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Presentation Outline

1. Autonomous Robotics in Society.

2. Robotics Research at ARRL.
- Radar Mapping & Traffic Monitoring.
- Coastal and Marine Monitoring.

- Feature Extraction with Vision/3D Laser Range Data.
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- What is SLAM - Fundamentals?
. Difficulties in SLAM - Data Association.

4. Future Work in Robotics.
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1. Autonomous Robotics in Society.




Autonomous Robotics in Society

Autonomy in Urban Environments

Sensor based road lane & pedestrian
detection.

Perform complex manoeuvres - merging,

passing, parking, interaction with manned
vehicles [Thrun 2007, Leonard 2007].

o

Singapore: TechX
Challenge

Localisation, Path
Planning, Object
Recognition &
Interaction [Adams 2009].




Autonomous Robotics in Society

Autonomy in Mines/Rugged Terrains

Sensing Issues:
Millimetre Wave Radar in

Surface Mining
[Brooker 2006].

Rio Tinto + ACFR developing autonomous
mining technologies [Durrant-Whyte 2007]

Codelco developing unmanned haulage
system “FrontRunner” at Gaby copper
mine, Chile [Komatsu 2007]




Autonomous Robotics in Society

Intelligent Transportation Systems (ITS)

Platooning and Vehicle Following.
Optimisation and monitoring of traffic
flow needed. [Martinet et. al. 2005, Broggi 2000,
Parent 1996].

ITS Austria: Traffic
monitoring & optimisation.
[Corvette/Connect Projects].
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INRIA (Schiphol/Heathrow
Airport Passenger Pick up).




Autonomous Robotics in Society

Service Robotics

Autonomous straddle
carriers - ACFR port
automation projects

in Brisbane & Singapore,
[Durrant-Whyte 2007].

Hospital vehicles for delivery of food/laundry
in Singapore [Swisslog].

Rehabilitation robotics [Tomatis - BlueBotics 2008]

Autonomous Straddle Carrier
in Operation



http://www.warren.usyd.edu.au/bulletin/NO39/distruptive_straddle_max.jpg�

Autonomous Robotics in Society

Security Robotics

Surveillance and monitoring vehicles

capable of indoor/outdoor motion.
[Adams 2004].

KIRAS - Security Research [Austrian FFG -
protection of infrastructure].




Autonomous Robotics in Society

Security Robotics

Surveillance and monitoring vehicles

capable of indoor/outdoor motion.
[Adams 2004].

KIRAS - Security Research [Austrian FFG -
protection of infrastructure].

Remaining issues:
Sensor modelling & fusion.

Robust localisation/object representation
- SLAM in complex environments.

System Flexibility: Path re-
planning/unexpected situations.




Robotics Research at ARRL
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2. Robotics Research at ARRL.
- Radar Mapping & Traffic Monitoring.
- Coastal and Marine Monitoring.

- Feature Extraction with Vision/3D Laser Range Data.




Robotics Research at ARRL

Panasonic: People & Traffic Detection with Radar

Millimetre Wave Radar

»360 deg. scanning unit, 77GHz FMCW
»0.25m range res., 200m max range
»Per Bearing angle -> Multiple Targets

>1.8 deg. beam width
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Robotics Research at ARRL

Advantages of Radar

Concretfe corner
section |

Saturation
Concrete
corner
section

trees +
lamp posts 30

X (m) Saturation
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Robotics Research at ARRL

Panasonic: People Tracking at Road Junctions

Transverse Length of

road crossing: 13m . Use of Radar for adverse
weather/atmospheric
conditions.

- Robust detection of

R, | a1 pedestrians and traffic [Mullane,
SNy | g | Adams 2009]

- Purpose: To transmit
traffic information to drivers
for advanced warning systems.

Road rossing] 3m from radar
(min. detection range 5m)

Location: A pedestrian crossing
within NTU campus Vid. 2




Radar Detection in Complex Environments

Panasonic: People Tracking at Road Junctions
Road crossing environment (Near IR image Vs. Radar image)

4 Pedestrians crossing 4 Pedestrian targets detected

At Night




Robotics Research at ARRL

Singapore - MIT Alliance: CENSAM Project

- Environmental monitoring of coastal waters.

- Navigation and map info. necessary above/below water surface.

- Fusion of sea surface radar, sub-sea sonar data for
combined surface/sub-sea mapping.

......

Environmental

landmarks

Autonomous Kayak Surface Vehicle with Radar




Robotics Research at ARRL

Singapore - MIT Alliance: CENSAM Project

.- Surface and sub-sea data.

- Verification of radar/sonar

data with coastal satellite ima




Laser

Robotics Research at ARRL

A*Star: Fusing 3D LADAR & Vision [sok, Adams 2009]

3D Laser Detection and Ranging

A4 'Vert. Axis

» Continuous 360 oscanning unit.

» 200m max range.

» Time of Flight pulsed Riegl LADAR
» Accuracy (1 Sigma) 2cm.




Autonomous Robotics in Society  Robotics Research at ARRL Simultaneous Localisation & Map Building Future Work

A*Star: Fusing 3D LADAR & Vision (sok, Adams 2009]

3D Laser Detection and Ranging

M 3D LADAR Point Clouds

» 3D Point Cloud Data.

GROUID LEVEL('1' >> '2'} :  -5.00 X VALUE('T' 3> '8') : 0.00
LASER SPRERD('3' »» '4'}) : 0.00 i . Y VALUE('9' == '0') : 0.00

SKY LEVEL{'§' >+ '6') 1.00 i 4 KSR (LY 5 Ry 0.00

» Planar/Linear Segments
visible.

» Data Compression with
Principle Component
Analysis (PCA).

» PCA unreliable on
complete data sets.

» First Image Segmentation
Necessary.

OpenGL2




Robotics Research at ARRL

A*Star: Fusing 3D LADAR & Vision [sok, Adams 2009]

Omni-Directional Vision
» Point Grey Lady Bug 2 — Panoramic camera.

» Approx. calibrate 3D LADAR data with image coords.
» Can be mounted coaxially with 3D LADAR.

» Stitch, Smooth and Segment Images

» Process 3D LADAR segments only.

20



Robotics Research at ARRL

A*Star: Fusing 3D LADAR & Vision [sok, Adams 2009]

Approx. calibrate 3D ladar + camera data -> Coloured 3D point cloud.

3D Range Point
—
3D LADAR Cloud —>| P(p,a,B)

Fusion
—
Module Plp.a,B,r g b)
Ladybug Stitched Image Colored 3D
—> —>
Camera 360° View I, v, 1, & b) PointCloud

OpenGL2




Robotics Research at ARRL

PCA: Dominant Data Directions, Extracted Planes




Simultaneous Localisation & Map Building
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3. Simultaneous Localisation & Map Building (SLAM).
- What is SLAM - Fundamentals?

- Difficulties in SLAM - Data Association.




Simultaneous Localisation & Map Building

SLAM Fundamentals

In an unknown environment - robot & feature positions
must be estimated simultaneously - SLAM.

SLAM is a probabilistic algorithm

P(Xe, M| Z1:t,U1:1)

Xt = State of the robot at timet

m = Map of the environment

Z1:t= Sensor inputs fromtime 1to t
us:«= Control inputs fromtime 1to t

- Update distribution estimate with Bayes theorem.




Simultaneous Localisation & Map Building

SLAM Fundamentals

- Initial State and Uncertainty

- Using Range Measurements




Simultaneous Localisation & Map Building

SLAM Fundamentals

* Predict Robot Pose and
Uncertainty at time 1




Simultaneous Localisation & Map Building

SLAM Fundamentals

- Correct pose and pose uncertainty

- Predict new feature positions and
t=1 their uncertainties




Simultaneous Localisation & Map Building

SLAM Fundamentals

- Predict pose and uncertainty of pose at
time 2

t=2 . Predict feature measurements and
their uncertainties




Simultaneous Localisation & Map Building

SLAM Fundamentals

. Correct pose and mapped features
- Update uncertainties for mapped features

t=2 - Estimate uncertainty of new features




Simultaneous Localisation & Map Building

SLAM: A Real Experiment

9 ' 9

SLAM using line intersection features in 80m by 35m office corridors.
Vid 4, Vid 5




Simultaneous Localisation & Map Building

Difficulties of SLAM - Data Association

Untangle:
Z=\z,,2,,2,,2,,2:,2,,2,]
?

M=[m,,m,, m,,m,,m,,m,,m,]




Simultaneous Localisation & Map Building

Difficulties of SLAM - Data Association

Untangle:
Z=\z,,2,,2,,2,,2:,2,,2,]

M=[m,,m,, m,,m,,m,,m,,m,]




Simultaneous Localisation & Map Building

Difficulties of SLAM - Data Association

Untangle:
Z=\z,,2,,2,,2,,2:,2,,2,]

M=[m,,m,, m,,m,,m,,m,,m,]

_ Current vector formulations require data
* association (DA) prior to Bayesian update:

Why? Features & measurements rigidly
ordered in vector-valued map state.




Simultaneous Localisation & Map Building

Difficulties of SLAM - Data Association

Radar Scan Map

-4 - - -0 0 o X 30 4 5
Metars

Sample data registered from radar. Vid 1




Simultaneous Localisation & Map Building

Difficulties of SLAM - Data Association
SLAM input: Odometry path + radar data

0r

meters

-3 1 i 1 1
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maters

Extracted point feature measurements registered to odometry.




Simultaneous Localisation & Map Building

Difficulties of SLAM - Data Association

meters
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Future Work
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4. Future Work in Robotics.




Future Work

Mechatronic Autonomy in Mines/Rugged Terrains

- Caterpillar: “CAT Integrated Object Detection”

Fusion of radar/vision for object detection
[Australian Mining, 2009].

- Rio Tinto + ACFR developing autonomous
mining technologies [Durrant-Whyte 2007].

- Codelco developing unmanned haulage
system “FrontRunner” at Gaby copper
mine, Chile [Komatsu 20071].

- Acumine:
Millimetre
Wave Radar in

Surface Mining
[Brooker 2006].




Future Work

Sensing & Mechatronics for Search & Rescue

Thredbo Landslide:
Mechatronic Search & Rescue Aids

caIIed for [ABC News].

W‘E

Rescue Robotics - Challenges:
Mechanical Design & Traction,
Obtsacle Avoidance,

Victim Detection,

Localisation & Path Planning.




Simultaneous Localisation & Map Building
Navigation in Complex Environments

Navigation in the presence
of clutter.

T e

...on land.

Victoria Park Data Set
[ACFR, University Sydneyl.




Future Work

Navigation in Complex Environments

Australian Institute of Marine Science &
ACFR: AUV “Sirius” for underwater
monitoring. [Stefan Williams 2007].

0;"' “'

The AUV during earlier deployment
on the Great Barrlier Reef, Qld

BHP Billiton: Sponsors Trials
At Ningaloo Reef for testing
suitability of robots for reef

monitoring. [Stefan Williams
2007].




Future Work

Navigation in Complex Environments

0;"' “'

The AUV during earlier deployment
on the Great Barrlier Reef, Qld

BHP Billiton: Sponsors Trials
At Ningaloo Reef for testing
suitability of robots for reef

monitoring. [Stefan Williams
2007].

Australian Institute of Marine Science &
ACFR: AUV “Sirius” for underwater
monitoring. [Stefan Williams 2007].

Successful sensing & navigation required
in environments with complex feature
representations, disturbed by clutter.




Future Work

Motivation for Robotics & Autonomous Systems

1. Improve robustness of autonomous sensing systems.

2. Radar for pedestrian/traffic monitoring in ITS.
Improve traffic safety through sensor technologies.

3. Surface & sub-sea joint environmental/navigation estimation.

4. Extend 3D sensor fusion technologies in scene inspection &
security research - Application in mining.

5. Probabilistic sensor modelling - improve robustness to sensor
bias, random walk, clutter, false alarms and missed detections.

6. Improve fundamental aspects of SLAM - Random Finite Set (RFS)
rather than vector based map representations.
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Thank You!

Codelco, Rancagua, 30. September 2011
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