
wide ranges than to those with narrow ranges. The result of clustering can thus be neg-
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atively influenced by, for instance, choosing different measurement units, In pattern
recognition literature, it is often suggested that the data should be appropriately nor-
malized before clustering (Jain and Dubes, 1988). The simplest type of normalizatich
is the subtraction of the feature means Z;:

Lt = o 2
ij'; — .ij - zj, (3.34)

which makes the [eature values invariant to rigid displacements of the coordinates.
The asterisk denotes the raw (unscaled) data. Another type of normalization translates
and scales the axes so that all the features have zero mean and unit variance:

Z5) -
Zjg = SR = (333)

However, normalization is not atways desirable, as it may alter the separation between
clusters and negatively influence the results of clustering. It turns out that clustering
algorithms hased on adaptive distance measure. see Section 3.4, are less sengitive to
data scaling, since the adaptation of the distance measure automatically compensales
for the differences in scale. The following example iflustrates this property.

Example 3.7 An artificial data set contains fwo well-separated clusters which are
relatively far apart along the horizontal axis. The clusters arc practically linear and
parallel to the vertical axis. Figure 3.8ashows level curves of a fuzzy partition obtained
with the ECM algorithm on the original (unscaled data).

.|~'|'I?M‘.!\l" |
| ‘.»!‘ﬁ\lj\\l

|
ik

N
|

| 'i.llinl

(1) Original data. (&) Normalized data.

Figure 3.8. The fuzzy c-means algorithm is sensitive to the scaling (normalization) of
data. The dots represent the data points, the circles ave the cluster means.

Because of the large distance hetween the two clusters, FCM is able to pick the
cluster shapes quite r;:p;jrectly.r'ljl;e same algorithm was applied to data normalized by
eq. (3.35). Note that the scalesin Figure 3.8a and Figure 3.8b are different. Since the
distance between the clusters hecomes considerably smaller due to scaling, the partition
reflects the influence of the two clusters on each other, and the geomeirical shape of
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the clusters no longer corresponds to the underlying data structure. Figure 3.9 gives
the results for the GK algorithm. Note that almost identical paititions are obtained for
both the raw and the normalized data sets. ]
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{a} Original data. {b) Normalized data.

Figure 3.9. The Gustafson-Kessel algorithm is less sensitive to the data scale. The dots
represent the data points, the circles are the cluster means.

3.9 Summary and Concluding Remarks

Fuzzy clustering is a powerful unsupcrvised method for data analysis. A laree number
of clustering algorithins have been proposed in the literature, and applied to a varicty
of real-world problems. In this chapter, methods that can be used to detect clusters
contatned in subspaces of the data space have been presented. These methods can
be applied to the approximation of nenlinear systems, and can facilitate the task of
huilding and analyzing medels of complex systems based on numerical data, as shawn
m Chapter 3. This particular aim imposes some requirements on the performance and
validation of the clustering algorithms that may be quite different from those usnally
considered in the pattern recognition literature. A discussion of this issue and analysis
of the sclected algorithms is presented in the following chapicr.



