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Introduction

* Purpose of Verification:

= Discover as many potential bugs in the design as reasonable
before sending chip out for fabrication

= Do this by simulating chip (and chip components) in Verilog
* Why is verification important?

= Chip fab might cost $4M and take 8 weeks

= Very expensive and time consuming to iterate chip fab!

= Want to get prototype correct in one to two fab cycles

= FPGAs can rely more on using the prototype for debug
= But, note, it is more difficult to debug hardware than a simulation
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... Introduction

* Verification consumes more than 60% of design resources
= People, compute cycles

« Verification mainly done with pre-synthesis code

= Though some simulation, and other checks, are done to make sure the
netlist is correct

« With increased reuse of existing Intellectual Property (“IP”),
verification has become very challenging

= |P = Predesigned blocks, internally developed, purchased or obtained
from open source

= Debugging is often harder than design!
* Focus of these Notes

= Primarily on verification tasks likely to be performed by module level
designer, and code constructs commonly used
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Verification and the Team

* Designer’'s Responsibilities:
= Conduct reasonable levels of ad-hoc verification of design through simulation
= Follow good coding practices to ease primary verification task
= Include assertions in code as appropriate
= Design in features to aid verification
= E.g. Allow long FSM to be started in a specific “deep” state
« System level verification usually primarily the role of a separate verification
team
= Why?
=  Whole system, not individual design verification

= When verifying his/her own design, designer often makes same (dumb) assumptions in
the test fixture as in the design
. i.e. Misses many of the bugs, especially mis-interpretations of specification
. A separate team with an independently derived verification plan is less likely to do this

=  Becoming more of a specialty with own tools, methodologies, etc.
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Verification Tools and Methods

 Itis impossible to know that you have eliminated all the
bugs in a design

= Thus it is important to use a variety of tools, techniques and
methods that give you a high probability of discovering bugs
= And to have a plan to apply them!

= (Get as many “avenues of attack” as possible

* Avallable tools and methods include:
=  Simulation through test fixtures
= Including mixed level simulation
= |nserting and tracking assertions
= Formal verification
= Emulation
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Simulations Through Test Fixtures

« Basic concept:
= Apply vectors to design as stimulus
= Observe outputs, and internal nodes, for correct functionality

« Key Questions:
= Where to you get the vectors?
= How do you observe the outputs?
= What are the available coding styles?
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Sources of Verification Vectors

1. From expected functionality

= Vectors designed to exercise expected functions of chip or block
= From specification or understanding of function of chip/block
= Prioritized from “must work” to “would like to work”™

2. From Higher Level Model
= QObtain vectors for individual blocks from a higher level
behavioral model
= E.g. C model developed for project
= Example: Run video stream through C model of MPEG encoder
= Extract examples from this to run through Motion Estimator
= C model here is an example of a “reference behavioral model”
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... Sources of Simulation Vectors

3. Vectors added specifically as a result of production of
verification plan

= E.g. Vectors specifically designed to test “difficult” aspects of
design

= Features that were hard to design
= Modules are more likely to be buggy
= E.g. Bus arbiters

= E.g. vectors designed to increase the “coverage” of the design
= Increase code and functional coverage

4. Random vectors
= Run random vectors
= Compare results with same vectors run in a higher level model
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... Sources of Simulation Vectors

5. System level vectors — simulating the chip in its entirety
= |mportantto do a LOT of this
= Very slow and time consuming

= While design is incomplete, can be a mixed behavioral (e.g. C)
and RTL simulation

= Using Verilog Programming Language Interface (PLI)

= Requires good behavioral models for interface chips — Memories,
etc.
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Observing Correctness

1. Observe in Waveform Viewer
2. Observing results of assertions

3. Try to write ‘self-checking’ test fixtures, that analyze the

results and inform you of correctness.

= Useful as it means you can automatically check other parts of a design
when you redesign some portion.

#10 dec = 1;

#28 1if (zero == 1'bl) $display (“Check 1 passed”)
else $display (“Error: Check 1 FAILED”);

= Try to take to a higher level. i.e. Incorporate "understanding’ of
function into self-checking feature

integer testData; // test data being used
integer ExpectedDelay; // expected delay for test data
initial
begin
testData = 4;
in = testData;

ExpectedDelay = testData * 10;
#ExpectedDelay if (zero == 1’bl) S$display (“Check 1 passed”)
else $display (“Error: Check 1 FAILED”);

Synopsys University Courseware

SYNOPSYS o e e NC STATE UNIVERSITY

Developed By: Paul D. Franzon



Verilog Code for Test
Fixtures...Approaches

« Can use any syntactically correct code

* Choose test vector generation approach:

= On-the-fly generation:
= Use continuous loops for repetitive signals
= Use simple assignments for signals with few transitions (e.g. reset)
= Use tasks to generate specific waveform sets

= Read vectors stored as constants in an array
= Read vectors from a file

» Choose timing approach:

= Relative Timing, or
= Absolute Timing

« Generate clock separately from vectors

* Whenever possible check simulation results within test fixture

= Against a stored set of ‘expected’ results, or
= Against an internal model of expected behavior

Synopsys University Courseware

SYNOPSYS o e e NC STATE UNIVERSITY

Developed By: Paul D. Franzon



Examples...On the fly generation

« Use atask to generate an often repeated vector set

task refresh;
// generate a RAS before CAS refresh cycle
output RAS, CAS;
begin
// assume RAS and CAS high on entry
#5 RAS = 0;

#15 RAS = 1;

#10 CAS = 0;

#15 CAS = 1;

#45; // allow refresh to complete
end
initial

begin

refresh (RAS, CAS);
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Test Fixture Reading Vectors from an
Array

« Example below also shows use of a for loop:

module test fixture;

parameter TestCycles = 20;

parameter ClockPeriod = 10;

integer I;

reg [15:0] SourceVectors [TestCycles-1 : 0];

reg [7:0] ResultVectors [TestCycles-1 : 0];

reg [15:0] InA; // input port of module being tested
wire [7:0] OutB; // output port of module being tested
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...Verilog in Test Fixtures

initial
begin
SourceVector [0] = 16"h735f; // etc.
ResultVector [0] = 8"h5f; // etc...not all entries here
end
initial
begin
SimResults = S$fopen (“Yerrdet.txt”); // open error file
clock = 1;
#11 for (I=0; I<=TestCycles; I = I+1l); // start 1 ns into first clock
period
begin
InA = SourceVector[I];
#ClockPeriod if (OutB != ResultVector([I])
Sfdisplay (SimResults, “ERROR in loop %d \n”, I);
end
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...Verilog in Test Fixtures...reading
vectors from file

 Can also store the verification vectors in a file.

* For example, you could generate the file during the
behavioral ‘C’ simulation and use during RTL verification

module test fixture;
reg [15:0] SourceVectors [TestCycles-1 : 0];
initial

begin

$readmemh (“source vec.txt”, Source Vectors);

source vec.txt:
// Source Vectors for SourceVectors array for design
73hf // first vector

beef // second vector
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Absolute vs. Relative timing

» Relative Timing Example:

module test fixture;
parameter ClockPeriod=10;
initial
begin
#1 Inl = 2’b00;
In2 = 2'b01;

#ClockPeriod Inl = 2'b01;
In2 = 2'b00;
#ClockPeriod Inl = 2'bll;
In2 = 2'bl0;

end

Clock |
n1 <
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...Absolute vs. Relative Timing

« Absolute Timing Example:

module test fixture;
parameter ClockPeriod=10;
initial
fork
#1 Inl = 2'b00;
#1 In2 = 2'b01;
# (ClockPeriod+1l) Inl
# (ClockPeriod+1l) In2
# (ClockPeriod*2+1) Inl
# (ClockPeriod*2+1) In2
Jjoin

2'b01;
2'000;
2'bll;
2'b10;

Clock |
In1 <

INn2 ~
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‘ Putting it All Together

« What a test fixture might look like:

module test fixture;

\\ declare variables assigned within test fixture as type reg

reg clock;

\\ declare variables that come from module output ports as type wire

wire [7:0] data out;
initial \\ test fixture contents

begin

end

\\ declare non-synthesisezed parts, e.g. memories

SRAM1 ml (clock, ..);
\\ declare module to be tested
top wul (clock, .., data out);

endmodule
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Behavioral Models for Non-Synthesized
Designs

« Often need to model the following:
« Parts provided by other vendors (ask Vendor first)

* modules in your chip that are not synthesized, such as memories, some
arithmetic units, analog portions.

« Cells in cell library
« Approaches to modeling these modules:
« Can use any correct Syntax verilog for model

« User Defined Primitives (UDP) are useful for combinational logic and
designs containing a single register

= Examples: NOR2 gate and DFF from CMOSX library

» Use a spec param block to capture timing requirements
= Example: Embedded memory array

* Verilog-A used to model analog portions
* Must verify these models carefully too
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User Defined Primitives

« primitive prim_dff(qg,cp,d); State transition table

« outputq; Inputs : Current State : Next State
reg q; r =rise
: ’ _ n = fall
![nglljt Cp,d, * = any possible transition (edge)

able ? =don'’t care (0,1,x) (level)
/] cp d q g+ - = no change

r 1 ? 1;
r 0 ? 0;
n ? ? -
* 0 0 0;
* 1 1 1;
? ? -
endtable
endprimitive
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User Defined Primitives

« primitive prim_dff(qg,cp,d); Primitive Declaration

* outputg; Rising edge on cp = nextq=d
reg q, .
input cp,d:; falling edge on clock=» q stays same
table other clock transitions (to/from x) = no change

Ignore edges ond
' cp d g g+ J J

r 1 ? 1;
r 0 ? 0;
n ? ? -
* 0 0 0;
* 1 1 1,
? * ? -
endtable
endprimitive
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‘ specparam blocks

« Used to specify timing for non-synthesized logic.
* Again, example from CMOSX cell library....

‘celldefine
‘timescale 1ns / 10ps

module DFF (Q,

output Q, OBAR;
input CP, D;

specify

specparam CP 01 PD10 QBAR

OBAR, CP, D);

specparam CP 01 PDO1 Q =

specparam CP 01 PDO1 OBAR

specparam CPiOliPDlOiQ =

specparam SLOPEOSCPSQBAR
specparam SLOPE1$CP$SQ = 0.258:0.609:1.59;
specparam SLOPE1S$SCPS$SQBAR
specparam SLOPEQSCPSQ = 0.451:0.714:1.32;

specparam STANDARDLOAD =

specparam tSU D =
specparam tHOLD D
specparam MPWL CP
specparam MPWH CP
specparam MPER CP
specparam MFT CP

mnnin o

.30:0.
0.10:
0.20
0.08:
0.40:

4.00:3

6

0
:0.30:0.90;

0

0

9

= 0.320:0.685:1.75;
0.270:0.629:1.68;
= 0.261:0.616:1.71;
0.320:0.628:1.55;

= 0.308:0.478:0.831;

= 0.169:0.403:1.03;

0.350:0.350:0.350;

0:1.40;
.05:0.01;

.20:0.60;
.80:2.20;
.00:380.00;

Min : typical : max
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... DFF module from CMOSX lib

specparam FanoutLoad$CP = 0.0147:0.0216:0.0309;
specparam FanoutLoad$D = 0.0104:0.0135:0.0184;

specparam FanoutLoad$Q = 0.00504:0.0106:0.0117; _
specparam FanoutLoad$QBAR = 0.0114:0.0127:0.0223; ClOCk Q / Qbar delays

(CP=>QBAR)=(CP_01 PDO1 QBAR, CP 01 PD10 QBAR);

(CP=>Q)=(CP_01 PD0O1 Q, CP 01 PD10 Q); o _
(rising Q, falling Q)

$setup (D, edge[01] CP, tSU D);

$hold(edge[01] CP, D, tHOLD D);

$width (negedge CP, MPWL CP);

$width (posedge CP, MPWH CP);

S$period(posedge CP, MPER CP);

endspeci fy Checks based on parameters

prim dff Ul (Q int,CP,D);
not U2 (QBAR,Q int);
buf U3 (Q,Q int);

endmodule
“endcelldefine
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Assertions

* Code blocks that check for correct and incorrect
behavior
= Putinside RTL code (but do not synthesize)
= Usually inserted by designer

= System Verilog allows more concise assertions, but can also be
written in normal Verilog

- Example (Verlog95):

// synopsys off

‘ifdef Assertions on

// check ONE bus request granted ONE clock cyle after any reqgest
always@ (posedge clock)

if ((|lrequest) & (~|grant)) // request, no active grants
begin
@ (posedge clock) // wait one cycle
if (~|grant) S$display (“ERROR: bus access not granted”);

else if ((grant[0] + grant[l] + grant[2] + grant[3])>1)
Sdisplay (“ERROR: multiple buses accesses granted”);
end
‘endif
// synopsys on
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Formal Verification

« Equivalency Checking
= Determines that two designs are logically equivalent
= Examples:

= RTL and netlist
= Different netlists after non-design coding changes

= Often used to help verify output of synthesis

* Model Checking
= Trying to prove or disprove that a circuit possesses a property
that is part of a more abstract, higher-level specification
= E.g. Correct design capture of a Finite State Automata
= Requires good capture of specification in a suitable language
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Simulation “Engines”

There are never enough simulation cycles to complete verification

1. Event based Verilog simulator
= Most general but slowest

2. Cycle based Verilog simulator
= Slightly less general but faster

3. Verilog simulator hardware accelerator
= Use hardware as a co-processor to accelerate simulation of Verilog (that does
not have a lot of I/O —i.e. not all signals captured)

4. Emulation
* I.e. Build a multi-FPGA system that can emulate the standard cell ASIC, though
at a slower clock rate

« Allows very complete verification (except for timing critical issues) but takes a
lot of engineering resource
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Verification Metrics

* How do you know your chip is ready for fabrication?
= You can never know you are bug-free!
= General solution: When cost (and opportunity cost) of more verification
IS higher than the cost of using the first silicon to complete the debug
process
= j.e. When it is quicker and cheaper to build the chip to find the remaining bugs
= Note: Some bugs can be worked around with firmware
« Common Metrics:
Bug discovery rate
Code coverage
Functional Coverage
Assertion coverage

R
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Verification Metrics

« Code Coverage
= Has every line of code been simulated?
= What percentage of possible paths have been simulated?
= E.g. All alternatives in an if-then sequence
= What percentage of possible state sequences have been simulated?
= Requires instrumentation of code and appropriate data collecting and
reporting tools
« Functional Coverage
= Have all the functions in the specification been simulated?
= E.g. All interface modes in a USB interface

= Requires writing of code (SystemVerilog or integrated via PLI) to monitor
the hardware that implements these functions and data collecting within
the test fixture
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Verification Environment

Definitions

Checks

Creates correctness

IS Verification

Environment N
Identifies

transactions

Executes
transactions

Observes
data
from DUT

Checker |~

Driver Assertions Monitor

Supplies data
to the DUT
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Coverage-Driven Verification

« Measure progress using functional coverage

Coverage-Driven Productivity
Methodology gain

Directed
Methodology

Self-checking
random environment
development time

% Coverage

_Il"_‘_' -

v Time
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‘ SystemVerilog Standardization Timeline

2004 2005

oy L
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SystemVerilog: Verilog 1995

Slides provided by
David Oterra, Synopsys

Verilog-95:
Single language
for design &
testbench
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SystemVerilog: VHDL

VHDL adds higher
level data types and
management
functionality

Switch level modeling and timing ASIC timing
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‘ Semantic Concepts: C

: Operator
'| Packages Overloading
1

Architecture Simple assertions
configuration

User-defined types

Dynamic
hardware
generation

Event handling

! 1

i i

i 4 state logic E (09 has .

i ! fo ra

i Hardware concurrency Gate level modelling E ;:;"'es 5:‘7‘%’ Mip,

'| design entity modularization and timing ! Ware Onacks al g
E‘ """""""""""""""""""""""""" i cepts

i Switch level modeling and timing ASIC timing E

_____________________________________________________
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‘ SystemVerilog: Verilog-2001

Verilog-2001 adds a lot of VHDL
functionality but still lacks
advanced data structures

= Operlatogi i
Overloading |} po======-=====-=7 !
________________________________ i P?9£(99-e§--------------9---E Associative :
1 o |
Simple assertions | Dynamic : & Sparse arrays :
1| memory ——— - Loo-
LUserdefined types ) -aloestion. 1| voidype | [ Further |,
records/ |, Uni programming :
structs ' nions (do while ]
______________ ’ ’ 1
1 1
Strings | E:_e?l('f:n;tlgye' :
- 1

_____________________________
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‘ SystemVerilog: Enhancements

Architecture
configuration

P

L
[}
1
1
1
1
1
[}
g 1
1 [ Dynamic i .
i mult*.D arrays
: hardware :|— %
1
[}
5
1
1
1
1
[}

generation !

X\
Q‘ 40‘\& \\(\Q’ ency Gate level modelling
sodularization and timing
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SystemVerilog: Unified Language
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The Value of a Single Language

Knowledge of
Other Language

Unified Scheduling
« Basic Verilog won't work

« Ensures Pre/Post-Synth Features
Consistency * Testbench and
* Enables Performance Assertions
Optimizations * Interfaces and
Classes
* Sequences and
Events

Reuse of Syntax/Concepts

« Sampling for assertions and clocking domains
« Method syntax

« Queues use common concat/array operations
« Constraints in classes and procedural code
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‘ Review Questions

For verifying an individual module what is a good
“reporting” strategy?

- What was the value of having a C-type model of the
chip?

« Are functional vectors alone sufficient?

« What is essential for system-level verification?

« When is fork-join used?
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