
Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 5

Developed By: Paul D. Franzon

Design With Verilog

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 5

Developed By: Paul D. Franzon

Lexical Conventions in Verilog

Logic values:

Integers:

Other bases: h = hexadecimal, d = decimal (which is the

default)

Examples: 10, 3‟b1, 8‟hF0, 8‟hF, 5‟d11,2‟b10

Logic Value Description

0 Zero, low, or false

1 One, high or true

Z or z or ? High impedance, tri-stated or floating

X or x Unknown, uninitialized, or Don’t Care

1’b1; 4’b0;

size ‘base value ; size = # bits, HERE: base = binary
NOTE: zero filled to left

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 5

Developed By: Paul D. Franzon

Procedural Blocks

Code of the type
always@(input1 or input2 or ...)

begin

if-then-else or case statement, etc.

end

is referred to as Procedural Code
 Statements between begin and end are executed procedurally, or in

order.

 Variables assigned (i.e. on the left hand side) in procedural code must

be of a register data type. Here type reg is used.

• Variable is of type reg does NOT mean it is a register or flip-flop.

 The procedural block is executed when triggered by the always@

statement.

• The statements in parentheses (...) are referred to as the

sensitivity list.

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 5

Developed By: Paul D. Franzon

Blocking vs. Non-Blocking

• Or Why I use “<=“ to specify flip-flops

• Blocking:
Begin

A = B;

C = D;

End

 Assignment of C blocked until A=B completed; i.e. They execute in

sequence

• Non-Blocking
Begin

A <= B;

C <= D;

End

 Assignment of C NOT blocked until A=B completed

 i.e. They execute in parallel

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 5

Developed By: Paul D. Franzon

Blocking Statements

• Hand execute the following:

// test fixture

initial

begin

a = 4’h3; b = 4’h4;

end

// code

always@(posedge clock)

begin

c = a + b;

d = c + a;

end;

• Results:

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 5

Developed By: Paul D. Franzon

Non-Blocking

• Contrast it with this code:

// test fixture

initial
begin

a = 4‟h3; b = 4‟h4; c=4‟h2;
end

// code
always@(posedge clock)

begin
c <= a + b;
d <= c + a;

end;

After execution:

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 5

Developed By: Paul D. Franzon

Why is this?

• Because how Verilog captures the intrinsic parallelism of

hardware

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 5

Developed By: Paul D. Franzon

Blocking vs. Non-Blocking

• Which describes better what you expect to see?

 Non-blocking assignment

• Note:

 Use non-blocking for flip-flops

 Use blocking for combinational logic

 Logic can be evaluated in sequence – not synchronized to clock

 Don‟t mix them in the same procedural block

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 5

Developed By: Paul D. Franzon

Exercise

Which code fragment correctly
captures the following logic.
Notice the use of blocking
assignment.

A. always@(posedge clock)

begin

A = B;

B = A;

end

B. always@(posedge clock)

begin

B = A;

A = B;

end

C. always@(posedge clock)

begin

C = B;

D = A;

B = D;

A = C;

end

D. always@(posedge clock)

begin

A = B = A;

end

A B

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 5

Developed By: Paul D. Franzon

Registers

Some Flip Flop Types:

reg Q0, Q1, Q2, Q3, Q4;

// D Flip Flop

always@(posedge clock)

Q0 <= D;

// D Flip Flop with asynchronous reset

always@(posedge clock or negedge reset)

if (!reset) Q1 <= 0;

else Q1 <= D;

// D Flip Flop with synchronous reset

always@(posedge clock)

if (!reset) Q2 <= 0;

else Q2 <= D;

// D Flip Flop with enable

always@(posedge clock)

if (enable) Q3 <= D;

Note:

Registers with asynchronous

reset are smaller than

those with synchronous

reset

+ don‟t need clock to reset

BUT it is a good idea to

synchronize reset at the block

level to reduce impact of noise.

// D Flip Flop with synchronous clear and preset

always@(posedge clock)

if (!clear) Q4 <= 0;

else if (!preset) Q4 <= 1;

else Q4 <= D;

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 5

Developed By: Paul D. Franzon

Reset

• Reset is an important part of the control strategy

 Used to initialize the chip to a known state

 Distributed to registers that determine state

 E.g. FSM state vector

 Usually asserted on startup and reset

 Globally distributed

 Not a designer-controlled signal

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 5

Developed By: Paul D. Franzon

Behavior  Function

What do the following code fragments synthesize to?

reg foo;

always @(a or b or c)

begin

if (a)

foo = b | c;

else foo = b ^ c;

end

reg foo;

always@(clock or a)

if (clock)

foo = a;

end

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 5

Developed By: Paul D. Franzon

Behavior  Function

Sketch the logic being described:

input [1:0] sel;

input [3:0] A;

reg Y;

always@(sel or A)

casex (sel)

0 : Y = A[0];

1 : Y = A[1];

2 : Y = A[2];

3 : Y = A[3];

default : Y = 1’bx;

endcase

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 5

Developed By: Paul D. Franzon

Behavior  Function

Sketch the truth table, and describe the logic:

input [3:0] A;

reg [1:0] Y;

always@(A)

casex (A)

8’b0001 : Y = 0;

8’b0010 : Y = 1;

8’b0100 : Y = 2;

8’b1000 : Y = 3;

default : Y = 2’bx;

endcase

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 5

Developed By: Paul D. Franzon

Behavior  Function

Sketch the truth table, and describe the logic:

input [3:0] A;

reg [1:0] Y;

always@(A)

casex (A)

4’b1xxx : Y = 0;

4’bx1xx : Y = 1;

4’b001x : Y = 2;

4’b0000 : Y = 3;

4’b0001 : Y = 0;

default : Y = 2’bx;

endcase

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 5

Developed By: Paul D. Franzon

Behavior  Function

Sketch the logic:

input [2:0] A;

reg [7:0] Y;

always@(A or B or C)

begin

Y = B + C;

casex (A)

3’b1xx : Y = B - C;

3’bx00 : Y = B | C;

3’b001 : Y = B & C;

endcase

end

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 5

Developed By: Paul D. Franzon

Behavior  Function

integer i, N;

parameter N=7;

reg [N:0] A;

always@(A)

begin

OddParity = 1’b0;

for (i=0; i<=N; i=i+1)

if (A[i]) OddParity = ~OddParity;

end

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 5

Developed By: Paul D. Franzon

Behavior  Function

Sketch the logic:

reg A, B, C, D, E, F;

always@(A or B or C or D)

begin

E = A | B;

if (C) then F = E; else F = A ^ B;

E = E ^ C;

end

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 5

Developed By: Paul D. Franzon

Procedural Code

• always@(posedge clock) results in what?

• Variables assigned procedurally are declared as what

type?

• What type of assignment should be used when

specifying flip-flops?

• When is the block evaluated?

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 5

Developed By: Paul D. Franzon

Exercises

Implement a 2-bit Grey scale encoder: (I.e. Binary

encoding of 1..4 differ by only 1 bit)

Implement hardware that counts the # of 1‟s in input [7:0]A;

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 5

Developed By: Paul D. Franzon

Operators

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 5

Developed By: Paul D. Franzon

Continuous Assignment

Sketch the logic being specified …

input [3:0] A, B;

wire [3:0] C, E;

wire D, F, G;

assign C = A ^ B;

assign D = |A;

assign E = {{2{A[3]}}, A[2:1]};

assign F = A[0] ? B[0] : B[1];

assign G = (A == B);

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 5

Developed By: Paul D. Franzon

Continuous Assignment

Sketch the logic being specified …

input A, B, C;

tri F;

assign F = A ? B : 1’bz;

assign F = ~A ? C : 1’bz;

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 5

Developed By: Paul D. Franzon

Continuous Assignment

Sketch the logic being specified …

input [3:0] A, B, C;

wire [3:0] F, G;

wire H;

assign F = A + B + C + D;

assign G = (A+B) + (C+D);

assign H = C[A[1:0]];

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 5

Developed By: Paul D. Franzon

Continuous Assignment

• When are expressions evaluated?

• What types of variables can be assigned?

• Is this the only way to build synthesizable tri-state

buffers?

Exercise -- Use Continuous Assignment to Make an even

Parity Generator:

wire [31:0] A;

wire even_parity;

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 5

Developed By: Paul D. Franzon

Structural Verilog

Complex modules can be put together by „building‟ (instancing) a

number of smaller modules.
e.g. Given the 1-bit adder module with module definition as follows, build a 4-

bit adder with carry_in and carry_out

module OneBitAdder (CarryIn, In1, In2, Sum, CarryOut);

4-bit adder:
module FourBitAdder (Cin, A, B, Result, Cout);

input Cin;

input [3:0] A, B;

output [3:0] Result;

output Cout;

wire [3:1] chain;

OneBitAdder u1 (.CarryIn(Cin), .In1(A[0]), .In2(B[0]), .Sum(Result[0]),
.CarryOut(chain[1]));

OneBitAdder u2 (.CarryIn(chain[1]), .In1(A[1]), .In2(B[1]),
.Sum(Result[1]), .CarryOut(chain[2]));

OneBitAdder u3 (.CarryIn(chain[2]), .In1(A[2]), .In2(B[2]),
.Sum(Result[2]), .CarryOut(chain[3]));

OneBitAdder u4 (Chain[3], A[3], B[3], Result[3], Cout); // in correct order

endmodule

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 5

Developed By: Paul D. Franzon

Structural Example

• Sketch:

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 5

Developed By: Paul D. Franzon

Structural Verilog

Features:

Four copies of the same module (OneBitAdder) are built

(„instanced‟) each with a unique name (u1, u2, u3, u4).

Module instance syntax:

OneBitAdder u1 (.CarryIn(Cin),

Module Name Instance Name Port Name inside

Module (optional)

Net name

All nets connecting to outputs of modules must be of wire
type (wire or tri):wire [3:1] chain;

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 5

Developed By: Paul D. Franzon

Applications of Structural Verilog

• To Assemble modules together in a hierarchical design.

• Final gate set written out in this format (“netlist”).

• Design has to be implemented as a module in order to

integrate with the test fixture

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 5

Developed By: Paul D. Franzon

module counter (clock, in, latch, dec, zero);
input [3:0] in;
input clock, latch, dec;
output zero;
wire \value[3] , \value[1] , \value53[2] , \value53[0] , \n54[0] , \value[2] , \value[0] , \value53[1] , \value53[3] , n103, n104, n105,n106, n107, n108,
n109, n110, n111, n112, n113, n114, n115;

NOR2 U36 (.Y(n107), .A0(n109), .A1(\value[2]));
NAND2 U37 (.Y(n109), .A0(n105), .A1(n103));
NAND2 U38 (.Y(n114), .A0(\value[1]), .A1(\value[0]));
NOR2 U39 (.Y(n115), .A0(\value[3]), .A1(\value[2]));
XOR2 U40 (.Y(n110), .A0(\value[2]), .A1(n108));
NAND2 U41 (.Y(n113), .A0(n109), .A1(n114));
INV U42 (.Y(\n54[0]), .A(n106));
INV U43 (.Y(n108), .A(n109));
AOI21 U44 (.Y(n106), .A0(n112), .A1(dec), .B0(latch));
INV U45 (.Y(zero), .A(n112));
NAND2 U46 (.Y(n112), .A0(n115), .A1(n108));
OAI21 U47 (.Y(n111), .A0(n107), .A1(n104), .B0(n112));
DSEL2 U48 (.Y(\value53[3]), .D0(n111), .D1(in[3]), .S0(latch));
DSEL2 U49 (.Y(\value53[2]), .D0(n110), .D1(in[2]), .S0(latch));
DSEL2 U50 (.Y(\value53[1]), .D0(n113), .D1(in[1]), .S0(latch));
DSEL2 U51 (.Y(\value53[0]), .D0(n105), .D1(in[0]), .S0(latch));
EDFF \value_reg[3] (.Q(\value[3]), .QBAR(n104), .CP(clock), .D(

\value53[3]), .E(\n54[0]));
EDFF \value_reg[2] (.Q(\value[2]), .CP(clock), .D(\value53[2]), .E(\n54[0]));
EDFF \value_reg[1] (.Q(\value[1]), .QBAR(n103), .CP(clock), .D(

\value53[1]), .E(\n54[0]));
EDFF \value_reg[0] (.Q(\value[0]), .QBAR(n105), .CP(clock), .D(

\value53[0]), .E(\n54[0]));
endmodule

Sample Netlist

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 5

Developed By: Paul D. Franzon

Common Problems and Fixes

Unintentional Latches

 How to detect : Found by Synopsys after “read” command

 How to fix : Make sure every variable is assigned for every way code

is executed (except for flip-flops)

 What happens if unfixed : Glitches on “irregular clock” to latch cause

set up and hold problems in actual hardware ( transient failures)

Problem Code : Possible Fix :

always@(A or B)

begin

if (A) C = ~B;

else D = |B;

end

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 5

Developed By: Paul D. Franzon

Common Problems and Fixes

Incomplete Sensitivity List

 How to detect : After “read” command synopsys says “Incomplete

timing specification list”

 How to fix : All logic inputs have to appear in sensitivity list OR

switch to Verilog 2001 (always@(*)).

 What happens if unfixed : Since simulation results won‟t match what

actual hardware will do, bugs can remain undetected

Problem Code Fix

always@(A or B)

begin

if (A) C = B ^ A;

else C = D & E;

F = C | A;

end

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 5

Developed By: Paul D. Franzon

Common Problems and Fixes

Unintentional Wired-OR logic

 How to detect : After “read” command Synopsys says “variable

assigned in more than one block”

 How to fix : Redesign hardware so that every signal is driven by only

one piece of logic (or redesign as a tri-state bus if that is the

intention)

 What happens if unfixed : Unsynthesizable. This is a symptom of

NOT designing before coding

Problem Code Possible Fix
always@(A or B)

C = |B;

always@(D or E)

C = ^E;

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 5

Developed By: Paul D. Franzon

Common Problems and Fixes

Improper Startup
 How to detect : Can‟t

 How to fix : Make sure “don‟t cares” are propagated

 What happens if unfixed : Possible undetected bug in reset logic

Problem Code
always@(posedge clock)

if (A) Q <= D;

always@(Q or E)

case (Q)

0 : F = E;

default : F = 1;

endcase

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 5

Developed By: Paul D. Franzon

Common Problems and Fixes

Feedback in Combinational Logic

 Either results in:

 Latches, when the feedback path is short

 “Timing Arcs”, when feedback path is convoluted

 Fix by redesigning logic to remove feedback

 Feedback can only be through flip-flops

CL

CL

CL

CL

WRONG! OK

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 5

Developed By: Paul D. Franzon

Common Problems and Fixes

Incorrect Use of FOR loops

 Only correct use is to iterate through an array of

bits

 If in doubt, do NOT use a FOR loop

Unconstrained Timing

 To calculate permitted delay, Synthesis must know

where the flip-flops are

 If you have a path from input port to output port

that does not path through a flip-flop, Synopsys

can not calculate the timing

 Timing Report presents “Unconstrained Paths”

 Fix: revisit module partitioning (see later) to

include flip-flops in all paths

CL

Causes Problems

CL

OK

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 5

Developed By: Paul D. Franzon

Debug

• How to prevent a lot of need to debug:

 Carefully think through design before coding

 Simulate “in your head”

• How to debug:

 Track bug point back in design and back in time

 Check if each “feeding” signal makes sense

 Compare against a “simulation in your head”

 If all else fails, recode using a different technique

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 5

Developed By: Paul D. Franzon

Larger Examples : Linear Feedback Shift

Register (fn)

module LFSR_FN (Clock, Reset, Y1, Y2);

input Clock, Reset;

output [7:0] Y1, Y2; reg [7:0] Y1, Y2;

parameter [7:0] seed1 = 8'b01010101;

parameter [7:0] seed2 = 8'b01110111;

function [7:0] LFSR_TAPS8_FN;

input [7:0] A;

integer N;

parameter [7:0] Taps = 8'b10001110;

reg Bits0_6_Zero, Feedback;

begin

Bits0_6_Zero = ~| A[6:0];

Feedback = A[7] ^ Bits0_6_Zero;

for (N=7; N>=1; N=N-1)

if (Taps[N-1] == 1) LFSR_TAPS8_FN[N] = A[N-1] ^ Feedback;

else LFSR_TAPS8_FN[N] = A[N-1]; LFSR_TAPS8_FN[0] = Feedback;

end

endfunction /* LFSR_TAP8_FN */

/* Build 2 LFSRs using the LFSR_TAPS8_TASK */

always@(posedge Clock or negedge Reset)

if (!Reset) Y1 <= seed1; else Y1 <= LFSR_TAPS8_FN (Y1);

always@(posedge Clock or negedge Reset)

if (!Reset) Y2 <= seed2; else Y2 <= LFSR_TAPS8_FN (Y2);

endmodule

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 5

Developed By: Paul D. Franzon

LFSR

• Sketch Design

Y1[7] Y1[6] Y1[5] Y1[4] Y1[3] Y1[2] Y1[1] Y1[0]

clock

reset

feedback

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 5

Developed By: Paul D. Franzon

LFSR (Task)

module LFSR_TASK (clock, Reset, Y1, Y2);

input clock, Reset;

output [7:0] Y1;

reg [7:0] Y1;

parameter [7:0] seed1 = 8'b01010101; parameter [7:0] Taps1 = 8'b10001110;

task LFSR_TAPS8_TASK;

input [7:0] A; input [7:0] Taps; output [7:0] Next_LFSR_Reg;

integer N; reg Bits0_6_Zero, Feedback; reg [7:0] Next_LFSR_Reg;

begin

Bits0_6_Zero = ~| A[6:0]; Feedback = A[7] ^ Bits0_6_Zero;

for (N=7; N>=1; N=N-1)

if (Taps[N-1] == 1) Next_LFSR_Reg[N] = A[N-1] ^ Feedback;

else Next_LFSR_Reg[N] = A[N-1];

Next_LFSR_Reg[0] = Feedback;

end

endtask /* LFSR_TAP8_TASK */

always@(posedge clock or negedge Reset)

if (!Reset) Y1 = seed1;

else LFSR_TAPS8_TASK (Y1, Taps1, Y1);

endmodule

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 5

Developed By: Paul D. Franzon

Register File

module RegFile (clock, WE, WriteAddress, ReadAddress, WriteBus, ReadBus);

input clock, WE;

input [4:0] WriteAddress, ReadAddress;

input [15:0] WriteBus;

output [15:0] ReadBus;

reg [15:0] Register [0:31]; // thirty-two 16-bit registers

// provide one write enable line per register

wire [31:0] WElines;

integer i;

// Write '1' into write enable line for selected register

assign WElines = (WE << WriteAddress);

always@(posedge clock)

for (i=0; i<=31; i=i+1)

if (WElines[i]) Register[i] <= WriteBus;

assign ReadBus = Register[ReadAddress];

endmodule

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 5

Developed By: Paul D. Franzon

Register File

• Sketch Design

WriteBus…WE

WElines[0]

WElines[31]

WriteAddress

Address Decoder

…

ReadAddress

ReadBus

Alternative:
always@(posedge clock)

if (WE) Register[WriteAddress] = WriteBus;

tends to result in more logic, with its implied address decoder.

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 5

Developed By: Paul D. Franzon

Sample Problem

• Checksum Unit:
 Checksum field used to check that a packet is transmitted correctly

 Checked against truncated sum of data stored in accumulator

 e.g. simple 9 byte packet:

01 01 01 01 01 01 01 FF 06

Payload Calculated Checksum = 06 (no error in this case)

01 01 01 01 02 01 01 FF 05

Payload Calculated Checksum = 07 (ERROR in this case)

 Design an 8-bit checksum unit with the following timing

 Inputs : NewPacket (goes high when a new packet starts); DataIn

 Outputs : Error (hi = error); goes low when a new packet starts

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 5

Developed By: Paul D. Franzon

Design

Strategy : Use a counter to identify Byte in packet and

event sequence.

1. Draw I/O

2. Identify Registers

3. Describe comb. Logic

4. Controller = counter

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 5

Developed By: Paul D. Franzon

Exercises

Which alternative best describes the behavior of

the logic in the following verilog fragment.

wire [4:0] A;

wire [2:0] B;

assign B = {&A[2:0]; {2{A[4] | A[3]}} };

If A =5‟b10101, then

a) B=3‟b000;

b) B=3‟b011;

c) B=3‟b100;

d) B=3‟b111;

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 5

Developed By: Paul D. Franzon

Exercises

Which alternative best describes the behavior of the logic

in the following verilog fragment. Notice the use of

blocking assignment.
reg [3:0] A, B, C;

always@(posedge clock)

begin

B = {A[1:0], A[3:2]};

C = A + B;

end

If A =4‟b1101, and B=4‟b0001 before the positive edge of the clock, then after the

positive edge.

a) B=4‟b0011; C=4‟b0001;

b) B=4‟b0111; C=4‟b1011;

c) B=4‟b0111; C=4‟b1110;

d) B=4‟b0111; C=4‟b0100;

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 5

Developed By: Paul D. Franzon

Summary

• What are the HDL designers “mantra‟s”?

• What are the three basic VL constructs?

• What is structural VL used for?

• What are 3 common problems?

