Low Power Design

Power Consumption

- Why is power consumption important?
- Battery powered devices
 - Maximize battery life
- Minimize cost of wall-powered systems
 - Plastic packaging is 10x cheaper than ceramic packaging but can only dissipate 1 - 2 W
 - What happens if the chip gets too hot?
 - Need a fan to cool somewhere above 10 W
 - Difficult to air cool at all somewhere above 50-100 W
 - Cost of power supply
- `Green' systems
 - Minimize pollution by reducing demand from power stations

SYNOPSYS°

Power Consumption

- Power is increasingly the MAJOR constraint on system performance
 - The major constraint used to be #transistors/die. Now it is power.
 - Wireless systems
 - System Performance is limited by how much data can be communicated and processed on a single battery charge
 - Want this capacity to permit a battery life of more than a day
 - Desktop systems
 - Without attention, power consumption of circa 2008-2010 CPUs would be 1kw or more → Impossible to air cool
 - Without attention, power consumptions of chips like HDTV decoders would be 100+W → Expensive to cool
 - Server farms and Supercomputers
 - Without attention, power consumption of next generation server firms would be > 20 kW → requires two power resubstations, not one

Power Consumption

- Static CMOS Circuits:
 - Static Power (when circuit not switching)
 - Leakage
 - Sub-threshold Drain to source
 - Gate
 - Some libraries are starting to include low-leakage cells, or cells that can be switching to a low leakage state
 - Dynamic Power (when logic transitions occur)
 - `through' current small during switching
 - Toggling power when output node changes logic state

CMOS Circuit

- Circuit during switching event
- E.g. Inverter driving a load:
 - Power dissipated in resistors in 010 cycle = potential energy stored and released on capacitor during that cycle

$$Q=CVdd$$

$$E=QVdd = CVdd^{2}$$

$$P = E/T = CVdd2/T$$

$$= N_{switch} CVdd^{2} fclock$$

$$Q = CVout$$
$$\implies I = C\frac{dVout}{dt}$$

 \sim

- Alternative derivation:
 - When Vout 0→1, energy dissipated in top resistor:

$$E = \int_{0}^{Vdd} (Vdd - Vout)Idt = \int_{0}^{Vdd} (Vdd - Vout)CdVout = \frac{CV_{dd}^{2}}{2}$$

Minimizing Power Consumption

• Power consumption in a CMOS module:

Power = $\Sigma N_{switch} f Vcc^2 C_{load}$ + leakage power

- Sum over all nodes in circuit
- f = clock frequency
- N_{switch} = average % of clock periods in which node toggles (I.e. 010 or 101)
- C_{load} = capacitance of node
- Nswitch
 - Clock :
 - Maximum for glitch-free logic:
 - Logic typically has Nswitch ~ 0.1

Minimizing Energy

- Energy = ∫Power.dt
- Energy consumption in a CMOS module:
- Energy = $\Sigma_{\text{cycles}} \Sigma_{\text{nodes}} N_{\text{switch}} f Vcc^2 C_{\text{load}}$ + leakage power
 - f = clock frequency
 - N_{switch} = average % of clock periods in which node toggles (I.e. 010 or 101)
 - C_{load} = capacitance of node
- Note: Power reduction techniques do not save energy/complex operation if more cycles are needed to complete that operation
 - Important in energy-constrained (e.g. battery driven) systems

Approaches to minimizing power consumption

- Approaches to minimizing power consumption
 - Reduce Supply Voltage
 - E.g. Use low-Vdd cells in non critical paths
 - Reduce clock frequency
 - Does reducing the clock frequency reduce the energy required to perform a complex operation?
 - Battery-powered devices do not necessarily benefit from reducing clock frequency
 - Reduce "useless" toggling
 - Reduce clock frequency or stop clock when module is idle
 - Usually a system design, not module level design
 - Use designer knowledge to identify useless switching and redesign to reduce it
 - Use an algorithm that reduces total number of toggles required to compute a result

Approaches to minimizing power consumption

Static Power

- Significant issue at 65 nm transistor sizes and smaller
- When performance is not an issue, use a low leakage cell library
- Use low leakage cells in non-critical paths
- Use cells with sleep transistors to reduce leakage in modules that are idle for long periods

Reducing "Useless" toggling

• Example:

reg [31:0] A, B, D; always@(posedge clock) begin if (C) D <= A+B;</pre>

else D <= A;

end

Possible ways to reduce power:

Toggling Reduction

If C is low a lot...

Only useful if C is low more than 50% of the time.

Power Reduction

- Other Alternatives:
 - Gate the clock to register D
 - Smallest overhead
 - Complicates clock design and timing
 - Usually gated clocks only done at "block level" (.e.g an FPU)
 - Store previous value of A and B in a register
 - Used instead of 0 input to mux
 - Must consider power overhead of register (including extra Cload on clock)
 - Not likely to be beneficial here
 - Might be beneficial for a larger design (e.g. multiplier)

Summary

- What determines power consumed in a CMOS circuit?
- What strategies can you use to reduce power consumption?
- If Energy is the issue rather than power, what strategies are available to you?

Summary

- Complementary MOS transistors gives dense circuits and lower power than other circuit families
 - Standard Cell designs use Static CMOS
 - Transistor speed approximated using `on resistance'
 - Ron proportional to electron/hole mobility and W/L
 - Hole mobility = half electron mobility
 - Inverter W_p = 2 W_n to make t_{rise} = t_{fall}
 - To drive larger loads, increase transistor width proportionally
- Power consumption important in many designs

Power = $\Sigma N_{switch} f Vcc^2 C_{load}$

- Lowering voltage by one-half, quarters the power but halves the speed
- Turn clock frequency down when performance not needed
- Reduce N_{switch} through good design

