
Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 5

Developed By: Paul D. Franzon

Design With Verilog

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 5

Developed By: Paul D. Franzon

Lexical Conventions in Verilog

Logic values:

Integers:

Other bases: h = hexadecimal, d = decimal (which is the

default)

Examples: 10, 3‟b1, 8‟hF0, 8‟hF, 5‟d11,2‟b10

Logic Value Description

0 Zero, low, or false

1 One, high or true

Z or z or ? High impedance, tri-stated or floating

X or x Unknown, uninitialized, or Don’t Care

1’b1; 4’b0;

size ‘base value ; size = # bits, HERE: base = binary
NOTE: zero filled to left

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 5

Developed By: Paul D. Franzon

Procedural Blocks

Code of the type
always@(input1 or input2 or ...)

begin

if-then-else or case statement, etc.

end

is referred to as Procedural Code
 Statements between begin and end are executed procedurally, or in

order.

 Variables assigned (i.e. on the left hand side) in procedural code must

be of a register data type. Here type reg is used.

• Variable is of type reg does NOT mean it is a register or flip-flop.

 The procedural block is executed when triggered by the always@

statement.

• The statements in parentheses (...) are referred to as the

sensitivity list.

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 5

Developed By: Paul D. Franzon

Blocking vs. Non-Blocking

• Or Why I use “<=“ to specify flip-flops

• Blocking:
Begin

A = B;

C = D;

End

 Assignment of C blocked until A=B completed; i.e. They execute in

sequence

• Non-Blocking
Begin

A <= B;

C <= D;

End

 Assignment of C NOT blocked until A=B completed

 i.e. They execute in parallel

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 5

Developed By: Paul D. Franzon

Blocking Statements

• Hand execute the following:

// test fixture

initial

begin

a = 4’h3; b = 4’h4;

end

// code

always@(posedge clock)

begin

c = a + b;

d = c + a;

end;

• Results:

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 5

Developed By: Paul D. Franzon

Non-Blocking

• Contrast it with this code:

// test fixture

initial
begin

a = 4‟h3; b = 4‟h4; c=4‟h2;
end

// code
always@(posedge clock)

begin
c <= a + b;
d <= c + a;

end;

After execution:

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 5

Developed By: Paul D. Franzon

Why is this?

• Because how Verilog captures the intrinsic parallelism of

hardware

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 5

Developed By: Paul D. Franzon

Blocking vs. Non-Blocking

• Which describes better what you expect to see?

 Non-blocking assignment

• Note:

 Use non-blocking for flip-flops

 Use blocking for combinational logic

 Logic can be evaluated in sequence – not synchronized to clock

 Don‟t mix them in the same procedural block

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 5

Developed By: Paul D. Franzon

Exercise

Which code fragment correctly
captures the following logic.
Notice the use of blocking
assignment.

A. always@(posedge clock)

begin

A = B;

B = A;

end

B. always@(posedge clock)

begin

B = A;

A = B;

end

C. always@(posedge clock)

begin

C = B;

D = A;

B = D;

A = C;

end

D. always@(posedge clock)

begin

A = B = A;

end

A B

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 5

Developed By: Paul D. Franzon

Registers

Some Flip Flop Types:

reg Q0, Q1, Q2, Q3, Q4;

// D Flip Flop

always@(posedge clock)

Q0 <= D;

// D Flip Flop with asynchronous reset

always@(posedge clock or negedge reset)

if (!reset) Q1 <= 0;

else Q1 <= D;

// D Flip Flop with synchronous reset

always@(posedge clock)

if (!reset) Q2 <= 0;

else Q2 <= D;

// D Flip Flop with enable

always@(posedge clock)

if (enable) Q3 <= D;

Note:

Registers with asynchronous

reset are smaller than

those with synchronous

reset

+ don‟t need clock to reset

BUT it is a good idea to

synchronize reset at the block

level to reduce impact of noise.

// D Flip Flop with synchronous clear and preset

always@(posedge clock)

if (!clear) Q4 <= 0;

else if (!preset) Q4 <= 1;

else Q4 <= D;

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 5

Developed By: Paul D. Franzon

Reset

• Reset is an important part of the control strategy

 Used to initialize the chip to a known state

 Distributed to registers that determine state

 E.g. FSM state vector

 Usually asserted on startup and reset

 Globally distributed

 Not a designer-controlled signal

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 5

Developed By: Paul D. Franzon

Behavior Function

What do the following code fragments synthesize to?

reg foo;

always @(a or b or c)

begin

if (a)

foo = b | c;

else foo = b ^ c;

end

reg foo;

always@(clock or a)

if (clock)

foo = a;

end

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 5

Developed By: Paul D. Franzon

Behavior Function

Sketch the logic being described:

input [1:0] sel;

input [3:0] A;

reg Y;

always@(sel or A)

casex (sel)

0 : Y = A[0];

1 : Y = A[1];

2 : Y = A[2];

3 : Y = A[3];

default : Y = 1’bx;

endcase

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 5

Developed By: Paul D. Franzon

Behavior Function

Sketch the truth table, and describe the logic:

input [3:0] A;

reg [1:0] Y;

always@(A)

casex (A)

8’b0001 : Y = 0;

8’b0010 : Y = 1;

8’b0100 : Y = 2;

8’b1000 : Y = 3;

default : Y = 2’bx;

endcase

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 5

Developed By: Paul D. Franzon

Behavior Function

Sketch the truth table, and describe the logic:

input [3:0] A;

reg [1:0] Y;

always@(A)

casex (A)

4’b1xxx : Y = 0;

4’bx1xx : Y = 1;

4’b001x : Y = 2;

4’b0000 : Y = 3;

4’b0001 : Y = 0;

default : Y = 2’bx;

endcase

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 5

Developed By: Paul D. Franzon

Behavior Function

Sketch the logic:

input [2:0] A;

reg [7:0] Y;

always@(A or B or C)

begin

Y = B + C;

casex (A)

3’b1xx : Y = B - C;

3’bx00 : Y = B | C;

3’b001 : Y = B & C;

endcase

end

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 5

Developed By: Paul D. Franzon

Behavior Function

integer i, N;

parameter N=7;

reg [N:0] A;

always@(A)

begin

OddParity = 1’b0;

for (i=0; i<=N; i=i+1)

if (A[i]) OddParity = ~OddParity;

end

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 5

Developed By: Paul D. Franzon

Behavior Function

Sketch the logic:

reg A, B, C, D, E, F;

always@(A or B or C or D)

begin

E = A | B;

if (C) then F = E; else F = A ^ B;

E = E ^ C;

end

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 5

Developed By: Paul D. Franzon

Procedural Code

• always@(posedge clock) results in what?

• Variables assigned procedurally are declared as what

type?

• What type of assignment should be used when

specifying flip-flops?

• When is the block evaluated?

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 5

Developed By: Paul D. Franzon

Exercises

Implement a 2-bit Grey scale encoder: (I.e. Binary

encoding of 1..4 differ by only 1 bit)

Implement hardware that counts the # of 1‟s in input [7:0]A;

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 5

Developed By: Paul D. Franzon

Operators

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 5

Developed By: Paul D. Franzon

Continuous Assignment

Sketch the logic being specified …

input [3:0] A, B;

wire [3:0] C, E;

wire D, F, G;

assign C = A ^ B;

assign D = |A;

assign E = {{2{A[3]}}, A[2:1]};

assign F = A[0] ? B[0] : B[1];

assign G = (A == B);

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 5

Developed By: Paul D. Franzon

Continuous Assignment

Sketch the logic being specified …

input A, B, C;

tri F;

assign F = A ? B : 1’bz;

assign F = ~A ? C : 1’bz;

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 5

Developed By: Paul D. Franzon

Continuous Assignment

Sketch the logic being specified …

input [3:0] A, B, C;

wire [3:0] F, G;

wire H;

assign F = A + B + C + D;

assign G = (A+B) + (C+D);

assign H = C[A[1:0]];

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 5

Developed By: Paul D. Franzon

Continuous Assignment

• When are expressions evaluated?

• What types of variables can be assigned?

• Is this the only way to build synthesizable tri-state

buffers?

Exercise -- Use Continuous Assignment to Make an even

Parity Generator:

wire [31:0] A;

wire even_parity;

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 5

Developed By: Paul D. Franzon

Structural Verilog

Complex modules can be put together by „building‟ (instancing) a

number of smaller modules.
e.g. Given the 1-bit adder module with module definition as follows, build a 4-

bit adder with carry_in and carry_out

module OneBitAdder (CarryIn, In1, In2, Sum, CarryOut);

4-bit adder:
module FourBitAdder (Cin, A, B, Result, Cout);

input Cin;

input [3:0] A, B;

output [3:0] Result;

output Cout;

wire [3:1] chain;

OneBitAdder u1 (.CarryIn(Cin), .In1(A[0]), .In2(B[0]), .Sum(Result[0]),
.CarryOut(chain[1]));

OneBitAdder u2 (.CarryIn(chain[1]), .In1(A[1]), .In2(B[1]),
.Sum(Result[1]), .CarryOut(chain[2]));

OneBitAdder u3 (.CarryIn(chain[2]), .In1(A[2]), .In2(B[2]),
.Sum(Result[2]), .CarryOut(chain[3]));

OneBitAdder u4 (Chain[3], A[3], B[3], Result[3], Cout); // in correct order

endmodule

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 5

Developed By: Paul D. Franzon

Structural Example

• Sketch:

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 5

Developed By: Paul D. Franzon

Structural Verilog

Features:

Four copies of the same module (OneBitAdder) are built

(„instanced‟) each with a unique name (u1, u2, u3, u4).

Module instance syntax:

OneBitAdder u1 (.CarryIn(Cin),

Module Name Instance Name Port Name inside

Module (optional)

Net name

All nets connecting to outputs of modules must be of wire
type (wire or tri):wire [3:1] chain;

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 5

Developed By: Paul D. Franzon

Applications of Structural Verilog

• To Assemble modules together in a hierarchical design.

• Final gate set written out in this format (“netlist”).

• Design has to be implemented as a module in order to

integrate with the test fixture

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 5

Developed By: Paul D. Franzon

module counter (clock, in, latch, dec, zero);
input [3:0] in;
input clock, latch, dec;
output zero;
wire \value[3] , \value[1] , \value53[2] , \value53[0] , \n54[0] , \value[2] , \value[0] , \value53[1] , \value53[3] , n103, n104, n105,n106, n107, n108,
n109, n110, n111, n112, n113, n114, n115;

NOR2 U36 (.Y(n107), .A0(n109), .A1(\value[2]));
NAND2 U37 (.Y(n109), .A0(n105), .A1(n103));
NAND2 U38 (.Y(n114), .A0(\value[1]), .A1(\value[0]));
NOR2 U39 (.Y(n115), .A0(\value[3]), .A1(\value[2]));
XOR2 U40 (.Y(n110), .A0(\value[2]), .A1(n108));
NAND2 U41 (.Y(n113), .A0(n109), .A1(n114));
INV U42 (.Y(\n54[0]), .A(n106));
INV U43 (.Y(n108), .A(n109));
AOI21 U44 (.Y(n106), .A0(n112), .A1(dec), .B0(latch));
INV U45 (.Y(zero), .A(n112));
NAND2 U46 (.Y(n112), .A0(n115), .A1(n108));
OAI21 U47 (.Y(n111), .A0(n107), .A1(n104), .B0(n112));
DSEL2 U48 (.Y(\value53[3]), .D0(n111), .D1(in[3]), .S0(latch));
DSEL2 U49 (.Y(\value53[2]), .D0(n110), .D1(in[2]), .S0(latch));
DSEL2 U50 (.Y(\value53[1]), .D0(n113), .D1(in[1]), .S0(latch));
DSEL2 U51 (.Y(\value53[0]), .D0(n105), .D1(in[0]), .S0(latch));
EDFF \value_reg[3] (.Q(\value[3]), .QBAR(n104), .CP(clock), .D(

\value53[3]), .E(\n54[0]));
EDFF \value_reg[2] (.Q(\value[2]), .CP(clock), .D(\value53[2]), .E(\n54[0]));
EDFF \value_reg[1] (.Q(\value[1]), .QBAR(n103), .CP(clock), .D(

\value53[1]), .E(\n54[0]));
EDFF \value_reg[0] (.Q(\value[0]), .QBAR(n105), .CP(clock), .D(

\value53[0]), .E(\n54[0]));
endmodule

Sample Netlist

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 5

Developed By: Paul D. Franzon

Common Problems and Fixes

Unintentional Latches

 How to detect : Found by Synopsys after “read” command

 How to fix : Make sure every variable is assigned for every way code

is executed (except for flip-flops)

 What happens if unfixed : Glitches on “irregular clock” to latch cause

set up and hold problems in actual hardware (transient failures)

Problem Code : Possible Fix :

always@(A or B)

begin

if (A) C = ~B;

else D = |B;

end

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 5

Developed By: Paul D. Franzon

Common Problems and Fixes

Incomplete Sensitivity List

 How to detect : After “read” command synopsys says “Incomplete

timing specification list”

 How to fix : All logic inputs have to appear in sensitivity list OR

switch to Verilog 2001 (always@(*)).

 What happens if unfixed : Since simulation results won‟t match what

actual hardware will do, bugs can remain undetected

Problem Code Fix

always@(A or B)

begin

if (A) C = B ^ A;

else C = D & E;

F = C | A;

end

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 5

Developed By: Paul D. Franzon

Common Problems and Fixes

Unintentional Wired-OR logic

 How to detect : After “read” command Synopsys says “variable

assigned in more than one block”

 How to fix : Redesign hardware so that every signal is driven by only

one piece of logic (or redesign as a tri-state bus if that is the

intention)

 What happens if unfixed : Unsynthesizable. This is a symptom of

NOT designing before coding

Problem Code Possible Fix
always@(A or B)

C = |B;

always@(D or E)

C = ^E;

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 5

Developed By: Paul D. Franzon

Common Problems and Fixes

Improper Startup
 How to detect : Can‟t

 How to fix : Make sure “don‟t cares” are propagated

 What happens if unfixed : Possible undetected bug in reset logic

Problem Code
always@(posedge clock)

if (A) Q <= D;

always@(Q or E)

case (Q)

0 : F = E;

default : F = 1;

endcase

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 5

Developed By: Paul D. Franzon

Common Problems and Fixes

Feedback in Combinational Logic

 Either results in:

 Latches, when the feedback path is short

 “Timing Arcs”, when feedback path is convoluted

 Fix by redesigning logic to remove feedback

 Feedback can only be through flip-flops

CL

CL

CL

CL

WRONG! OK

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 5

Developed By: Paul D. Franzon

Common Problems and Fixes

Incorrect Use of FOR loops

 Only correct use is to iterate through an array of

bits

 If in doubt, do NOT use a FOR loop

Unconstrained Timing

 To calculate permitted delay, Synthesis must know

where the flip-flops are

 If you have a path from input port to output port

that does not path through a flip-flop, Synopsys

can not calculate the timing

 Timing Report presents “Unconstrained Paths”

 Fix: revisit module partitioning (see later) to

include flip-flops in all paths

CL

Causes Problems

CL

OK

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 5

Developed By: Paul D. Franzon

Debug

• How to prevent a lot of need to debug:

 Carefully think through design before coding

 Simulate “in your head”

• How to debug:

 Track bug point back in design and back in time

 Check if each “feeding” signal makes sense

 Compare against a “simulation in your head”

 If all else fails, recode using a different technique

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 5

Developed By: Paul D. Franzon

Larger Examples : Linear Feedback Shift

Register (fn)

module LFSR_FN (Clock, Reset, Y1, Y2);

input Clock, Reset;

output [7:0] Y1, Y2; reg [7:0] Y1, Y2;

parameter [7:0] seed1 = 8'b01010101;

parameter [7:0] seed2 = 8'b01110111;

function [7:0] LFSR_TAPS8_FN;

input [7:0] A;

integer N;

parameter [7:0] Taps = 8'b10001110;

reg Bits0_6_Zero, Feedback;

begin

Bits0_6_Zero = ~| A[6:0];

Feedback = A[7] ^ Bits0_6_Zero;

for (N=7; N>=1; N=N-1)

if (Taps[N-1] == 1) LFSR_TAPS8_FN[N] = A[N-1] ^ Feedback;

else LFSR_TAPS8_FN[N] = A[N-1]; LFSR_TAPS8_FN[0] = Feedback;

end

endfunction /* LFSR_TAP8_FN */

/* Build 2 LFSRs using the LFSR_TAPS8_TASK */

always@(posedge Clock or negedge Reset)

if (!Reset) Y1 <= seed1; else Y1 <= LFSR_TAPS8_FN (Y1);

always@(posedge Clock or negedge Reset)

if (!Reset) Y2 <= seed2; else Y2 <= LFSR_TAPS8_FN (Y2);

endmodule

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 5

Developed By: Paul D. Franzon

LFSR

• Sketch Design

Y1[7] Y1[6] Y1[5] Y1[4] Y1[3] Y1[2] Y1[1] Y1[0]

clock

reset

feedback

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 5

Developed By: Paul D. Franzon

LFSR (Task)

module LFSR_TASK (clock, Reset, Y1, Y2);

input clock, Reset;

output [7:0] Y1;

reg [7:0] Y1;

parameter [7:0] seed1 = 8'b01010101; parameter [7:0] Taps1 = 8'b10001110;

task LFSR_TAPS8_TASK;

input [7:0] A; input [7:0] Taps; output [7:0] Next_LFSR_Reg;

integer N; reg Bits0_6_Zero, Feedback; reg [7:0] Next_LFSR_Reg;

begin

Bits0_6_Zero = ~| A[6:0]; Feedback = A[7] ^ Bits0_6_Zero;

for (N=7; N>=1; N=N-1)

if (Taps[N-1] == 1) Next_LFSR_Reg[N] = A[N-1] ^ Feedback;

else Next_LFSR_Reg[N] = A[N-1];

Next_LFSR_Reg[0] = Feedback;

end

endtask /* LFSR_TAP8_TASK */

always@(posedge clock or negedge Reset)

if (!Reset) Y1 = seed1;

else LFSR_TAPS8_TASK (Y1, Taps1, Y1);

endmodule

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 5

Developed By: Paul D. Franzon

Register File

module RegFile (clock, WE, WriteAddress, ReadAddress, WriteBus, ReadBus);

input clock, WE;

input [4:0] WriteAddress, ReadAddress;

input [15:0] WriteBus;

output [15:0] ReadBus;

reg [15:0] Register [0:31]; // thirty-two 16-bit registers

// provide one write enable line per register

wire [31:0] WElines;

integer i;

// Write '1' into write enable line for selected register

assign WElines = (WE << WriteAddress);

always@(posedge clock)

for (i=0; i<=31; i=i+1)

if (WElines[i]) Register[i] <= WriteBus;

assign ReadBus = Register[ReadAddress];

endmodule

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 5

Developed By: Paul D. Franzon

Register File

• Sketch Design

WriteBus…WE

WElines[0]

WElines[31]

WriteAddress

Address Decoder

…

ReadAddress

ReadBus

Alternative:
always@(posedge clock)

if (WE) Register[WriteAddress] = WriteBus;

tends to result in more logic, with its implied address decoder.

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 5

Developed By: Paul D. Franzon

Sample Problem

• Checksum Unit:
 Checksum field used to check that a packet is transmitted correctly

 Checked against truncated sum of data stored in accumulator

 e.g. simple 9 byte packet:

01 01 01 01 01 01 01 FF 06

Payload Calculated Checksum = 06 (no error in this case)

01 01 01 01 02 01 01 FF 05

Payload Calculated Checksum = 07 (ERROR in this case)

 Design an 8-bit checksum unit with the following timing

 Inputs : NewPacket (goes high when a new packet starts); DataIn

 Outputs : Error (hi = error); goes low when a new packet starts

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 5

Developed By: Paul D. Franzon

Design

Strategy : Use a counter to identify Byte in packet and

event sequence.

1. Draw I/O

2. Identify Registers

3. Describe comb. Logic

4. Controller = counter

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 5

Developed By: Paul D. Franzon

Exercises

Which alternative best describes the behavior of

the logic in the following verilog fragment.

wire [4:0] A;

wire [2:0] B;

assign B = {&A[2:0]; {2{A[4] | A[3]}} };

If A =5‟b10101, then

a) B=3‟b000;

b) B=3‟b011;

c) B=3‟b100;

d) B=3‟b111;

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 5

Developed By: Paul D. Franzon

Exercises

Which alternative best describes the behavior of the logic

in the following verilog fragment. Notice the use of

blocking assignment.
reg [3:0] A, B, C;

always@(posedge clock)

begin

B = {A[1:0], A[3:2]};

C = A + B;

end

If A =4‟b1101, and B=4‟b0001 before the positive edge of the clock, then after the

positive edge.

a) B=4‟b0011; C=4‟b0001;

b) B=4‟b0111; C=4‟b1011;

c) B=4‟b0111; C=4‟b1110;

d) B=4‟b0111; C=4‟b0100;

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 5

Developed By: Paul D. Franzon

Summary

• What are the HDL designers “mantra‟s”?

• What are the three basic VL constructs?

• What is structural VL used for?

• What are 3 common problems?

