How to Design Complex Digital
Systems

Synopsys University Courseware

SYNOPSYS O e NC STATE UNIVERSITY

Developed By: Paul D. Franzon

Course “Mantras”

1. One clock, one edge, flip-flops only
2. Design BEFORE coding

3. Behavior implies function

4. Clearly separate control and datapath

Synopsys University Courseware

SYNOPSYS O e NC STATE UNIVERSITY

Developed By: Paul D. Franzon

Steps in High Level Design

* Determine MicroOperations to be performed on
datapath units
= e.g. adds, subtracts, multiplies, memory references, etc.
« Design datapath units to perform these operations
efficiently
= Designto RTL level
= Note later sections on efficiency

* Identify control points
= Control lines
= Status lines

« Determine reset/start/stop/transition actions
= Especially global reset strategy

Synopsys University Courseware

SYNOPSYS O e NC STATE UNIVERSITY

Developed By: Paul D. Franzon

Steps in High Level Design (cont’d)

« Determine control sequence
= Generally MicroOp sequence required to perform overall task
= Gives sequence of control events and status line responses

« Determine control strategy
= Mix of FSMs and/or counters

* Verify before coding

Synopsys University Courseware

SYNOPSYS O e NC STATE UNIVERSITY

Developed By: Paul D. Franzon

Control Strategies

 Counters:

= Takes machine through a linear sequence of states with few
decisions along the way

SSK

state §
Control Logic

E

e FSMs

= Permits branches in control decision chain

T et

state —’

Control Logic FSD

X

Synopsys University Courseware

SYNOPSYS O e NC STATE UNIVERSITY

Developed By: Paul D. Franzon

... Control Strategies

* Pipeline Control

= |n a sense, an “unrolled” FSM — each stage does one step (or
one of several parallel steps) in an FSM; state information
communicated between stages

Stage 1 Stage 2 stage 3
Datapath Datapath Datapath
State_ ST State_S2

Synopsys University Courseware

SYNOPSYS O e NC STATE UNIVERSITY

Developed By: Paul D. Franzon

Reset

Reset is a global signal that the designer can not modify
It is generally asserted on power up or a “hard” reset
It is used to start the machine in a "known” state

Thus it must be distributed to
= All FSMs

= Selected counters

= Selected status registers

Synopsys University Courseware

SYNOPSYS o e NC STATE UNIVERSITY

Developed By: Paul D. Franzon

Achieving Efficiency

. ngh level tradeoffs:
Parallelism
= Pipelining
= QOptimizing the critical resource
= E.g. Memory bandwidth
= Keep resources busy
= |faresource is idle can it be shared?
= Goal : Everything is used every clock cycle
 Algorithmic Optimizations
= E.g. Algorithms that avoid DRAM accesses
= e.g. Compress table onto SRAM
= Exploiting common algorithms in Computer Science
= e.g. Boyer-Moore for string matching

= e.g. Hash tables for matches
= e.g. Shift instead of *2 /2

Synopsys University Courseware

SYNOPSYS O e NC STATE UNIVERSITY

Developed By: Paul D. Franzon

Mid-level efficiency

« Think hardware (area and delay):

Avoid large FSMs

Count the large units (* + memories, etc.)
Avoid high-fanout signals

Avoid priority logic

Structure arithmetic for speed

= E.g. CLA instead of ripple carry

« Exploit existing Intellectual Property

Synopsys University Courseware

Syn [] PS‘/S® 2008&}(/;&25}/2, Inc.

Developed By: Paul D. Franzon

NC STATE UNIVERSITY

Design Ware

« Synopsys, and others, provide libraries of carefully
optimized design blocks for you to use -- called "Design
Ware’

= Libraries include: Arithmetic, Advanced Math, DSP, Control,
Sequential, and Fault Tolerant

= For +,-,* >= <=, > and <, design ware is automatically used

= More complex cells must be inferred via a procedure call. e.g.
cosine:

Synopsys University Courseware

SYNOPSYS O e NC STATE UNIVERSITY

Developed By: Paul D. Franzon

Design Ware

module trigger (angle, cos_out);

parameter wordlengthl = 8, wordlength2 = 8;

input [wordlength-1:0] angle;

output [wordlength-1:0] cos_out;

Il passes the widths to the cos function

parameter angle width = wordlengthl, cos_width = wordlength2;
‘include
“lafs/bp/dist/synopsys_syn/dw/sim_ver/DW02_cos_function.inc”
wire [wordlength2-1:0] cos_out;

/[infer DWO02_cos

assign cos_out = cos(angle);

Endmodule

Synopsys University Courseware

SYNOPSYS O e NC STATE UNIVERSITY

Developed By: Paul D. Franzon

Example

 Motion Estimator
 Task:

» Detect blocks of video data in successive frames that are
related only via a translation
= Digital Video is captured as blocks of 16x16 pixels

= Want to determine if block has moved largely unchanged
= |f true can transmit motion vector rather than block
= Permits high level of compression HF

= Example (4x4 block) Foams
Reference Block in ~ Draw block” with
Frame 1 motion vector (1,2)

in frame 2

Synopsys University Courseware

SYNOPSYS O e NC STATE UNIVERSITY

Developed By: Paul D. Franzon

Search Algorithm

Describe for 16x16 reference block:

1. Move a window the size of the reference block over
search space in the second frame

2. For each window location (i,})) determine the distortion
vector

15 15

D@,)= D I fn—Smiinag |

m=0 n=0

3. Maintain the best distortion and appropriate motion
vector produced so far.
» For Example (4x4 block):

E Search Block Location (i,j)=(-3,3)
] 11.: =\ D=3 (3 pixels different in this B&W example)
Refere_znce Search window Original Location of Reference Block in Frame 1
Block in -
in frame 2
Frame 1

Synopsys University Courseware

SYNOPSYS O e NC STATE UNIVERSITY

Developed By: Paul D. Franzon

System Requirements

« System Requirements:
« 16x16 Reference Block
« 31x31 Search Window

- Each stored in one two-read-ported memory
= In reality one memory per frame

« Grey-scale coded pixels (8 bits/block)
« 4096 reference blocks in a frame

« Conduct search at 15 frames per second
= (Encoding does not have to be real time)

 Clocks available : 130, 260 MHz
* 0.25 um CMQOS library

Synopsys University Courseware

SYNOPSYS O e NC STATE UNIVERSITY

Developed By: Paul D. Franzon

Step 1 : System Design

* Elements to thinking:
* Bottom-up design
= Determine critical bottlenecks (paths & other bottlenecks)

« Top-down design
= Determine use of pipelining and parallelism to meet performance

constraints
D=D+]|r,6 —S

* Critical Bottlenecks:

- Elemental Arithmetic Operation (add-accumulate):

= Design, synthesize =» Can operate at 260 MHz with some timing margin
left over

« Memories:
= Single access per clock cycle

m-+i,N+ |

Synopsys University Courseware

SYNOPSYS O e NC STATE UNIVERSITY

Developed By: Paul D. Franzon

... Oystem Design

« Top Down Design

 Number of add-accumulates per clock cycle:
= 4096 blocks per 1/15 of a second
= (31-15)x(31-15)=256 searches/block
= 16x16=256 add-accumulates per search
= = 4096*15*256*256 = 4.027E9 add-accumulates/second
At 260 MHz => At least 16 adders in parallel (4027/260=15.5)

« Searches/block [(4x4) on (10x10) example]:

!—h[o+ Search (-3,-3)
Al Search (-2,-3) 7 searches per column
i . Search (-1,-3)
R 7 searches per row
Search(1,-3) - _
E:i“"“* - e (10-4)x(10-4) total searches
A Search(3,-3)

Synopsys University Courseware

SYNOPSYS O e NC STATE UNIVERSITY

Developed By: Paul D. Franzon

...oystem Design

* First Attempt

« Assign one search per Accumulator

R mem

S mem

Accum | | Accum

Accum | | Accum

N L L] L
Vector: (-8,-8) (-8,-7) (-8,-0) (-8,-5)
Cycle
1 |7'0,0'50,0| |7'o,0'50,1| |7'o,0'50,2| |7'o,0'50,3|
2 |7'0,1'50,1| |7'o,1'50,2| |7'o,1'50,3| |7'o,1'50,4|

0,0)

(0,31)

S

(8,8)

(31,31)

SYNOPSYS

Synopsys University Courseware

Developed By: Paul D. Franzon

2008 Synopsys, Inc.
Lecture - 4

NC STATE UNIVERSITY

... Oystem Design

« Second Attempt:
« Stagger Startup of Accumulators

R mem S mem
[I I

Accum | | Accum | |Accum | | Accum

u | | L L]
Vector: (-8-8) (-8-7) (-8-0) (-8-5)

Cycle
1 |7’o,0'50,o| |7'o,0'50,1| |7’o,0'50,2| |7'o,0'50,3|
2 |7’o,1'50,1| |7'o,1'50,2| |7'o,1'50,3| |7'o,1'50,4|

Synopsys University Courseware

SYNOPSYS O e NC STATE UNIVERSITY

Developed By: Paul D. Franzon

... Oystem Design

° Final SO|uti0n: R mem S mem
I I
* Pipeline R

] [] []
LA Lad LAl

Accum Accum Accum | | Accum

|| || L L

Vector: (-§,-8) (-8,-7) (-8,-0) (-8,-5

Cycle

1 | 7'0,0'50,0 |

2 |7'o,1'50,1| |7’o,0'50,1|

3 |7’0,2':o,2| |7’o,1'50,2| |7’o,0'50,2|

4 |7'o,3'50,3| |7'o,2'50,3| |7'o,1'50,3| |7'o,0'50,3|
f;ﬂf:i ports _, 15 | 70,15-50,15 | 17014750351 170,15-50,15| 170,12-50,15 |

10 |7'1,1'51,1| |7’o,15'bo,16| |7’o,14'bo,16| |7'o,13'*50,16|

Synopsys University Courseware

SYNOPSYS O e NC STATE UNIVERSITY

Developed By: Paul D. Franzon

Step 2 : Design Datapath

« Datapath Detalls:
« Detailed hardware required to implement above

PE = Processing Element

R 1miern S ren
1
AN 37
—— S
| A-B | P | A-B |
+ ' +

__

To comparator

Synopsys University Courseware

SYNOPSYS O e NC STATE UNIVERSITY

Developed By: Paul D. Franzon

... Datapath

PEout
[|

PEready \ /

« Comparator:

Peout < BestDist?

Vectorx
Vectory \ Vi N\ ;
‘ —/ N
|7 I

motionX BestDist
motionY

Synopsys University Courseware

SYNOPSYS O e NC STATE UNIVERSITY

Developed By: Paul D. Franzon

‘ Coding Datapath

PE: Note, accumulator cant overflow — saturate at FF

module PE (clock, R, S1, S22, S1S2mux, newDist, Accumulate, Rpipe);

input clock;

input [7:0] R, 81, S82;// memory inputs

input S1S2mux, newDist;// control inputs

output [7:0] Accumulate, Rpipe;

reg [7:0] Accumulate, AccumulateIn, Difference, Rpipe;
reg Carry;

always @(posedge clock) Rpipe <= R;
always @{posedge clock) Accumulate <= Accumulateln;

always @(R or S1 or S2 or S1S2mux or newDist or Accumulate)
begin // capture behavior of logic
difference = R - S182mux 7 S1 : S2;
if (difference < 0) difference = 0 — difference;
// absolute subtraction

{Carry,AccumulateIn} = Accumulate + difference;
if (Carry == 1) AccumulateIn = 8 hFF;// saturated
if (newDist == 1) AccumulateIn = difference;
// starting new Distortion calculation
end
endmodule

Motion Estimator Processing Element (PE).

SYNOPSYS

Synopsys University Courseware
2008 Synopsys, Inc.
Lecture - 4
Developed By: Paul D. Franzon

NC STATE UNIVERSITY

‘ Datapath

module Comparator (clock, CompStart, PEout, PEready, wvectorX,
vectorY, BestDist, motionX, motion¥Y) ;

input clock;

input CompStart; // goes high when distortion calculations start
input [8#%16:0] PEocut; // Outputs of PEs as one long wvector

input [15:0] PEready; // Goes high when that PE has a new distortion
input [3:0] wvectorX, vectorY; // Motion vector being evaluated
output [7:0] BestDist; // Best Distortion vector so far

output [3:0] motionX, motionY; // Best motion vector =o far

reg [7:0] BestDi=st, newDi=st;

reg [3:0] motionX, motionY;

reg newBest ;

always @(posedge clock)

if (CompStart == 0) BestDist <= 8 hFF; f/initialize to highest value
else if (newBest == 1)
begin

BestDist <= newDist;

motionX <= wvectorX;

motion¥Y <= wvectorYY;
end

always @(BestDist or PEout or PEready)

begin
newDist = PEout [PEready*8+7 : PEready=8];
if ({|PEready == 0) || (start == 0)) newBest = 0; // no PE is ready
else if (newDist < BestDist) newBest = 1;
else newBest = 0O;
aend
endmodule

Comparator Module.

Synopsys University Courseware

SYNOPSYS o e NC STATE UNIVERSITY

Developed By: Paul D. Franzon

Step 3. Identify Control Points

* PE control lines:
e S1S2mux [15:0]; // S1-S2 mux control
* NewDist [15:0] ; // =1 when PE is starting a new distortion calculation
« Comparator control lines:
« CompStart;11 = // when PEs running
* PEready [15:0]; // PEready[l]=1 when PEi has a new distortion vector
 VectorX [3:0] ;
« VectorY [3:0];// Motion vector being evaluated
* Memory control lines:
* Memories organized in row-major format
= e.g. R(3,2) is stored at location 3*15+2- 1 = 46
* AddressR [7:0]; // address for Reference memory (0,0). ..(15,15)
* AddressS1 [9:0]; // address for first read port of Search mem
* AddressS2 [9:0] ; /] second read port of Search mem (0,0)-(30,30)

Synopsys University Courseware

SYNOPSYS O e NC STATE UNIVERSITY

Developed By: Paul D. Franzon

Step. 4 Design Controller

» Best Strategy : Counter

module control (clock, start, S1S2mux, NewDist, CompStart, PEready, aliw:)’(sssa(rpss_efg:) clock) -)
VectorX, VectorY, AddressR, AddressS1, AddressS2); 1 if (s COUTE,<m 1210s -
input clock; else i completed == () count <= count + 1°bl;
input start; // = 1 when” going~
output [15:0] S1S2mux; alway_s @(count)
cutput [15:0] NewDist; begin .))
output CompStart; Io;- (:'.-O, i<iB; i = i+1)
output [15:0] PEready; egin
OUtIPBHt [3:0] Vectori VectorY; NewDist[i]l = (count[7:0] == i);
output [7:0] Address}li; ’ PEready[i] = (NewDist[i] && !(count < 8°d256));
output [8:0] AddressS1, AddressS2; ei;S2le[1] = (count[3:0] > i);
reg [15:0] S132 ;
reg [15:0] Newnf:z- AddressR = count[7:0];
Teg CompStart; AddressS1 = (count[11:8] + count[7:41>>4)%5°d32 + count[3:0];
reg [15:0] PEready; AddressS2 = (count[11:8] + count[7:4]>>4)%4°d16 + count [3:0] ;
reg [3:0] Vectorx’ VectorY: VectorX = count[3:0] - 4-47;
reg [7:0] Addressl:t- ’ VectorY = count[11:8]>>4 - 4-47;
reg [9:0] AddressS1, AddressS2; engﬁmlﬂete = (count = 4°d16 = (8°d256 + 1));
reg [12:0] count;
Tes completed; endmodule
integer i;

* Reset Strategy

* Reset needed to initialize entire chip in known state

= Does not apply here, as long as “start’” comes from a unit that
does use a reset

Synopsys University Courseware

SYNOPSYS O e NC STATE UNIVERSITY

Developed By: Paul D. Franzon

C to Verilog

* Generally the “flow” constructs in C correlate to controller
designs in Verilog, e.qg.

« In “C”: If (A<=5) {B=A+C;} else {B=A-C;}
* |n Hardware:

(heos? .
@& @D <

Synopsys University Courseware

SYNOPSYS O e NC STATE UNIVERSITY

Developed By: Paul D. Franzon

C to Verilog (cont’d)

* For loop:
= |n“C": B=0; for (i=0;i<=7;i++) B=B+A;
= |n Hardware:

Mux=0 |
StartCount +

| = -
cOu@ _ X 7
Mux=A+B

\ 4

O Counter >
Mux=hold

Synopsys University Courseware

SYNOPSYS O e NC STATE UNIVERSITY

Developed By: Paul D. Franzon

Minimizing Power Consumption

« Will go over in a later set of notes, but here is the logic
design impact...
= |n general, at the logic level, the energy required to complete a
complex task is roughly proportional to:

° Znodes 01 and 10 logic transitions

= E.Q.
010 gmo _‘_040 _‘_O?O

“1 unit of energy” “2 units of energy" “2 units of energy"

 Note:

= Complex logical units (e.g. Multiplier) have a lot more internal
nodes than simpler logical units

= And thus consume more energy per operation

Synopsys University Courseware

SYNOPSYS O e NC STATE UNIVERSITY

Developed By: Paul D. Franzon

How to Minimize Power Consumption

- Simpler, smaller design will often also more energy
efficient

« There is often a speed-power tradeoff
E.g. Which design is more energy efficient?

Compare’—‘
Compare

AN

« Try to eliminate useless toggling
E.g. Which design is LESS energy efficient if B mostly DESELECTS
mult output?

_ |Muli—{> %:Mult—
B

Synopsys University Courseware

SYNOPSYS O e NC STATE UNIVERSITY

Developed By: Paul D. Franzon

... How to minimize power consumption

« Memory accesses are particularly energy hungry,
especially with larger memories

« Complex data motion is particularly power hungry
= E.g. Long range on-chip interconnect
= Off-chip interconnect

= Using an on-chip network to move data, especially a store and
forward network

Synopsys University Courseware

SYNOPSYS O e NC STATE UNIVERSITY

Developed By: Paul D. Franzon

‘ Review Questions

- What was the critical resource optimized in the Motion
Estimator?

- How was the use of this resource optimized?

« What is the control strategy?

Synopsys University Courseware

SYNOPSYS O e NC STATE UNIVERSITY

Developed By: Paul D. Franzon

‘ Review Questions

What are my four “mantras”

What are common control strategies?

What are common speed-up strategies?

What is “reset” for?

Synopsys University Courseware

SYNOPSYS O e NC STATE UNIVERSITY

Developed By: Paul D. Franzon

‘ Review Questions

« What are the main principles to follow to minimize power
consumption?

Synopsys University Courseware

SYNOPSYS O e NC STATE UNIVERSITY

Developed By: Paul D. Franzon

