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Introduction

• Purpose of Verification:

 Discover as many potential bugs in the design as reasonable 

before sending chip out for fabrication

 Do this by simulating chip (and chip components) in Verilog

• Why is verification important?

 Chip fab might cost $4M and take 8 weeks

 Very expensive and time consuming to iterate chip fab!  

 Want to get prototype correct in one to two fab cycles

 FPGAs can rely more on using the prototype for debug 

 But, note, it is more difficult to debug hardware than a simulation



Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 8

Developed By: Paul D. Franzon

… Introduction

• Verification consumes more than 60% of design resources

 People, compute cycles

• Verification mainly done with pre-synthesis code

 Though some simulation, and other checks, are done to make sure the 

netlist is correct

• With increased reuse of existing Intellectual Property (“IP”), 

verification has become very challenging

 IP = Predesigned blocks, internally developed, purchased or obtained 

from open source

 Debugging is often harder than design!

• Focus of these Notes

 Primarily on verification tasks likely to be performed by module level 

designer, and code constructs commonly used
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Verification and the Team

• Designer‟s Responsibilities:

 Conduct reasonable levels of ad-hoc verification of design through simulation

 Follow good coding practices to ease primary verification task

 Include assertions in code as appropriate

 Design in features to aid verification

 E.g. Allow long FSM to be started in a specific “deep” state

• System level verification usually primarily the role of a separate verification 

team

 Why?

 Whole system, not individual design verification

 When verifying his/her own design, designer often makes same (dumb) assumptions in 

the test fixture as in the design

 i.e. Misses many of the bugs, especially mis-interpretations of specification

 A separate team with an independently derived verification plan is less likely to do this

 Becoming more of a specialty with own tools, methodologies, etc.
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Verification Tools and Methods

• It is impossible to know that you have eliminated all the 

bugs in a design

 Thus it is important to use a variety of tools, techniques and 

methods that give you a high probability of discovering bugs

 And to have a plan to apply them!

 Get as many “avenues of attack” as possible

• Available tools and methods include:

 Simulation through test fixtures

 Including mixed level simulation

 Inserting and tracking assertions

 Formal verification

 Emulation
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Simulations Through Test Fixtures

• Basic concept:

 Apply vectors to design as stimulus

 Observe outputs, and internal nodes, for correct functionality

• Key Questions:

 Where to you get the vectors?

 How do you observe the outputs?

 What are the available coding styles?
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Sources of Verification Vectors

1. From expected functionality

 Vectors designed to exercise expected functions of chip or block

 From specification or understanding of function of chip/block

 Prioritized from “must work” to “would like to work”

2. From Higher Level Model

 Obtain vectors for individual blocks from a higher level 

behavioral model

 E.g. C model developed for project

 Example:  Run video stream through C model of MPEG encoder

 Extract examples from this to run through Motion Estimator

 C model here is an example of a “reference behavioral model”
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… Sources of Simulation Vectors

3. Vectors added specifically as a result of production of 

verification plan

 E.g. Vectors specifically designed to test “difficult” aspects of 

design

 Features that were hard to design

 Modules are more likely to be buggy

 E.g. Bus arbiters

 E.g. vectors designed to increase the “coverage” of the design

 Increase code and functional coverage 

4. Random vectors

 Run random vectors 

 Compare results with same vectors run in a higher level model
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… Sources of Simulation Vectors

5. System level vectors – simulating the chip in its entirety

 Important to do a LOT of this

 Very slow and time consuming

 While design is incomplete, can be a mixed behavioral (e.g. C) 

and RTL simulation

 Using Verilog Programming Language Interface (PLI)

 Requires good behavioral models for interface chips – Memories, 

etc.
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Observing Correctness 

1. Observe in Waveform Viewer

2. Observing results of assertions

3. Try to write „self-checking‟ test fixtures, that analyze the 

results and inform you of correctness.  

 Useful as it means you can automatically check other parts of a design 

when you redesign some portion.
#10 dec = 1;

#28 if (zero == 1‟b1) $display (“Check 1 passed”)

else $display (“Error: Check 1 FAILED”);

 Try to take to a higher level.  i.e. Incorporate `understanding‟ of

function into self-checking feature
integer testData;  // test data being used

integer ExpectedDelay; // expected delay for test data

initial

begin

testData = 4;

in = testData;

....

ExpectedDelay = testData * 10;

#ExpectedDelay if (zero == 1‟b1) $display (“Check 1 passed”)

else $display (“Error: Check 1 FAILED”);
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Verilog Code for Test 

Fixtures…Approaches

• Can use any syntactically correct code

• Choose test vector generation approach:

 On-the-fly generation:

 Use continuous loops for repetitive signals

 Use simple assignments for signals with few transitions (e.g. reset)

 Use tasks to generate specific waveform sets

 Read vectors stored as constants in an array

 Read vectors from a file

• Choose timing approach:

 Relative Timing, or 

 Absolute Timing

• Generate clock separately from vectors

• Whenever possible check simulation results within test fixture

 Against a stored set of „expected‟ results, or

 Against an internal model of expected behavior
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Examples…On the fly generation

• Use a task to generate an often repeated vector set

task refresh;

// generate a RAS before CAS refresh cycle

output RAS, CAS;

begin

// assume RAS and CAS high on entry

#5 RAS = 0;

#15 RAS = 1;

#10 CAS = 0;

#15 CAS = 1;

#45;  // allow refresh to complete

end

initial

begin

…

refresh (RAS, CAS);
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Test Fixture Reading Vectors from an 

Array

• Example below also shows use of a for loop:

module test_fixture;

parameter TestCycles = 20;

parameter ClockPeriod = 10;

integer       I;

reg [15:0] SourceVectors [TestCycles-1 : 0];

reg [7:0] ResultVectors [TestCycles-1 : 0];

reg [15:0] InA;  // input port of module being tested

wire [7:0] OutB; // output port of module being tested
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…Verilog in Test Fixtures

initial

begin

SourceVector [0] = 16‟h735f;   // etc.

ResultVector [0] = 8‟h5f;  // etc….not all entries here

end

initial

begin

SimResults = $fopen(“errdet.txt”); // open error file

clock = 1;

#11 for (I=0; I<=TestCycles; I = I+1); // start 1 ns into first clock 

period

begin

InA = SourceVector[I];

#ClockPeriod if (OutB != ResultVector[I]) 

$fdisplay(SimResults, “ERROR in loop %d \n”, I);

end
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…Verilog in Test Fixtures…reading 

vectors from file

• Can also store the verification vectors in a file.

• For example, you could generate the file during the 

behavioral „C‟ simulation and use during RTL verification
module test_fixture;

reg [15:0] SourceVectors [TestCycles-1 : 0];

initial

begin

$readmemh(“source_vec.txt”, Source_Vectors);

…

-----------------------

source_vec.txt:

// Source Vectors for SourceVectors array for design

73hf   // first vector

beef   // second vector
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Absolute vs. Relative timing

• Relative Timing Example:

module test_fixture;

parameter ClockPeriod=10;

initial

begin

#1 In1 = 2‟b00;

In2 = 2‟b01;

#ClockPeriod In1 = 2‟b01;

In2 = 2‟b00;

#ClockPeriod In1 = 2‟b11;

In2 = 2‟b10;

end

Clock

In1

In2
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…Absolute vs. Relative Timing

• Absolute Timing Example:

module test_fixture;

parameter ClockPeriod=10;

initial

fork

#1 In1 = 2‟b00;

#1 In2 = 2‟b01;

#(ClockPeriod+1) In1 = 2‟b01;

#(ClockPeriod+1) In2 = 2‟b00;

#(ClockPeriod*2+1) In1 = 2‟b11;

#(ClockPeriod*2+1) In2 = 2‟b10;

join

Clock

In1

In2
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Putting it All Together

• What a test fixture might look like:

module test_fixture;

\\ declare variables assigned within test fixture as type reg

reg clock;

\\ declare variables that come from module output ports as type wire

wire [7:0] data_out;

initial \\ test fixture contents

begin

…

end

\\ declare non-synthesisezed parts, e.g. memories

SRAM1  m1 (clock, …);

\\ declare module to be tested

top  u1 (clock, … , data_out);

endmodule
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Behavioral Models for Non-Synthesized 

Designs

• Often need to model the following:

• Parts provided by other vendors (ask Vendor first)

• modules in your chip that are not synthesized, such as memories, some 

arithmetic units, analog portions.

• Cells in cell library

• Approaches to modeling these modules:

• Can use any correct Syntax verilog for model

• User Defined Primitives (UDP) are useful for combinational logic and 

designs containing a single register

 Examples:  NOR2 gate and DFF from CMOSX library

• Use a spec param block to capture timing requirements

 Example:  Embedded memory array

• Verilog-A used to model analog portions

• Must verify these models carefully too
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User Defined Primitives

• primitive prim_dff(q,cp,d);
• output q;

reg q;
input cp,d;
table

//   cp      d       :       q       :       q+

r       1       :       ?       :       1;
r       0       :       ?       :       0;
n       ?      :       ?       :       -;
*       0       :       0       :       0;
*       1       :       1       :       1;
?       *       :       ?       :       -;
endtable
endprimitive

State transition table

Inputs : Current State : Next State

r = rise

n = fall

* = any possible transition (edge)

? = don‟t care (0,1,x) (level)

- = no change
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User Defined Primitives

• primitive prim_dff(q,cp,d);
• output q;

reg q;
input cp,d;
table

//      cp      d      :       q       :       q+
r        1       :       ?       :       1;
r        0       :       ?       :       0;
n       ?       :       ?       :       -;
*        0       :       0       :       0;
*        1       :       1       :       1;
?        *       :       ?       :       -;
endtable
endprimitive

Primitive Declaration

Rising edge on cp  next q = d

falling edge on clock q stays same

Ignore edges on d

other clock transitions (to/from x)  no change
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specparam blocks

• Used to specify timing for non-synthesized logic.

• Again, example from CMOSX cell library….
`celldefine

`timescale 1ns / 10ps

module DFF(Q, QBAR, CP, D);

output Q, QBAR;

input CP, D;

specify

specparam CP_01_PD10_QBAR = 0.320:0.685:1.75;

specparam CP_01_PD01_Q = 0.270:0.629:1.68;

specparam CP_01_PD01_QBAR = 0.261:0.616:1.71;

specparam CP_01_PD10_Q = 0.320:0.628:1.55;

specparam SLOPE0$CP$QBAR = 0.308:0.478:0.831;

specparam SLOPE1$CP$Q = 0.258:0.609:1.59;

specparam SLOPE1$CP$QBAR = 0.169:0.403:1.03;

specparam SLOPE0$CP$Q = 0.451:0.714:1.32;

specparam STANDARDLOAD = 0.350:0.350:0.350;

specparam tSU_D = 0.30:0.60:1.40;

specparam tHOLD_D = 0.10:0.05:0.01;

specparam MPWL_CP = 0.20:0.30:0.90;

specparam MPWH_CP = 0.08:0.20:0.60;

specparam MPER_CP = 0.40:0.80:2.20;

specparam MFT_CP = 4.00:39.00:380.00;

Min : typical : max
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… DFF module from CMOSX lib

specparam FanoutLoad$CP = 0.0147:0.0216:0.0309;

specparam FanoutLoad$D = 0.0104:0.0135:0.0184;

specparam FanoutLoad$Q = 0.00504:0.0106:0.0117;

specparam FanoutLoad$QBAR = 0.0114:0.0127:0.0223;

(CP=>QBAR)=(CP_01_PD01_QBAR, CP_01_PD10_QBAR);

(CP=>Q)=(CP_01_PD01_Q, CP_01_PD10_Q);

$setup(D, edge[01] CP, tSU_D);

$hold(edge[01] CP, D, tHOLD_D);

$width(negedge CP, MPWL_CP);

$width(posedge CP, MPWH_CP);

$period(posedge CP, MPER_CP);

endspecify

prim_dff U1(Q_int,CP,D);

not U2 (QBAR,Q_int);

buf U3 (Q,Q_int);

endmodule

`endcelldefine

(rising Q, falling Q)

Checks based on parameters

Clock – Q / Qbar delays
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Assertions

• Code blocks that check for correct and incorrect 
behavior
 Put inside RTL code (but do not synthesize)

 Usually inserted by designer

 System Verilog allows more concise assertions, but can also be 
written in normal Verilog

• Example (Verlog95):
// synopsys off

„ifdef Assertions_on

// check ONE bus request granted ONE clock cyle after any reqest

always@(posedge clock)

if ((|request) & (~|grant))  // request, no active grants

begin

@(posedge clock) // wait one cycle

if (~|grant) $display(“ERROR: bus access not granted”);

else if ((grant[0] + grant[1] + grant[2] + grant[3])>1)

$display (“ERROR: multiple buses accesses granted”);

end

„endif

// synopsys on
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Formal Verification

• Equivalency Checking

 Determines that two designs are logically equivalent

 Examples:

 RTL and netlist

 Different netlists after non-design coding changes

 Often used to help verify output of synthesis

• Model Checking

 Trying to prove or disprove that a circuit possesses a property 

that is part of a more abstract, higher-level specification

 E.g. Correct design capture of a Finite State Automata

 Requires good capture of specification in a suitable language
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Simulation “Engines”

There are never enough simulation cycles to complete verification

1. Event based Verilog simulator

 Most general but slowest

2. Cycle based Verilog simulator

 Slightly less general but faster

3. Verilog simulator hardware accelerator

 Use hardware as a co-processor to accelerate simulation of Verilog (that does 

not have a lot of I/O – i.e. not all signals captured)

4. Emulation

• i.e. Build a multi-FPGA system that can emulate the standard cell ASIC, though 

at a slower clock rate

• Allows very complete verification (except for timing critical issues) but takes a 

lot of engineering resource



Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 8

Developed By: Paul D. Franzon

Verification Metrics

• How do you know your chip is ready for fabrication?

 You can never know you are bug-free!

 General solution:  When cost (and opportunity cost) of more verification 

is higher than the cost of using the first silicon to complete the debug 

process

 i.e. When it is quicker and cheaper to build the chip to find the remaining bugs

 Note:  Some bugs can be worked around with firmware

• Common Metrics:

1. Bug discovery rate

2. Code coverage

3. Functional Coverage

4. Assertion coverage
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Verification Metrics

• Code Coverage

 Has every line of code been simulated?

 What percentage of possible paths have been simulated?

 E.g. All alternatives in an if-then sequence

 What percentage of possible state sequences have been simulated?

 Requires instrumentation of code and appropriate data collecting and 

reporting tools

• Functional Coverage

 Have all the functions in the specification been simulated?

 E.g. All interface modes in a USB interface

 Requires writing of code (SystemVerilog or integrated via PLI) to monitor 

the hardware that implements these functions and data collecting within 

the test fixture
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Verification Environment
Definitions

DUT

Driver Monitor

Supplies data

to the DUT

Observes

data

from DUT

Assertions

Transactor

Executes

transactions

Identifies

transactions

Checker

Checks

correctness
Creates

stimulus

Test

Scoreboard

Verification

Environment

Testbench
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Coverage-Driven Verification

• Measure progress using functional coverage

Time

%
 C

o
v
e
ra

g
e

Goal Directed

Methodology

Self-checking 

random environment

development time

Coverage-Driven

Methodology

Productivity

gain
With

VIP
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Vera®  and APIs
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IEEE 
SystemVerilo

g Single 
Working 
Group

Target for 
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SystemVerilog: Verilog 1995

Gate level modelling 

and timing

Hardware concurrency

design entity modularization

Switch level modeling and timing

Event handling Basic datatypes (bit, int, reg, wire…)

ASIC timing

Basic programming (for, if, while,..)4 state logic Verilog-95:

Single language

for design &

testbench

Slides provided by 

David Oterra, Synopsys
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SystemVerilog: VHDL

Dynamic 

hardware 

generation

Architecture 

configuration

Automatic variables Signed numbers

multi-D arrays

Dynamic 

memory 

allocation

pointers

Gate level modelling 

and timing

Hardware concurrency

design entity modularization

Switch level modeling and timing

Event handling Basic datatypes (bit, int, reg, wire…)

ASIC timing

Basic programming (for, if, while,..)4 state logic

enums
records/

structs

Packages

Strings

VHDL adds higher 

level data types and 

management 

functionality

Operator 
Overloading

User-defined types

Simple assertions
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Semantic Concepts: C

Dynamic 

hardware 

generation

Architecture 

configuration

Automatic variables Signed numbers

multi-D arrays

pointers

Gate level modelling 

and timing

Hardware concurrency

design entity modularization

Switch level modeling and timing

Event handling Basic datatypes (bit, int, reg, wire…)

ASIC timing

Basic programming (for, if, while,..)4 state logic

enums

Operator 
OverloadingPackages

Further 

programming

(do while, 

break, continue, 

++, --, +=. etc)

Void type

Unions

Associative

& Sparse arraysDynamic 

memory 

allocation

records/

structs

Strings

User-defined types

Simple assertions
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SystemVerilog: Verilog-2001

Dynamic 

hardware 

generation

Architecture 

configuration

Gate level modelling 

and timing

Hardware concurrency

design entity modularization

Switch level modeling and timing

Event handling

ASIC timing

4 state logic

Automatic variables Signed numbers

multi-D arrays

pointers

Basic datatypes (bit, int, reg, wire…)

Basic programming (for, if, while,..)

enums

Operator 
OverloadingPackages

Void type

Unions

Dynamic 

memory 

allocation
records/

structs

Strings

User-defined types

Simple assertions

Further 

programming

(do while, 

break, continue, 

++, --, +=. etc)

Associative

& Sparse arrays

Verilog-2001 adds a lot of VHDL 

functionality but still lacks 

advanced data structures
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Process

ControlInterface

Specification

Temporal

Properties

Packed structs

and unions

Classes, methods

& inheritance

Queues

Constrained

Random Data 

Generation
Functional

Coverage
Semaphores

C interfaceCoverage  & 

Assertion

API

Sequential 

Regular 

Expressions

Enhanced Scheduling for

Testbench and Assertions

Mailboxes

Persistent

events

Virtual
Interfaces

Program

Block

Clocking

Domain

Cycle

Delays

Sequence

Events

Dynamic 

hardware 

generation

Architecture 

configuration

Gate level modelling 

and timing

Hardware concurrency

design entity modularization

Switch level modeling and timing

Event handling

ASIC timing

4 state logic

Automatic variables Signed numbers

multi-D arrays

safe pointers

Basic datatypes (bit, int, reg, wire…)

Basic programming (for, if, while,..)

enums

Operator 
OverloadingPackages

Void type

Unions

Dynamic 

memory 

allocation

records/

structs

Strings

User-defined types

Simple assertions

Further 

programming

(do while, 

break, continue, 

++, --, +=. etc)

Associative

& Sparse arrays

SystemVerilog: Enhancements
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& Sparse arrays

SystemVerilog: Unified Language
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The Value of a Single Language

Reuse of Syntax/Concepts

• Sampling for assertions and clocking domains

• Method syntax

• Queues use common concat/array operations

• Constraints in classes and procedural code

Knowledge of 

Other Language 

Features
• Testbench and 

Assertions

• Interfaces and 

Classes

• Sequences and 

Events

Unified Scheduling
• Basic Verilog won‟t work

• Ensures Pre/Post-Synth 

Consistency

• Enables Performance 

Optimizations
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Review Questions

• For verifying an individual module what is a good 

“reporting” strategy?

• What was the value of having a C-type model of the 

chip?

• Are functional vectors alone sufficient?

• What is essential for system-level verification?

• When is fork-join used?


