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Part I

Introduction

Applications that Require Sensors:

1. Nature: Animals & humans navigate and find
objects.

2. Closed loop control systems for multivariable
process control (eg. controlling chemical plant).

3. Robotics - Autonomous vehicle navigation.

4. Control of an engine (integrate temperature, pres-
sure measurements)

Chapter 1 in the first recommended text book
below gives a good introduction of the use of sensor
fusion in nature.
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Course Contents

My part of “Sensor Fusion” will comprise:

1. Sensors in Autonomous Robotics (Sensor Mod-
elling).

2. Combining Information – Data Fusion

3. System Models – Models for fusing past and
present sensor information.

Sensor Fusion examples are many – I will draw
many examples from an interesting (my!!!) re-
search field – Robotics.
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Recommended Text Books

These notes take material from many research
papers, too many to mention here.

4 good text books (used here) are:

1. Mongi A. Abidi & Rafael C. Gonzales, “Data
Fusion in Robotics & Machine Intelligence”,
Academic Press 1992.

2. Martin D. Adams, “Sensor Modelling, Design
& Data Processing for Autonomous Naviga-
tion”, World Scientific Publications 1999.

3. S.M. Bozic, “Digital & Kalman Filtering”,
Edward Arnold Publishers, 1979.

4. J. Borenstein, H.R. Everett & L. Feng, ”Where
am I? Sensors and Methods for Mobile Robot
Positioning”,

http : //www.personal.engin.umich.edu
j̃ohannb/position/htm
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Part II: Sensors in Engineering
Applications

Sensors used in Tracking and Robotics:

1. Cameras - Use of Vision in Tracking and Robotics.

2. Active Triangulation Sensors.

3. LADAR - Laser Detection and Ranging Sen-
sors.

4. RADAR - Radio Detection and Ranging Sen-
sors.

5. SONAR - Sound Navigation and Ranging Sen-
sors.
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Stereo Vision for Range Determination

Range calculated from difference between 2 im-
ages.

• Disparity between two images,

• Finding absolute orientation of cameras,

• Computation of depth,

• Research Issue: Finding conjugate points.
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Stereo Vision for Range Determination

Parallel and skewed baseline stereo systems.
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Stereo Vision: Disparity

Simple Case: 2 cameras, both optical axes par-
allel.

(x , y )l l r r(x , y )

Origin lens 2lens 1

f

(x, y, z)

(b/2)(b/2)

y
x

z

Global

Measure xl, yl, xr and yr w.r.t. centres of left
and right lenses respectively.
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Stereo Vision: Range Calculation

xl

f
=

x + b/2

z
and

xr

f
=

x − b/2

z
(0.1)

coordinates x, y, z of the point P measured w.r.t.
global origin.

Out of the plane of the page:
yl

f
=

yr

f
=

y

z
(0.2)

where f is the distance of both lenses to the image
plane. Note from equations 0.1 that:

xl − xr

f
=

b

z
(0.3)

this difference in the image coordinates, xl−xr =
disparity. Solving (0.1 and 0.2):

x = b
(xl + xr)/2

xl − xr
, y = b

(yl + yr)/2

xl − xr
, z = b

f

xl − xr
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Stereo Vision: Range Calculation

Actual coords. calculated from image coords:

Left Image Right Image

y

x x

yl

l r

r

x = b
(xl + xr)/2

xl − xr
, y = b

(yl + yr)/2

xl − xr
, z = b

f

xl − xr
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Stereo Vision: Range Calculation

Observations from these equations:

1. Distance is inversely proportional to disparity.
Distance to near objects can be measured more
accurately due to greater number of image pix-
els between corresponding points.

2. Disparity is proportional to b. For a given dis-
parity, accuracy of depth estimate increases with
increasing baseline b.

3. As b is increased, some objects may appear in
one camera image, but not in the other.

4. 1 point visible from both cameras produces a
pair of image points – a conjugate pair. Each
image point lies on a line – the epipolar line.
(Here all epipolar lines parallel to x-axis – in
general not true, see below).
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Stereo Vision: General Case – Camera
Orientation

Above idealised case difficult – not easy to align
two cameras parallel to each other and perpendic-
ular to their common baseline.

More useful to turn the cameras a little towards
each other – their optical axes come closest within
region of interest.
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Stereo Vision: General Case

Absolute orientation vectors are necessary to
solve this.

x

y

z

z

x

y
r

r

r

l

l

l

r

r

l

r

P

Left camera coordinate system right camera coordinate system

rl = (xl, yl, zl) = position vector of P measured
in left image,
rr = (xr, yr, zr) = measured in right image,

then:
rr = Rrl + ro (0.4)

R is a 3 × 3 rotation matrix and ro = offset trans-
lation vector between two cameras.
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Stereo Vision: General Case

Expanding equation 0.4 gives:

r11xl + r12yl + r13zl + r14 = xr (0.5)

r21xl + r22yl + r23zl + r24 = yr (0.6)

r31xl + r32yl + r33zl + r34 = zr (0.7)

r11 = first element of R r14 = first element of
vector ro.

Above equations have two uses:

1. rr could be found if R and ro and rl were
known.

2. The system could be calibrated and r11, r12...
found, given corresponding values of xl, yl, zl, xr, y
and zr.

To carry out task 2 – 12 unknowns requiring 12
equations!

Hence – for a given scene, 4 conjugate points
required for complete calibration.
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Stereo Vision: General Case

Definition: Epipolar Line – Intersection of
plane containing image point (in environment) and
centre points of each camera lens, with each image
plane produces epipolar lines in each image plane.

An object imaged on the epipolar line in the
left image can only be imaged on the correspond-
ing epipolar line in the right image (if it is im-
aged at all).
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Stereo Vision: Calculating Depth

Actual points xl, yl etc not known, only their
projections x′l, y′l etc. known.

Given focal lengths of the cameras is f :

x′l
f

=
xl

zl
and

y′l
f

=
yl

zl
(0.8)

From eqns. 0.5, 0.6, 0.7 and 0.8 depths zl and zr

can be computed from any two of the equations:
(

r11
x′l
f

+ r12
y′l
f

+ r13

)

zl + r14 =
x′r
f

zr (0.9)

(

r21
x′l
f

+ r22
y′l
f

+ r23

)

zl + r24 =
y′r
f

zr (0.10)

(

r31
x′l
f

+ r32
y′l
f

+ r33

)

zl + r34 = zr (0.11)

rl and rr can then also be found.
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Stereo Vision: Finding Conjugate Points

Key problem in stereo vision:

How to solve correspondence problem – which
points truly correspond in each image?

Basic principle: Study each image separately –
extract features such as:

• Distinctive gray-level patterns that can be matched
with confidence (eg. edges).

• Gray-level corners (eg. where brightness surface
has nonzero Gaussian curvature).
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Stereo Vision: Gray Level Matching

Consider smooth surface: Neighbouring points
will map onto neighbouring points in both images.

Therefore match gray-level waveforms on corre-
sponding epipolar lines.

Define brightness as image irradiance (power of
radiant energy per unit area).

Gray-level at given pixel in an image corresponds
to the image irradiance E(x′l, y

′
l) at pixel (x′l, y

′
l).

Gray-level matching: Find a function z(x, y) by
searching for points in both images such that:

El(x
′, y′) = Er(x

′, y′) (0.12)

l and r subscripts are image irradiance functions
for left and right images.
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Stereo Vision: Gray Level Matching

For simple geometrical configuration of equal base-
line stereo, and eqns 0.1 and 0.12:

El

(

f
x + b/2

z(x, y)
, y′
)

= Er

(

f
x − b/2

z(x, y)
, y′
)

(0.13)
Transforming to image coordinates:

x′

f
=

x

z
and d(x′, y′) =

bf

z
(0.14)

In order to check neighbouring pixels, a disparity
function d(x′, y′) must be found, such that:

El

(

x′ +
1

2
d(x′, y′), y′

)

= Er

(

x′ − 1

2
d(x′, y′), y′

)

(0.15)

Problem – find pairs of pixels on correspond-
ing epipolar lines where equation 0.15 is approx.
obeyed, and z(x, y) and d(x′, y′) are smooth.
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Stereo Vision: Other Matching Methods

Problems with Gray Level matching – If conju-
gate patches in both images have similar brightness
patterns.

Possible solutions:

• Correlation

Take a patch from one image, correlate with
all patches along the corresponding epipolar
line in other image. Point with highest cor-
relation chosen.

See Horn for more details.

• Edge Matching

First find any edges (sudden brightness dis-
continuities) in images then correlate the edges
between the two images.

See for example Ayache for more details.

EL7021 - Robotics & Autonomous Systems
slide-20



Optical Sensing – Controlling the
Illumination

Stereo vision for range estimation – difficult!:

• Correspondence Problem.

• Disparity problems (Occlusions).

• Illumination (shadows).

Possible solution: Control illumination.

Known as active sensors.

Correspondence/illumination problems eliminated.
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Example: Active Triangulation

LASER – Camera Triangulation System:
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Example: Active Triangulation

x

z

P(x, z)

f

u

Θ
b

Image Sensor

Projector
Light

Geometrical method – measure θ and u.

Imaging sensor: Eg: Camera or array of photo-
diodes.

x =
bu

f cot θ − u
, z =

bf

f cot θ − u
(0.16)
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Example: Active Triangulation

f = distance of lens to imaging plane.

Measure θ and u – Actual coordinates x and z
can be determined

Sensor Performance:

Triangulation Gain Gp = ratio of image resolu-
tion to range resolution.

∂u

∂z
= Gp =

bf

z2
(0.17)

Note that Range Accuracy from 0.17:

• for given image resolution is proportional to source
detector separation b.

• for given image resolution is proportional to fo-
cal length f .

• decreases with square of range z.
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Example: Active Triangulation

Hence accuracy in range measurement depends
on range itself!

Also necessary to know angle θ of scanning mech-
anism.

From equation 0.16:

∂θ

∂z
= Gθ =

b sin2 θ

z2
(0.18)

ie:- change in scanning angle θ, which must be
resolved for given change in range z, dependent on
range and scanning angle itself.
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Example: Active Triangulation

Notes regarding triangulation sensors:

1. Baseline length b: Smaller b = more compact
sensor. Larger b – better range resolution.

Disparity problem - as baseline b increased, il-
luminated point may not be visible at receiver.

2. Detector length and focal length f : Increas-
ing receiver length can improve range resolution
and/or field of view. However, increase in de-
tector length = larger sensor, worse electrical
characteristics – increase in noise and reduction
of band-width.
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LASER Detection and Ranging (LADAR)

LADAR – range finder emits electro-magnetic
wave – eliminates disparity problem by keeping
transmitted and received beams coaxial.

Phase

Measurement

Beam Splitter

Transmitted Beam

Reflected Beam

Target
P

D

Transmitter

T

L
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LASER Detection and Ranging (LADAR)

Transmitter illuminates target with collimated
beam.

Receiver detects component reflected coaxially
with transmitted beam.

Range estimate from:

• Time of flight (TOF) of transmitted light,

• Amplitude modulated continuous wave (AMCW)
phase measurement,

• Frequency modulated continuous wave (FMCW)
frequency measurement.

Mechanism sweeps light beam to cover required
scene.
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LASER Detection and Ranging (LADAR)

LADAR Indoor Range & Amplitude Data.
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0
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LASER Detection and Ranging (LADAR)

LADAR Outdoor Range Data.
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LASER Detection and Ranging (LADAR)

Range Measurement Methods include:

• Time of Flight (TOF)

• Amplitude Modulated Continuous Wave (AMCW)

• Frequency Modulated Continuous Wave (FMCW)
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LADAR – Range Estimation

AMCW Range Estimation.

Modulate light wave with a sine wave:

c = fλ

c = speed of light = 3× 108 ms−1. For modula-
tion frequency 10 MHz, λ = 30m.

For λ = 30m, max. range = 15m (light travels
from sensor to target and back!)

0 θ

λ

Amplitude / volt

Phase / metreTransmitted Wave

Reflected Wave
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LADAR – Range Estimation

Range R ∝ phase shift between transmitted and
received light signal.

R =
θ

2π

λ

2
=

θc

4πf
(0.19)

Note: Phase shift repeats every 2π rads.

Ambiguity interval – AMCW technique only mea-
sures range up to max. λ

2 = c
2f .

Received signal given by:

Vrec = VR sin(ωt + θ) (0.20)
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LADAR – Effect of Noise on Range

Received signal amplitude corrupted with noise
with standard deviation σamp.

Since Range ∝ Phase, amplitude noise produces
phase noise along ωt axis.

From “Noise Triangle”:

σamp

σphase
=

∣

∣

∣

∣

∂Vrec

∂(ωt)

∣

∣

∣

∣

Vrec=0
(0.21)
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LADAR – Effect of Noise on Range

Substitute equation 0.20 into 0.21:

σamp

σphase
= |VR cos(ωt + θ)|Vrec=0 = VR

Therefore:

σ2
range ∝ σ2

phase =
σ2

amp

V 2
R

(0.22)

Interpretation: For a constant amplitude noise
variance, range variance in AMCW LADAR is in-
versely proportional to square of received signal
amplitude.

Makes sense: Larger received amplitude, less range
noise & vice-versa.

Together, equations 0.19 & 0.22 can be used to
derive exact relationship between σ2

range and VR.
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RADAR = Radio Detection & Ranging

RADAR:

• Excellent ability to penetrate rain, fog, humid-
ity.

• Can penetrate many objects – multiple line of
sight targets.

• Expensive!
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RADAR = Radio Detection & Ranging

Single Power – Range Spectrum (Range bin):

Targets
Noise

Problem – Finding targets within noise.
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RADAR = Radio Detection & Ranging

Power – Range relation – RADAR Equation

Received Power P =
PTG2λ2σ

(4π)3R4L
∝ σ

R4

• PT = Transmitted power (constant).

• G = RADAR Antennae gain (constant).

• λ = Electromagnetic radiation wavelength (con-
stant).

• σ = Target RADAR cross section (variable)

• R = Target range (variable).

• L = RADAR losses (assumed constant).
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RADAR = Radio Detection & Ranging

Particular RADAR here uses FMCW method to
estimate range:

RADAR transmits a “Chirp” – signal of increas-
ing frequency in a given time period, and then re-
peats this.

RADAR receiver compares current received fre-
quency with current transmitted frequency. Dif-
ference = Beat Frequency ∝ Range.

Power P also recorded to give entire Range bin.
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RADAR = Radio Detection & Ranging

FMCW Process:
Frequency

Time

f

T
T

p
d

fb

Trans. freq.

Received freq.

Beat Frequency fb =
∆f

Td
Tp (0.23)
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RADAR = Radio Detection & Ranging

But Delay time = dist travelled/speed of radio
wave:

Tp =
2R

c
(0.24)

where R = range, c = speed of radio wave =
3 × 108 m/s.

Hence sub. eqn. 0.24 into 0.23:

fb =
2R

c

∆f

Td
(0.25)

and:

Range R =
fbTdc

2∆f
(0.26)

EL7021 - Robotics & Autonomous Systems
slide-41



RADAR = Radio Detection & Ranging

2D Scanned RADAR Data.
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RADAR = Radio Detection & Ranging

2D Scanned RADAR Data.
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SONAR = Sound Navigation & Ranging

Eg: Polaroid SONAR uses time of flight (TOF).
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SONAR = Sound Navigation & Ranging

Polaroid SONAR – Single transducer.

Initially operates as transmitter – then switches
mode to receiver.

After transmission, transducer settling time after
pulse emission gives minimum recordable distance.

Range reading results when returned echo’s am-
plitude exceeds threshold – time T after transmis-
sion.

For TOF SONAR range r is simply:

r =
vT

2
(0.27)

v = speed of sound in air.
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SONAR = Sound Navigation & Ranging

−4−2024

−4

−3

−2

−1

0
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2

3

4

Sonar

X (metres)

Y
 (

m
et

re
s)

Dashed lines = simple line model of actual envi-
ronment,

Solid line = actual range data recorded from scanned
SONAR, positioned at cross (+).
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Understanding SONAR

SONAR requires correct interpretation (Kuc &
Siegel).

Sonar — The Physics of Reflection

SONAR emits longitudinal pressure wave – wave-
length λ several millimetres.

Two modes of reflection possible:

1. specular or

2. diffuse.

In practice, both occur simultaneously, depen-
dent on wavelength λ of incident wave compared
with roughness R of target.

In general if:

• λ << R – diffuse reflection occurs.

• λ >> R – specular reflection occurs.
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Understanding SONAR

• Visible light 310 nm< λ < 780 nm incident on
wall, since λ << R – diffuse reflection domi-
nates.

• Visible light incident on extremely smooth (flat)
surface (eg: a mirror), λ >> R – specular re-
flection dominates.

• Polaroid SONAR has λ ≈ 7 mm. Most indoor
surfaces λ >> R – specular reflection domi-
nates.

SONAR: Indoor environments “Hall of mirrors”.

Large angles of incidence produce over estimates
in range.

Sound wave undergoes total internal reflection
several times before reaching transducer – Specular
reflection.

EL7021 - Robotics & Autonomous Systems
slide-48



Understanding SONAR – Beam Width

SONAR difficult to focus – wide beam width.

First signal above threshold received anywhere
within receiver’s beam width (acoustic aperture),
gives range reading.

SONAR Reflection from Walls

O A

B

d

d

wall

true

ultrasonic
transducer

Plane of Wall

ψ

EL7021 - Robotics & Autonomous Systems
slide-49



Understanding SONAR – Beam Width

Due to beam width effect, walls appear curved
as Regions of Constant Depth, (RCDs).

−0.500.511.522.533.544.5
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Y
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m
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“For a wall to be visible, the transmitter/receiver
location must have an unobstructed

perpendicular projection to that wall.”
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Understanding SONAR – Corners

SONAR Reflection from Corners

l

d

d d32

1
γ

plane of
emitted
sound wave

ultrasonic
transducer

Any transmitted wavefront within sound cone
will produce range reading d1 + d2 + d3.

For 90o corner, simple geometry shows d1 +d2 +
d3 = 2l for all transducer angles γ.

l = actual perp. distance to corner.

Hence RCD also results.
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Understanding SONAR – Corners

“For corners to be visible, transducer must have
unobstructed line-of-sight to their location.”

Even small 90o corners (eg: door frames), form
strong reflectors for SONAR – termed retro-reflectors.
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Note that the 6 readings in vicinity of corner ‘C’
have approx. same range and form an RCD.
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Understanding SONAR – RCDs

From 1 scan – impossible to determine whether
RCD’s caused by walls or corners.

RCD’s of angles > 10o and range tolerance < 4
cm shown, after extraction from single scan.
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Understanding SONAR – RCDs

How to differentiate between walls and corners?

Observe motion of RCDs from different vehicle
positions.
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• Wall: RCDs translate tangentially along wall.

• Corner: RCDs rotate about corner.
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Understanding SONAR – RCDs

RCD’s extracted from 15 positions superimposed
upon each other.
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Under proposed model – possible to extract most
walls and corners.
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Sensing Applications – Summary

• Stereo Vision – Range estimation possible, dif-
ficult correspondence problem to solve.

• Active triangulation – Correspondence problem
solved, Range estimate improves with disparity,
but occlusions possible.

• LADAR – Correspondence & disparity prob-
lems solved, expensive scanning system required.

• RADAR – Can produce multiple line of sight
targets - expensive.

• SONAR – Cheap, due to large beam-width re-
quires special range interpretation and is slow
to use.

EL7021 - Robotics & Autonomous Systems
slide-56



Part III: Combining Information –
Kalman Filtering

Concepts:

A Kalman Filter finds the optimal estimates of the state of a dynamic

system with measurement and prediction uncertainty.

References

1. S.M. Bozic, “Digital and Kalman Filtering”, 4th Edition, Edward

Arnold, 1986.

2. Peter S. Maybeck, “Stochastic Models, Estimation and Control”,

Volume 1, Academic Press, 1979.

3. Y. Bar-Shalom, X. Rong Li, T. Kirubarajan, “Estimation with Ap-

plications to Tracking and Navigation”, John Wiley & Sons, 2001.
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Combining Information: Introduction

Note 2 Useful Websites:

• http : //www.cs.unc.edu/
˜welch/media/pdf/maybeck ch1.pdf

• http : //www.cs.unc.edu/
˜tracker/media/pdf/
SIGGRAPH2001 CoursePack 08.pdf

Example: A boat at sea with true posi-
tion x.

Sailor
1 2
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Example: Combining Information

Observer/Sailor 1 - not very sure.

He makes measurement z1 and estimates his po-
sition to be x̂1.

Standard deviation in his position estimate = σ1.

E[x̂1] = E[x] and E[(x − x̂1)
2] = σ2

1
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Example: Combining Information

Observer/Sailor 2 - more certain.

He makes measurement z2 and estimates his po-
sition to be x̂2.

Standard deviation in his position estimate = σ2.

E[x̂2] = E[x] and E[(x − x̂2)
2] = σ2

2
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Example: Combining Information

Both measurements and estimates of position are
independent, or:

E[(x − x̂1)(x − x̂2)] = 0

Question: How do we combine both estimates?

Form a new estimate x̂:

x̂ = (1 − W )x̂1 + Wx̂2 (0.28)

W is a weighting coefficient (to be determined).

Taking expectations:

E[x̂] = (1 − W )E[x̂1] + WE[x̂2]

= (1 − W )E[x̂] + WE[x̂] = E[x]

Note: x̂ is an unbiased estimate of x.
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Example: Combining Information

General Note:

For non-random parameters:

x̂ is unbiased iff E[x̂] = x0 - the true value of the
parameter.

For random variables:

x̂ is unbiased iff E[x̂] = E[x].

Aim: Find W so that the variance of the new
combined estimate is minimised.

Subtract equation 0.28 from true value of x to
give error:

x − x̂ = (1 − W )(x − x̂1) + W (x − x̂2)

EL7021 - Robotics & Autonomous Systems
slide-62



Example: Combining Information

Variance of the new estimate is:

σ2 = E[(x − x̂)2]

= E[((1 − W )(x − x̂1) + W (x − x̂2))
2]

= (1 − W )2σ2
1 + W 2σ2

2

since cross terms E[(x − x̂1)(x − x̂2)] = 0.

ie. measurements are independent.

σ2 = (1 − 2W + W 2)σ2
1 + W 2σ2

2

= (σ2
1 + σ2

2)W
2 − 2σ2

1W + σ2
1

= (σ2
1 + σ2

2)

(

W − σ2
1

σ2
1 + σ2

2

)2

+
σ2

1σ
2
2

σ2
1 + σ2

2

Without differentiating, σ2 minimised if

W =
σ2

1

σ2
1 + σ2

2
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Example: Combining Information

Minimum variance is then

σ2 =
σ2

1σ
2
2

σ2
1 + σ2

2

Points to note:

1.
1

σ2
=

1

σ2
1

+
1

σ2
2

ie. σ2 < σ2
1 and σ2

2.

Even poor quality information
improves the overall estimate.
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Combining Information: Points to Note

2. From x̂ = (1 − W )x̂1 + Wx̂2

x̂ =
σ2

2

σ2
1 + σ2

2

x̂1 +
σ2

1

σ2
1 + σ2

2

x̂2

Mean of
new PDF

=
Weighted average of 2
means.

(a) If σ2
1 = σ2

2 (equally “sure”),

x̂ =, Average of x̂1 and x̂2.

(b) If σ2
1 > σ2

2, (trust measurement 2 more),

x̂2 is weighted more than x̂1
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Combining Information: Points to Note
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Combining Information: Points to Note

3.

x̂ =
σ2

2

σ2
1 + σ2

2

x̂1 +
σ2

1

σ2
1 + σ2

2

x̂2

can be rewritten as

x̂ = x̂1 +
σ2

1

σ2
1 + σ2

2

[x̂2 − x̂1]

or x̂ = x̂1 + K[x̂2 − x̂1]

....the form of a Kalman filter,

ie. optimal estimate at time t2
= best prediction at time t1
+ (weight × correction term)

ie. “Predictor” – “Corrector” form.

EL7021 - Robotics & Autonomous Systems
slide-67



Example: RADAR - α − β Tracker

RADAR = RAdio Detection and Ranging.

Aim: Determine Range and Velocity of objects.

Time-of-Flight (TOF) of RADAR pulse = ∆T .

Measured TOF = ∆t1 6= ∆T

Therefore keep transmitting pulses every T sec-
onds, and measure: x(0), x(1), x(2), ..... x(0)

Try to estimate TRUE range/Velocity.

• x(k) = object’s range from kth RADAR pulse
return.

• y(k) = estimate of object’s range after process-
ing.

• ẏ(k) = estimate of object’s velocity after pro-
cessing.

• yp(k) = prediction of objects range at the kth
RADAR pulse, obtained at time (k − 1) ie. be-
fore x(k) measured.
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Example: RADAR - α − β Tracker
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Example: RADAR - α − β Tracker

Prediction:

yp(k) = y(k − 1) + T ẏ(k − 1)

Correction (as in previous example):

y(k) = yp(k) + α[x(k) − yp(k)]

where α > 0.

Velocity estimate:

ẏ(k) = ẏ(k − 1) +
β

T
[x(k) − yp(k)]

where β > 0.

These 3 equations form α − β tracker.

Tune α and β for good response.
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Example: RADAR - α − β Tracker
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Probabilistic Data Association

• Uncertainty lies at the heart of all descriptions
of sensing and data fusion processes.

• Probabilistic models provide a powerful and con-
sistent means of describing uncertainty and lead
naturally into ideas of information fusion and
decision making.

• Alternative uncertainty measurement methods
also described.

• A brief review of probabilistic methods.

• A focus on probabilistic and information theo-
retic data fusion methods.
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Probabilistic Models

• Familiarity with essential probability theory is
assumed.

• A probability density function (pdf) Py(.) is de-
fined on a random variable y,

• generally written as Py(y) or simply P (y).

• The random variable may be a scalar or vector
quantity, and may be either discrete or contin-
uous in measure.

• The pdf is a (probabilistic) model of the quan-
tity y, observation or state.

• The pdf P (y) is considered valid if:

1. It is positive; P (y) > 0 for all y, and

2. it sums (integrates) to a probability of 1;
∫

y
P (y)dy = 1
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Joint Probabilistic Models

• The joint distribution Pxy(x,y) is defined in a
similar manner.

• Integrating the pdf Pxy(x,y) over the variable
x gives the marginal pdf Py(y) as

Py(y) =

∫

x
Pxy(x,y)dx

• and similarly integrating over y gives the marginal
pdf Px(x).

• The joint pdf over n variables, P (x1, ....,xn),
may also be defined with analogous properties
to the joint pdf of 2 variables.

• The conditional pdf P (x | y) is defined by

P (x | y) =
P (x,y)

P (y)

• Has the usual properties of a pdf with x the de-
pendent variable given that y takes on specific
fixed values.
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The Total Probability Theorem

• Chain-rule can be used to expand a joint pdf in
terms of conditional and marginal distributions

P (x,y) = P (x | y)P (y)

• The chain rule can be extended to any number
of variables

P (x1, ...,xn) = P (x1 | x2, ...,xn)...

...P (xn−1 | xn)P (xn)

• Expansion may be taken in any convenient or-
der.
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The Total Probability Theorem

• The total probability theorem

Py(y) =

∫

x
Px|y(y | x)Px(x)dx

• The total probability in a state y can be ob-
tained by considering the ways in which y can
occur given that the state x takes a specific
value (this is encoded in Px|y(y | x), weighted
by the probability that each of these values of
x is true (encoded in Px(x)).
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Independence and Conditional
Independence

• If knowledge of y provides no information about
x then x and y are independent

P (x | y) = P (x)

• Or
P (x,y) = P (x)P (y)

• Conditional independence: Given 3 random vari-
ables x, y and z, if knowledge of the value of z
makes the value of x independent of the value
of y then

P (x | y, z) = P (x | z)

Eg: If z indirectly contains all the information
contributed by y to the value of x.

• Implies the intuitive result

P (x,y | z) = P (x | z)P (y | z)
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Independence and Conditional
Independence

• Conditional independence underlies many data
fusion algorithms.

• Consider the state of a system x and 2 observa-
tions of this state z1 and z2.

• It is clear that the 2 observations are not inde-
pendent

P (z1, z2) 6= P (z1)P (z2)

as they both depend on the common state x.

• However the observations are usually condition-
ally independent given the state

P (z1, z2 | x) = P (z1 | x)P (z2 | x)

• For data fusion purposes this is a good definition
of state.
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Bayes Theorem

• Consider 2 random variables x and z on which
a joint pdf P (x, z) is defined.

• The chain rule of conditional probabilities can
be used to expand this density function in 2
ways

P (x, z) = P (x | z)P (z)

= P (z | x)P (x)

• Bayes theorem is obtained as

P (x | z) =
P (z | x)P (x)

P (z)

• Computes posterior P (x | z) given the prior
P (x) and an observation P (z | x).

EL7021 - Robotics & Autonomous Systems
slide-79



Bayes Theorem – Sensor Models

• P (z | x) takes the role of a sensor model:

– First building a sensor model: Fix x = x and
then ask what pdf on z results.

– Then use a sensor model: Observe z = z and
then ask what the pdf on x is.

– Practically P (z | x) is constructed as a func-
tion of both variables (or a matrix in discrete
form).

– For each fixed value of x, a distribution in z
is defined. Therefore as x varies, a family of
distributions in z is created.
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Bayes Theorem – Example I

• Consider a continuous valued state x, range to
target for example.

• Let z = observation of this state.

• A Gaussian observation model

P (z | x) =
1√

2πσ2
z

exp

(

−1

2

(z − x)2

σ2
z

)

– A function of both z and x.

– Building model: State is fixed, x = x, and
distribution is a function of z.

– Using model: Observation is made, z = z,
and distribution is a function of x.

• Prior

P (x) =
1√

2πσ2
x

exp

(

−1

2

(x − xp)
2

σ2
x

)
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Bayes Theorem – Example I

• Posterior after taking an observation

P (x | z) = C
1√

2πσ2
z

exp

(

−1

2

(z − x)2

σ2
z

)

.
1√

2πσ2
x

exp

(

−1

2

(x − xp)
2

σ2
x

)

=
1√

2πσ2
exp

(

−1

2

(x − x̄)2

σ2

)

where

x̄ =
σ2

x

σ2
x + σ2

z
z +

σ2
z

σ2
x + σ2

z
xp,

and

σ2 =
σ2

zσ
2
x

σ2
z + σ2

x
−→ 1

σ2
=

1

σ2
z

+
1

σ2
x

• Note same result as earlier!!!
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Bayes Theorem – Example IIa

• A single state x which can take on 1 of 3 values:

– x1: x is a type 1 target.

– x2: x is a type 2 target.

– x3: No visible target.

• Single sensor observes x and returns 3 possible
values:

– z1: Observation of a type 1 target.

– z2: Observation of a type 2 target.

– z3: No target observed.
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Bayes Theorem – Example IIa

• The sensor model is described by the likelihood
matrix P1(z | x):

z1 z2 z3

x1 0.45 0.45 0.1
x2 0.45 0.45 0.1
x3 0.1 0.1 0.8

• Likelihood matrix is a function of both x and
z.

• For a fixed state, it describes the probability of
a particular observation being made (the rows
of the matrix).

• For an observation it describes a probability
over the values of the true state (the columns)
and is then the Likelihood Function Λ(x).
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Bayes Theorem – Example IIb

• The posterior distribution of the true state x
after making an observation z = zi is given by

P (x | zi) = αP1(zi | x)P (x)

• α is a normalising constant so that the sum,
over x, of posteriori is 1.

• Assume a non-informative prior:

P (x) = (0.333, 0.333, 0.333)

• Observe z = z1, then posterior is

P (x | z1) = (0.45, 0.45, 0.1)

• The 1st column of the above likelihood ma-
trix (likelihood function given z1) has been ob-
served.
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Bayes Theorem – Example IIb

• Make this posterior the new prior and again ob-
serve z = z1, then

P (x | z1) = αP1(z1 | x)P (x)

= α × (0.45, 0.45, 0.1)

⊗(0.45, 0.45, 0.1)

= (0.488, 0.488, 0.024)

• Note result is to increase the probability in both
type 1 and type 2 targets at the expense of the
no-target hypothesis.
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Data Fusion using Bayes Theorem

• The effectiveness of fusion relies on the assump-
tion that information obtained from different
sources is independent when conditioned on the
true underlying state of the world.

• Clearly

P (z1, ...., zn) 6= P (z1)...P (zn),

since each piece of information depends on a
common underlying state x ∈ X .

• Conversely, it is generally quite reasonable to
assume that the underlying state is the only
thing in common between information sources.

• Hence, once the state has been specified, it is
reasonable to assume that the information gath-
ered is conditionally independent given this state.
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Data Fusion using Bayes Theorem – Eg. I

• A second sensor which makes the same three
observations as the first sensor, but whose like-
lihood matrix P2(z2 | x) is described by

z1 z2 z3

x1 0.45 0.1 0.45
x2 0.1 0.45 0.45
x3 0.45 0.45 0.1

• Whereas the first sensor was good at detecting
targets but not at distinguishing between dif-
ferent target types, this second sensor has poor
overall detection probabilities, but good target
discrimination capabilities.

• With a uniform prior, observe z = z1 then the
posterior is (the first column of the likelihood
matrix)

P (x | z1) = (0.45, 0.1, 0.45)
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Data Fusion using Bayes Theorem – Eg. I

• Makes sense to combine the information from
both sensors to provide good detection and good
discrimination capabilities.

• Overall likelihood function for the combined sys-
tem is

P12(z1, z2 | x) = P1(z1 | x)P2(z2 | x)

• Observe z1 = z1 and z2 = z1 and assuming a
uniform prior, then posterior is

P (x | z1, z1) = αP12(z1, z1 | x)

= αP1(z1 | x)P2(z1 | x)

= α × (0.45, 0.45, 0.1)

⊗(0.45, 0.1, 0.45)

= (0.6924, 0.1538, 0.1538)

• Sensor 2 adds substantial target discrimination
power. Cost – slight loss of detection perfor-
mance for the same number of observations.
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Data Fusion using Bayes Theorem – Eg II

• Repeating this calculation for each z1, z2 obser-
vation pair:

z1 = z1

z2 = z1 z2 z3

x1 0.6924 0.1538 0.4880
x2 0.1538 0.6924 0.4880
x3 0.1538 0.1538 0.0240
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Data Fusion using Bayes Theorem – Eg II

z1 = z2

z2 = z1 z2 z3

x1 0.6924 0.1538 0.4880
x2 0.1538 0.6924 0.4880
x3 0.1538 0.1538 0.0240

z1 = z3

z2 = z1 z2 z3

x1 0.1084 0.0241 0.2647
x2 0.0241 0.1084 0.2647
x3 0.8675 0.8675 0.4706
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Data Fusion with Bayes Theorem – Eg III

• The combined sensor provides substantial im-
provements in overall system performance.

• Eg. Observe z1 = z1 and z2 = z1

P (x | z1, z2) = (0.692, 0.154, 0.154)

• Target 1 most likely – good discrimination!

• However, observe z1 = z1 and z2 = z2 we get

P (x | z1, z2) = (0.154, 0.692, 0.154)

• Target type 2 has high prob. as sensor 1 good at
detection, while sensor 2 good at discrimination.

• If we now observe no target with sensor 2, hav-
ing detected target type 1 (or 2) with the first
sensor, the posterior is (0.488, 0.488, 0.024).

• ie: There is a target (because we know sensor 1
is much better at target detection than sensor
2), but we still have no idea which target (1 or 2)
it is, as sensor 2 did not make a valid detection.

EL7021 - Robotics & Autonomous Systems
slide-92



Data Fusion with Bayes Theorem – Eg IV

• Finally, if sensor 1 gets no detection, but sensor
2 detects target type 1, then posterior given by
(0.108, 0.024, 0.868). That is we still believe
there is no target (sensor 1 is better at provid-
ing this information) and, perversely, sensor 2
confirms this.

• Practically, the joint likelihood matrix is never
constructed (easy to see why) – it becomes huge!

• Rather, the likelihood matrix is constructed for
each sensor and these are only combined when
instantiated with an observation.
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State Space – Dynamic Systems

Nth order differential equation = N , 1st order
differential equations.

Mass spring, damper system (Analogous: L-C-R
Circuit)

M f

k kx

cxc
.

x

Newton’s law:

f − kx − cẋ = Mẍ

f = Mẍ + cẋ + kx (0.29)
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State Space – Dynamic Systems

2 methods of analysis:

1) Laplace “s”-domain transfer function

x

f
=

1

Ms2 + cs + k

2) State space formulation:

Equation 0.29 is a 2nd order differential equation.

Define 2 states

{

x1
x2

}

=

{

position
velocity

}

=

{

x
ẋ

}

ẋ1 = x2

ẋ2 = f−kx1−cx2
M
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State Space – Dynamic Systems

which can be written as:

[

ẋ1
ẋ2

]

=

[

0 1

− k
M − c

M

] [

x1
x2

]

+

[

0
1
M

]

f

ie. ẋ = ax + bu

where u is the input control vector.

In discrete time - similar notation:

x(k + 1) = Ax(k) + Bu(k)

ie.

State at
time k + 1

=
Function of
state’s pre-
vious value

+
Control
input
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RADAR Tracking Revisited

Aim: To derive system and observation
(measurement) models for RADAR track-
ing problems.

System Model:

Vehicle range = R + ρ(k) at time k.

T seconds later – range = R + ρ(k + 1) at time
k + 1.

Vehicle’s radial velocity = ρ̇(k).

Assuming small T

R + ρ(k + 1) = R + ρ(k) + T ρ̇(k)

NOTE: Same as range prediction from α – β
tracker.

ρ̇(k + 1) = ρ̇(k) + u(k)

Acceleration on average = 0. i.e. u(k) ≈ N(0, σ2
u).
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RADAR Tracking Revisited

Acceleration is uncorrelated between intervals:

i.e. E[u(k + 1)u(k)] = 0

Acceleration has known variance (wind gusts, er-
ratic engine thrusts):

E[u2(k)] = σ2
u.

Define:

x1 = ρ(k) and

x2 = ρ̇(k)

x1(k + 1) = x1(k) + Tx2(k)

x2(k + 1) = x2(k) + u(k)

Matrix form:
[

x1(k + 1)
x2(k + 1)

]

=

[

1 T
0 1

] [

x1(k)
x2(k)

]

+

[

0
u(k)

]

i.e.
x(k + 1) = Ax(k) + v(k)
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RADAR Tracking – Observation Model

In general the A matrix coefficients can also be
time varying → A(k).

Suppose we now want to estimate:

Range ρ(k),
Radial velocity ρ̇(k),
Bearing θ(k),
angular velocity θ̇(k).

θ

(k)

0

y

x

RADAR rotates
about z−axis
through 0

R+ ρ

(k)
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RADAR Tracking – Observation Model

State vector is: x(k) =









ρ(k)
ρ̇(k)
θ(k)

θ̇(k)









Only measurements of range y1(k) and bearing
y2(k) are made + noise w1(k) and w2(k)

[

y1(k)
y2(k)

]

=

[

1 0 0 0
0 0 1 0

]









ρ(k)
ρ̇(k)
θ(k)

θ̇(k)









+

[

w1(k)
w2(k)

]

which is of the form

y(k) = Cx(k) + w(k)

where w(k) is the measurement noise vector at
time k.

EL7021 - Robotics & Autonomous Systems
slide-100



General Kalman Filter Algorithm

General 1st order dynamic system model:

x(k + 1) = F(k)x(k) + G(k)u(k) + v(k)

Observation (measurement) equation:

z(k) = C(k)x(k) + w(k)

Aim: starting with x̂(j | j) and P(j | j) find
optimal estimate x̂(k + 1 | k + 1) and
P(k + 1 | k + 1).
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General Kalman Filter Algorithm

Kalman filter algorithm:

1. Filter Initialisation.

Find x̂(j | j) and P(j | j) for some value of j
(example later!).

2. Filter Prediction.

x̂(k + 1 | k) = F(k)x̂(k | k)) + G(k)u(k)

subtract prediction from true state:

x̃(k + 1 | k) = x(k + 1) − x̂(k + 1 | k)

= F(k)x̃(k | k) + v(k)

P(k + 1 | k) = E[x̃(k + 1 | k)x̃T (k + 1 | k)]

= E[(F(k)x̃(k | k) + v(k))(F(k)x̃(k | k) + v(k))T ]

= F(k)E[x̃(k | k)x̃T (k | k)]FT (k) + E[v(k)vT (k)]

since v(k) and x̃(k | k) are uncorrelated.

= F(k)P(k | k)FT (k) + Q(k)

where Q(k) = E[v(k)vT (k)] is the system co-
variance matrix.
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General Kalman Filter Algorithm

Note cancellation of control input u(k) – it has
no effect on prediction accuracy.

3. Predicted Observation

ẑ(k + 1 | k) = C(k + 1)x̂(k + 1 | k)

4. Innovation. True - predicted observations.

z̃(k + 1 | k) = z(k + 1) − ẑ(k + 1 | k)

= C(k + 1)x̃(k + 1 | k) + w(k + 1)

5. Measurement Prediction Covariance (Vari-
ance of the Innovation).

S(k + 1) = E[z̃(k + 1 | k)z̃T (k + 1 | k)]

= E[(C(k + 1)x̃(k + 1 | k) + w(k + 1))

(C(k + 1)x̃(k + 1 | k) + w(k + 1))T ]

= C(k + 1)E[x̃(k + 1 | k)x̃T (k + 1 | k)]CT (k + 1)

+E[w(k + 1)wT (k + 1)]

= C(k + 1)P(k + 1 | k)CT (k + 1) + R(k + 1)

R(k + 1) = measurement covariance matrix.
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General Kalman Filter Algorithm

6. Kalman Gain. Weighting Factor. Weighting
between prediction & innovation. → Derived
from orthogonal equations.

Definition: W(k + 1) = Covariance between
state and measurement × inverse of measure-
ment prediction covariance S−1(k + 1).

Note similarity to
σ2

1
σ2

1+σ2
2

Covariance between state & measurement:

Pxz = E[x̃(k + 1 | k)z̃T (k + 1 | k)]

= E[x̃(k + 1 | k)(C(k + 1)x̃(k + 1 | k) + w(k + 1))T ]

= E[x̃(k + 1 | k)x̃T (k + 1 | k)]CT (k + 1)

= P(k + 1 | k)CT (k + 1)

The Kalman gain is then

W(k + 1) = P(k + 1 | k)CT (k + 1)S−1(k + 1)
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General Kalman Filter Algorithm

7. State vector update. just as in equation 3

x̂ = x̂1 +
σ2

1

σ2
1 + σ2

2

[x̂2 − x̂1]

the Kalman filter state vector update equation
is

x̂(k + 1 | k + 1) = x̂(k + 1 | k) +

W(k + 1)[z(k + 1) − C(k + 1)x̂(k + 1 | k)]

8. Error covariance matrix update

P(k + 1 | k + 1) = P(k + 1 | k) −
W(k + 1)S(k + 1)WT (k + 1)

9. Return to step 2 – Calculate x̂(k + 2 | k + 1)
and P(k + 2 | k + 1) to continue the cycle.
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Proof of Kalman Gain

In general W(k + 1) = PxzS
−1(k + 1)

results from solving orthogonality equations.

Consider simpler scalar case – recursive estima-
tor.

x̂(k+1 | k+1) = a(k+1)x̂(k+1 | k)+b(k+1)y(k+1)

Aim: Find best estimate which minimises:

p(k + 1 | k + 1) = E[x̃(k + 1 | k + 1)]

where x̃(k+1 | k+1) = x̂(k+1 | k+1)−x(k+1).

p(k + 1 | k + 1) =

E[(a(k + 1)x̂(k + 1 | k) + b(k + 1)y(k + 1) −
x(k + 1))2]

To minimise differentiate w.r.t. a(k + 1) and
b(k + 1) and set to 0.
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Proof of Kalman Gain

∂p(k + 1 | k + 1)

∂a(k + 1)
=

2E[a(k + 1)x̂(k + 1 | k) + b(k + 1)y(k + 1)

−x(k + 1)]x̂(k + 1 | k) = 0

and
∂p(k + 1 | k + 1)

∂b(k + 1)
=

2E[a(k + 1)x̂(k + 1 | k) + b(k + 1)y(k + 1)

−x(k + 1)]y(k + 1) = 0

Solution in “Digital and Kalman Filtering” by
S.M. Bozic - Not examinable.

or alternatively

W(k + 1) = PxzS
−1(k + 1)

= P(k + 1 | k)CT (k + 1)S−1(k + 1)
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Example – RADAR Tracking

Continue a RADAR tracking example.

Aim: Show how to initialise filter and then run
1 cycle.

Previously had two states x1(k) = ρ(k) = range

and x2(k) = ρ̇(k) = radial velocity.

Introduce bearing x3(k) = θ(k) and

bearing rate x4(k) = θ̇(k).

θ

(k)

0

y

x

RADAR rotates
about z−axis
through 0

R+ ρ

(k)
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Example – RADAR Tracking









x1(k + 1)
x2(k + 1)
x3(k + 1)
x4(k + 1)









=









1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

















x1(k)
x2(k)
x3(k)
x4(k)









+









0
u1(k)

0
u2(k)









i.e.
x(k + 1) = Ax(k) + v(k)

The noise terms u1(k) and u2(k) represent unmod-
elled changes in radial velocity and bearing rate
respectively – (erratic engine thrusts, wind gusts).

Observation Model: Measure Range + Noise,
Bearing + Noise.

[

y1(k)
y2(k)

]

=

[

1 0 0 0
0 0 1 0

]









x1(k)
x2(k)
x3(k)
x4(k)









+

[

w1(k)
w2(k)

]

y(k) = Cx(k) + w(k)
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Example – RADAR Tracking

Noise covariance matrix for measurement model:

R(k) = E[w(k)wT (k)] =

[

σ2
ρ 0

0 σ2
θ

]

and the system covariance matrix is given by

Q(k) = E[v(k)vT (k)] =









0 0 0 0

0 σ2
1 0 0

0 0 0 0

0 0 0 σ2
2









where σ2
1 and σ2

2 are the variances in the radial
and angular bearing rates respectively.
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RADAR Filter Initialisation

Aim: Find x̂(2 | 2) and P(2 | 2).

Take two measurements of range, y1(k) and two
measurements of bearing y2(k) at times k = 1 and
k = 2 (i.e. four measurements in all).

y1(2) = x1(2) + w1(2) → x1(2) = y1(2) − w1(2)

and

x1(2)−x̂1(2 | 2) = y1(2)−w1(2)−y1(2) = −w1(2)

since x̂1(2 | 2) = E[x1(2)] = y1(2).
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RADAR Filter Initialisation

To estimate x̂(2 | 2) use system model.

x1(2) = x1(1) + Tx2(1)

so that: x2(1) =
x1(2) − x1(1)

T
From the second equation within system model:

x2(2) = x2(1) + u1(1) =
x1(2) − x1(1)

T
+ u1(1)

(0.30)
but from the observation equation:

x1(2) = y1(2) − w1(2)

x1(1) = y1(1) − w1(1)

substituting above equations into equation 0.30 gives

x2(2) =
y1(2) − w1(2) − (y1(1) − w1(1))

T
+ u1(1)

so that: x̂2(2 | 2) =
y1(2) − y1(1)

T
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RADAR Filter Initialisation

and

x2(2) − x̂2(2 | 2) = +u1(1) − w1(2)

T
+

w1(1)

T
so that the full initialisation is

x̂(2 | 2) =











x̂1(2 | 2) = y1(2)

x̂2(2 | 2) =
y1(2)−y1(1)

T
x̂3(2 | 2) = y2(2)

x̂4(2 | 2) =
y2(2)−y2(1)

T











P(2 | 2) = E[(x(2)−x̂(2 | 2))(x(2)−x̂(2 | 2))T ]

Use matrix:

x(2) − x̂(2 | 2) =











−w1(2)

u1(1) − w1(2)
T +

w1(1)
T

−w2(2)

u2(1) − w2(2)
T +

w2(1)
T










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Example – RADAR Tracking

Now ready to step through Kalman cycle:

1. x̂(3 | 2) = Ax̂(2 | 2)

2. P(3 | 2) = AP(2 | 2)AT + Q(2)

3. S(3) = CP(3 | 2)CT + R(3)

4. Filter gain W(3) = P(3 | 2)CTS−1(3)

5. State vector update x̂(3 | 3) = x̂(3 | 2) +
W(3)[y(3) − Cx̂(3 | 2)]

6. Error covariance matrix update P(3 | 3) =
P(3 | 2) − W(3)S(3)WT (3)

7. go back to 1.
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Kinematic (Polynomial) Models

Simple Constant Velocity Target:
Const. vel., therefore acceleration assumed zero.

ẍ(t) = 0

In practice, ẍ(t) may undergo random changes
→ model as zero mean Gaussian noise source:

ẍ(t) = ṽ(t)

Define x(k) = [x1(k), x2(k)]T = [position, velocity]T .
For assumed constant velocity (remember old equa-
tions s = s0 + ut!)

x1(k + 1) = x1(k) + x2(k)T

x2(k + 1) = x2(k) + v(k)

i.e.

x(k + 1) =

[

1 T
0 1

]

x(k) +

[

0
1

]

v(k)
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Kinematic (Polynomial) Models

Simple Constant Acceleration Target
If a target moves with constant acceleration

d3x(t)

dt3
= 0

In practice,
d3x(t)
dt3

may undergo random changes
→ model as zero mean Gaussian noise source:

d3x(t)

dt3
= ṽ(t)

Define x(k) = [x1(k), x2(k), x3(k)]T =
[position, velocity, acceleration]T .

For assumed constant acceleration (remember the
old equations s = s0 + ut + 1

2at2!)

x1(k + 1) = x1(k) + x2(k)T + x3(k)
1

2
T 2

x2(k + 1) = x2(k) + x3(k)T

x3(k + 1) = x3(k) + v(k)
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Kinematic (Polynomial) Models

i.e.

x(k + 1) =





1 T 1
2T

2

0 1 T
0 0 1



x(k) +





0
0
1



v(k)
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Kinematic (Polynomial) Models

More “Correct” Kinematic Models:

Discrete White Noise Acceleration Model

If v(k) is the constant acceleration during kth
sampling period (of length T ) then:

Velocity increment = v(k)T .

Displacement increment =
v(k)T 2

2 .

which results in a more “correct” const. accel.
model:

x(k + 1) =

[

1 T
0 1

]

x(k) +

[

1
2T

2

T

]

v(k)

which is of the form:

x(k + 1) = Fx(k) + Γv(k)
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Kinematic (Polynomial) Models

Note that covariance of process noise is:

Q = E[Γv(k)v(k)ΓT ] = Γσ2
vΓ

T =

[ 1
4T

4 1
2T

3

1
2T

3 T 2

]

σ2
v

Physical dimensions of v and σv is [length]/[time]2,
i.e. that of acceleration.
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Example: Falling Body

Deriving correct system models:

Falling body in constant gravitational field.

Model: z̈ = −g, t ≥ 0.

Let position z = x1 and velocity ż = x2.

Define: x(t) =

[

x1(t)
x2(t)

]

State space form:

ẋ(t) =

[

0 1
0 0

]

x(t) +

[

0
−g

]

which is of the form:

ẋ(t) = ax(t) + u

Solution to auxiliary equation (free response) is:

x(t) = eatx(0)
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Example: Falling Body

For small t,

eat ≈ I + at +
(at)2

2!
+

(at)3

3!
+ . . .

so that free response solution is:

x(t) ≈ [I + at]x(0)

Hence, full (approximate) forced response solu-
tion is:

x(t) =

[

1 t
0 1

]

x(0) +

∫ t

0

[

1 t
0 1

] [

0
−g

]

dt

x(t) =

[

1 t
0 1

]

x(0) +

∫ t

0

[

t
1

]

(−g)dt

x(t) =

[

1 t
0 1

]

x(0) +

[

t2

2
t

]

(−g)
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Example: Falling Body

For small sampling time t = T , an update equa-
tion results:

x(k + 1) =

[

1 T
0 1

]

x(k) +

[

T 2

2
T

]

(−g)

or System Model:

x(k + 1) = Ax(k) + Bu

Able to observe position x1 at time k with a sensor.

y(k) =
[

1 0
]

x(k) + v(k)

or Observation Model:

y(k) = Cx(k) + v(k)

Assume initialisation given:

x̂(0 | 0) =

[

95
1

]

and P(0 | 0) =

[

10 0
0 1

]
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Example: Falling Body

Aim: Run Kalman Filter with sample time T =
1s and g normalised to be 1 and σ2

v = R(k) = 1.

1. Prediction x̂(1 | 0) = Ax̂(0 | 0) + Bu

x̂(1 | 0) =

[

1 1
0 1

] [

95
1

]

+

[

−0.5
−1

]

=

[

95.5
0

]

2. Predicted Covariance P(1 | 0) = AP(0 | 0)AT

P(1 | 0) =

[

1 1
0 1

] [

10 0
0 1

] [

1 0
1 1

]

=

[

11 1
1 1

]

3. S(1) = CP(1 | 0)CT + R(1)

S(1) =
[

1 0
]

[

11 1
1 1

] [

1
0

]

+ 1 = 12
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Example: Falling Body

4. Filter gain W(1) = P(1 | 0)CTS−1(1)

W(1) =

[

11 1
1 1

] [

1
0

]

1

12
=

[

11/12
1/12

]

5. State vector update x̂(1 | 1) = x̂(1 | 0) +
W(1)[y(1) − Cx̂(1 | 0)]

x(1 | 1) =

[

95.5
0

]

+

[

11/12
1/12

]

×
{

100 −
[

1 0
]

[

95.5
0

]}

=

[

99.6
0.37

]
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Example: Falling Body

6. Error covariance matrix update P(1 | 1) =
P(1 | 0) − W(1)S(1)WT (1)

P(1 | 1) =

[

11 1
1 1

]

−
[

11/12
1/12

]

12
[

11
12

1
12

]

=

[

11/12 1/12
1/12 11/12

]

7. go back to 1, find x̂(2 | 1) – Try yourself!.

6 iterations of Kalman filter.
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Interpretation of Results

Note in last example we started with:

x̂(0 | 0) =

[

95
1

]

and P(0 | 0) =

[

10 0
0 1

]

and after 1 cycle we obtained:

x̂(1 | 1) =

[

99.6
0.37

]

and P(1 | 1) =

[

11/12 1/12
1/12 11/12

]

How do we interpret these results?

In general:

x̂(k | k) =

[

pos.
vel.

]

and P(k | k) =

[

σ2
p σpσv

σvσp σ2
v

]

Diagonal terms in P(k | k) are variances in pos.
and vel. respectively.

Off-diagonal terms in P(k | k) are correlations
between pos. and vel. Note σpσv = σvσp.
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Interpretation of Results

x̂(0 | 0) =

[

95
1

]

and P(0 | 0) =

[

10 0
0 1

]

1-Sigma Error Covariance Ellipse:

Position

Velocity

1

x2 (0 | 0)

(0 | 0)x95

1

Region with minimum area known to contain
state x̂(0 | 0) with some constant probability.

EL7021 - Robotics & Autonomous Systems
slide-127



Interpretation of Results

In general, x̂(k | k) is a χ2 random variable.

Probability value obtained from chi-squared dis-
tribution tables.

Example: Figure shows “1-sigma limit” since length
of semi-major axis of ellipse = σp =

√
10 and semi-

minor axis length = σv =
√

1.

From χ2 tables, the 1-sigma limit of a 2-degree of
freedom χ2 random variable, has probability mass
0.393.

Hence - we are almost 40% certain that the state
x̂(0 | 0) is within the ellipse.
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Interpretation of Results

How do we plot:

x̂(1 | 1) =

[

99.6
0.37

]

, P(1 | 1) =

[

11/12 1/12
1/12 11/12

]

?

More difficult, since states are correlated –
P(1 | 1) is not diagonal.

Therefore necessary to find a new coordinate sys-
tem in which state x̂(1 | 1) can be represented,
and in which matrix P(1 | 1) becomes diagonal –
ie. states are the decoupled.

By definition, this coordinate system =
eigenvectors of matrix P(1 | 1) and new diagonal
elements (“sigma squared” values) are eigenvalues
of
P(1 | 1).
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Interpretation of Results

Finding eigenvalues of P(1 | 1):

|P(1 | 1) − λI| = 0

∣

∣

∣

∣

11
12 − λ 1

12
1
12

11
12 − λ

∣

∣

∣

∣

= 0

Hence 2 solutions:

λ = λ1 =
5

6
, λ = λ2 = 1

Semi-major axis length of “1-sigma” uncertainty
ellipse =

√
1.

Semi-minor axis of “1-sigma” uncertainty ellipse

=
√

5
6.
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Interpretation of Results

Eigenvector associated with λ1:

P(1 | 1)v1 = λ1v1

Let v1 = (vx1, vy1)
T :

1

12

[

11 1
1 11

] [

vx1
vy1

]

=
5

6

[

vx1
vy1

]

ie.

11vx1 + xy1 = 10vx1

vx1 + 11vy1 = 10vy1

Both equations give:

vx1

vy1
=

−1

1
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Interpretation of Results

Similarly eigenvector associated with λ2

P(1 | 1)v2 = λ2v2

Let v2 = (vx2, vy2)
T :

1

12

[

11 1
1 11

] [

vx2
vy2

]

= 1

[

vx2
vy2

]

ie.

11vx2 + xy2 = 12vx2

vx2 + 11vy2 = 12vy2

Both equations give:

vx2

vy2
=

1

1
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Interpretation of Results

Hence eigenvectors are:

Position

Velocity

45 45o o

v1 v2

1-Sigma error covariance ellipse for x̂(1 | 1)
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