
Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 6

Developed By: Paul D. Franzon

Hierarchy and Partitioning

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 6

Developed By: Paul D. Franzon

Specifying Hierarchy in Verilog

module top (clock, data_in, … ,data_out);
input clock;
input [7:0] data_in;
output [7:0] data_out;
// outputs of declared modules type wire

or tri

chiplet1 u1 (.clock(clock),
.Din(data_in),
.Dout(data_out);

chiplet u2 (.clock …);
endmodule

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 6

Developed By: Paul D. Franzon

Hierarchy (cont’d)

module chiplet1 (clock, Din, Dout);
input clock;
input [7:0] Din;
output [7:0] Dout;
wire [7:0] Dout;
wire control;

dataUnit u1 (.clock (clock), .DatIn(Din),
.control(ConIn), .DatOut(Dout));

controller u2 (.clock(clock),
.control(ConOut), …)

endmodule

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 6

Developed By: Paul D. Franzon

Hierarchy (cont’d)

Port name inside moduleSignal Name
(has to by type wire or tri)

Instance NameModule name

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 6

Developed By: Paul D. Franzon

Scope in Hierarchy

• What is the scope of Dout?

• How would you refer to DatIn from top, assuming it is

also a variable name inside module dataunit ?

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 6

Developed By: Paul D. Franzon

Partitioning a Design

• ie. Deciding what to put in each module.

• General Rule:

• Make the synthesized units reasonably small while

keeping them as sensible synthesis targets.

• Why?

 Synthesis is performed serially on modules or module groups

 Synthesis run time  egate-count

 Hence two 1,000 gate modules synthesize faster than one

2,000 gate module (if highly interconnected internally)

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 6

Developed By: Paul D. Franzon

Sensible Synthesized Units

• Synthesized unit = module or module sub-hierarchy that is
synthesized as single unit

• Sensible constraints:
 Critical path contained within synthesized unit

 Every path from input to output must pass through a register

 Sharable resources within synthesized unit

 Must be within same procedural block for automatic resource sharing

 One synthesis strategy only

 E.g. Separate FSM, as has a different synthesis strategy

 One clock if at all possible

 Registered outputs if at all possible

 Important to register outputs if they are connected to someone elses design

 Add internal structure where “good structures” can be human specified

 All logic at leaf cell modules only

 i.e. No “glue” logic

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 6

Developed By: Paul D. Franzon

Partitioning Example

Notes:

- circles = combinational logic

- bar instanced twice as U2 and U3

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 6

Developed By: Paul D. Franzon

Problems with this Partitioning

• Problems/Issues:

• U1

• U2:

• U3:

• U4:

• U5:

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 6

Developed By: Paul D. Franzon

Possible Fixes

• Problems/Issues:

• U1

• U2:

• U3:

• U4:

• U5:

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 6

Developed By: Paul D. Franzon

Synthesis Script To Address

Problems/Issues

Write top level Verilog module (ignoring details of inputs and outputs):

module top ();

…

endmodule;

Synthesis Script Extract:

(instead of current compile):

.....

// on worst_case cells/conditions:

characterize -constraints {U1}

current_design foo

compile

current_design top

group {U4 U5} -design_name pets -cell_name U10

characterize -constraints {U10}

current_design pets

compile

current_design top

Characterize calculates

input and output delays due

to connected logic. Determines

input_delay and driving_cell

Creates new module “pets”

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 6

Developed By: Paul D. Franzon

Script (cont’d)

uniquify -cell U3 -new_name bar2

characterize -constraints {U2}

current_design bar

compile

current_design top

characterize -constraints {U3}

current_design bar2

compile

current_design top

report_timing

Creates temporary module name

for U3 so it can be synthesized

separately from U2

If report timing specifies a critical path that spans multiple modules,

then you should revisit partitioning or group those together and

resynthesize the grouped module

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 6

Developed By: Paul D. Franzon

Questions on Script

• Is the area of the logic in the timing path from U1 to U2

optimal?

• Why should every path in a synthesized unit contain a

register?

• Why should outputs that interface with other designers

be registers?

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 6

Developed By: Paul D. Franzon

Partitioning (cont’d)

• If your hierarchy is such that the leaf cell modules are

the desired synthesis units, and there is no need to

optimize logic across module boundaries, then just use:

 This automatically synthesizes the leaf cell modules

 Note, current_instance is the most recent module read unless

you tell Synopsys otherwise

• You should have NO GLUE LOGIC between synthesized

units

 Otherwise you have to expand the size of the synthesized unit to

include that logic, or (less desirably) use group and flatten to

create a “super module”

current_module top

compile

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 6

Developed By: Paul D. Franzon

Exercise

• What is wrong with this partitioning?

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 6

Developed By: Paul D. Franzon

Partitioning

• Remember:

Partition the design into the smallest modules that

 Entirely contain the critical paths

 Have FFs for all outputs (as much as practical)

 Contain sharable logic

 Make sense from a design perspective

