
Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 6

Developed By: Paul D. Franzon

Hierarchy and Partitioning

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 6

Developed By: Paul D. Franzon

Specifying Hierarchy in Verilog

module top (clock, data_in, … ,data_out);
input clock;
input [7:0] data_in;
output [7:0] data_out;
// outputs of declared modules type wire

or tri

chiplet1 u1 (.clock(clock),
.Din(data_in),
.Dout(data_out);

chiplet u2 (.clock …);
endmodule

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 6

Developed By: Paul D. Franzon

Hierarchy (cont’d)

module chiplet1 (clock, Din, Dout);
input clock;
input [7:0] Din;
output [7:0] Dout;
wire [7:0] Dout;
wire control;

dataUnit u1 (.clock (clock), .DatIn(Din),
.control(ConIn), .DatOut(Dout));

controller u2 (.clock(clock),
.control(ConOut), …)

endmodule

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 6

Developed By: Paul D. Franzon

Hierarchy (cont’d)

Port name inside moduleSignal Name
(has to by type wire or tri)

Instance NameModule name

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 6

Developed By: Paul D. Franzon

Scope in Hierarchy

• What is the scope of Dout?

• How would you refer to DatIn from top, assuming it is

also a variable name inside module dataunit ?

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 6

Developed By: Paul D. Franzon

Partitioning a Design

• ie. Deciding what to put in each module.

• General Rule:

• Make the synthesized units reasonably small while

keeping them as sensible synthesis targets.

• Why?

 Synthesis is performed serially on modules or module groups

 Synthesis run time egate-count

 Hence two 1,000 gate modules synthesize faster than one

2,000 gate module (if highly interconnected internally)

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 6

Developed By: Paul D. Franzon

Sensible Synthesized Units

• Synthesized unit = module or module sub-hierarchy that is
synthesized as single unit

• Sensible constraints:
 Critical path contained within synthesized unit

 Every path from input to output must pass through a register

 Sharable resources within synthesized unit

 Must be within same procedural block for automatic resource sharing

 One synthesis strategy only

 E.g. Separate FSM, as has a different synthesis strategy

 One clock if at all possible

 Registered outputs if at all possible

 Important to register outputs if they are connected to someone elses design

 Add internal structure where “good structures” can be human specified

 All logic at leaf cell modules only

 i.e. No “glue” logic

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 6

Developed By: Paul D. Franzon

Partitioning Example

Notes:

- circles = combinational logic

- bar instanced twice as U2 and U3

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 6

Developed By: Paul D. Franzon

Problems with this Partitioning

• Problems/Issues:

• U1

• U2:

• U3:

• U4:

• U5:

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 6

Developed By: Paul D. Franzon

Possible Fixes

• Problems/Issues:

• U1

• U2:

• U3:

• U4:

• U5:

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 6

Developed By: Paul D. Franzon

Synthesis Script To Address

Problems/Issues

Write top level Verilog module (ignoring details of inputs and outputs):

module top ();

…

endmodule;

Synthesis Script Extract:

(instead of current compile):

.....

// on worst_case cells/conditions:

characterize -constraints {U1}

current_design foo

compile

current_design top

group {U4 U5} -design_name pets -cell_name U10

characterize -constraints {U10}

current_design pets

compile

current_design top

Characterize calculates

input and output delays due

to connected logic. Determines

input_delay and driving_cell

Creates new module “pets”

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 6

Developed By: Paul D. Franzon

Script (cont’d)

uniquify -cell U3 -new_name bar2

characterize -constraints {U2}

current_design bar

compile

current_design top

characterize -constraints {U3}

current_design bar2

compile

current_design top

report_timing

Creates temporary module name

for U3 so it can be synthesized

separately from U2

If report timing specifies a critical path that spans multiple modules,

then you should revisit partitioning or group those together and

resynthesize the grouped module

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 6

Developed By: Paul D. Franzon

Questions on Script

• Is the area of the logic in the timing path from U1 to U2

optimal?

• Why should every path in a synthesized unit contain a

register?

• Why should outputs that interface with other designers

be registers?

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 6

Developed By: Paul D. Franzon

Partitioning (cont’d)

• If your hierarchy is such that the leaf cell modules are

the desired synthesis units, and there is no need to

optimize logic across module boundaries, then just use:

 This automatically synthesizes the leaf cell modules

 Note, current_instance is the most recent module read unless

you tell Synopsys otherwise

• You should have NO GLUE LOGIC between synthesized

units

 Otherwise you have to expand the size of the synthesized unit to

include that logic, or (less desirably) use group and flatten to

create a “super module”

current_module top

compile

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 6

Developed By: Paul D. Franzon

Exercise

• What is wrong with this partitioning?

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 6

Developed By: Paul D. Franzon

Partitioning

• Remember:

Partition the design into the smallest modules that

 Entirely contain the critical paths

 Have FFs for all outputs (as much as practical)

 Contain sharable logic

 Make sense from a design perspective

