
Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 4

Developed By: Paul D. Franzon

How to Design Complex Digital

Systems

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 4

Developed By: Paul D. Franzon

Course “Mantras”

1. One clock, one edge, flip-flops only

2. Design BEFORE coding

3. Behavior implies function

4. Clearly separate control and datapath

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 4

Developed By: Paul D. Franzon

Steps in High Level Design

• Determine MicroOperations to be performed on
datapath units
 e.g. adds, subtracts, multiplies, memory references, etc.

• Design datapath units to perform these operations
efficiently
 Design to RTL level

 Note later sections on efficiency

• Identify control points
 Control lines

 Status lines

• Determine reset/start/stop/transition actions
 Especially global reset strategy

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 4

Developed By: Paul D. Franzon

Steps in High Level Design (cont’d)

• Determine control sequence

 Generally MicroOp sequence required to perform overall task

 Gives sequence of control events and status line responses

• Determine control strategy

 Mix of FSMs and/or counters

• Verify before coding

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 4

Developed By: Paul D. Franzon

Control Strategies

• Counters:

 Takes machine through a linear sequence of states with few

decisions along the way

• FSMs

 Permits branches in control decision chain

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 4

Developed By: Paul D. Franzon

… Control Strategies

• Pipeline Control

 In a sense, an “unrolled” FSM – each stage does one step (or

one of several parallel steps) in an FSM; state information

communicated between stages

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 4

Developed By: Paul D. Franzon

Reset

• Reset is a global signal that the designer can not modify

• It is generally asserted on power up or a “hard” reset

• It is used to start the machine in a “known” state

• Thus it must be distributed to

 All FSMs

 Selected counters

 Selected status registers

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 4

Developed By: Paul D. Franzon

Achieving Efficiency

• High level tradeoffs:
 Parallelism

 Pipelining

 Optimizing the critical resource
 E.g. Memory bandwidth

 Keep resources busy
 If a resource is idle can it be shared?

 Goal : Everything is used every clock cycle

• Algorithmic Optimizations
 E.g. Algorithms that avoid DRAM accesses
 e.g. Compress table onto SRAM

 Exploiting common algorithms in Computer Science
 e.g. Boyer-Moore for string matching

 e.g. Hash tables for matches

 e.g. Shift instead of *2 /2

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 4

Developed By: Paul D. Franzon

Mid-level efficiency

• Think hardware (area and delay):

 Avoid large FSMs

 Count the large units (* + memories, etc.)

 Avoid high-fanout signals

 Avoid priority logic

 Structure arithmetic for speed

 E.g. CLA instead of ripple carry

• Exploit existing Intellectual Property

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 4

Developed By: Paul D. Franzon

Design Ware

• Synopsys, and others, provide libraries of carefully

optimized design blocks for you to use -- called `Design

Ware‟

 Libraries include: Arithmetic, Advanced Math, DSP, Control,

Sequential, and Fault Tolerant

 For +,-,*, >=, <=, >, and <, design ware is automatically used

 More complex cells must be inferred via a procedure call. e.g.

cosine:

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 4

Developed By: Paul D. Franzon

module trigger (angle, cos_out);

parameter wordlength1 = 8, wordlength2 = 8;

input [wordlength-1:0] angle;

output [wordlength-1:0] cos_out;

// passes the widths to the cos function

parameter angle_width = wordlength1, cos_width = wordlength2;

„include

“/afs/bp/dist/synopsys_syn/dw/sim_ver/DW02_cos_function.inc”

wire [wordlength2-1:0] cos_out;

// infer DW02_cos

assign cos_out = cos(angle);

Endmodule

Design Ware

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 4

Developed By: Paul D. Franzon

Example

• Motion Estimator

• Task:

• Detect blocks of video data in successive frames that are

related only via a translation

 Digital Video is captured as blocks of 16x16 pixels

 Want to determine if block has moved largely unchanged

 If true can transmit motion vector rather than block

 Permits high level of compression

 Example (4x4 block)

Reference Block in

Frame 1

“Draw block” with

motion vector (1,2)

in frame 2

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 4

Developed By: Paul D. Franzon

Search Algorithm

Describe for 16x16 reference block:

1. Move a window the size of the reference block over

search space in the second frame

2. For each window location (i,j) determine the distortion

vector

3. Maintain the best distortion and appropriate motion

vector produced so far.

• For Example (4x4 block):

15

0

15

0

,, ||),(
m n

jNimnm SrjiD

Reference

Block in

Frame 1

Search window

in frame 2

Search Block Location (i,j)=(-3,3)

D=3 (3 pixels different in this B&W example)

Original Location of Reference Block in Frame 1

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 4

Developed By: Paul D. Franzon

System Requirements

• System Requirements:

• 16x16 Reference Block

• 31x31 Search Window

• Each stored in one two-read-ported memory

 In reality one memory per frame

• Grey-scale coded pixels (8 bits/block)

• 4096 reference blocks in a frame

• Conduct search at 15 frames per second

 (Encoding does not have to be real time)

• Clocks available : 130, 260 MHz

• 0.25 mm CMOS library

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 4

Developed By: Paul D. Franzon

Step 1 : System Design

• Elements to thinking:

• Bottom-up design

 Determine critical bottlenecks (paths & other bottlenecks)

• Top-down design

 Determine use of pipelining and parallelism to meet performance

constraints

• Critical Bottlenecks:

• Elemental Arithmetic Operation (add-accumulate):

 Design, synthesize Can operate at 260 MHz with some timing margin

left over

• Memories:

 Single access per clock cycle

|| , jNimmn SrDD

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 4

Developed By: Paul D. Franzon

… System Design

• Top Down Design

• Number of add-accumulates per clock cycle:
 4096 blocks per 1/15 of a second

 (31-15)x(31-15)=256 searches/block

 16x16=256 add-accumulates per search

 4096*15*256*256 = 4.027E9 add-accumulates/second

 At 260 MHz At least 16 adders in parallel (4027/260=15.5)

• Searches/block [(4x4) on (10x10) example]:

Search (-3,-3)

Search (-2,-3)

Search (-1,-3)

Search (0,-3)

Search(1,-3)

Search(2,-3)

Search(3,-3)

7 searches per column

7 searches per row

(10-4)x(10-4) total searches

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 4

Developed By: Paul D. Franzon

…System Design

• First Attempt

• Assign one search per Accumulator

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 4

Developed By: Paul D. Franzon

… System Design

• Second Attempt:

• Stagger Startup of Accumulators

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 4

Developed By: Paul D. Franzon

… System Design

• Final Solution:

• Pipeline R

2 S mem ports
required

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 4

Developed By: Paul D. Franzon

Step 2 : Design Datapath

• Datapath Details:

• Detailed hardware required to implement above

PE = Processing Element

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 4

Developed By: Paul D. Franzon

… Datapath

• Comparator:

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 4

Developed By: Paul D. Franzon

Coding Datapath

• PE: Note, accumulator cant overflow – saturate at FF

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 4

Developed By: Paul D. Franzon

Datapath

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 4

Developed By: Paul D. Franzon

Step 3. Identify Control Points

• PE control lines:

• S1S2mux [15:0]; // S1-S2 mux control

• NewDist [15:0] ; // =1 when PE is starting a new distortion calculation

• Comparator control lines:

• CompStart;11 = // when PEs running

• PEready [15:0]; // PEready[I]=1 when PEi has a new distortion vector

• VectorX [3:0] ;

• VectorY [3:0];// Motion vector being evaluated

• Memory control lines:

• Memories organized in row-major format

 e.g. R(3,2) is stored at location 3*15+2- 1 = 46

• AddressR [7:0]; // address for Reference memory (0,0). ..(15,15)

• AddressS1 [9:0] ; // address for first read port of Search mem

• AddressS2 [9:0] ; // second read port of Search mem (0,0)-(30,30)

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 4

Developed By: Paul D. Franzon

Step. 4 Design Controller

• Best Strategy : Counter

• Reset Strategy

• Reset needed to initialize entire chip in known state
 Does not apply here, as long as “start” comes from a unit that

does use a reset

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 4

Developed By: Paul D. Franzon

• Generally the “flow” constructs in C correlate to controller

designs in Verilog, e.g.

• In “C”: If (A<=5) {B=A+C;} else {B=A-C;}

• In Hardware:

A B C

<=5?

-

+

A<=5?

Mux=0 Mux=1

FSM

C to Verilog

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 4

Developed By: Paul D. Franzon

C to Verilog (cont’d)

• For loop:

 In “C”: B=0; for (i=0;i<=7;i++) B=B+A;

 In Hardware:

+

0 B

Mux=A+B

Mux=0

StartCount

Count=7

Mux=hold

Counter

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 4

Developed By: Paul D. Franzon

Minimizing Power Consumption

• Will go over in a later set of notes, but here is the logic

design impact…

 In general, at the logic level, the energy required to complete a

complex task is roughly proportional to:

• Snodes 01 and 10 logic transitions

 E.g.

• Note:

 Complex logical units (e.g. Multiplier) have a lot more internal

nodes than simpler logical units

 And thus consume more energy per operation

010
“1 unit of energy”

01010
“2 units of energy”

010
“2 units of energy”

010

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 4

Developed By: Paul D. Franzon

How to Minimize Power Consumption

• Simpler, smaller design will often also more energy

efficient

• There is often a speed-power tradeoff

E.g. Which design is more energy efficient?

• Try to eliminate useless toggling

E.g. Which design is LESS energy efficient if B mostly DESELECTS

mult output?

Mult

B

Mult

B

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 4

Developed By: Paul D. Franzon

… How to minimize power consumption

• Memory accesses are particularly energy hungry,

especially with larger memories

• Complex data motion is particularly power hungry

 E.g. Long range on-chip interconnect

 Off-chip interconnect

 Using an on-chip network to move data, especially a store and

forward network

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 4

Developed By: Paul D. Franzon

Review Questions

• What was the critical resource optimized in the Motion

Estimator?

• How was the use of this resource optimized?

• What is the control strategy?

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 4

Developed By: Paul D. Franzon

Review Questions

• What are my four “mantras”

• What are common control strategies?

• What are common speed-up strategies?

• What is “reset” for?

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 4

Developed By: Paul D. Franzon

Review Questions

• What are the main principles to follow to minimize power

consumption?

