Timing Design in Digital Systems

Outline

- 1. Timing design in Synchronous (clocked) Logic
 - Min/Max timing with flip-flops
 - Latch-based design
- 2. Timing Issues in CMOS circuits
- 3. Timing verification Flow
- 4. Techniques to Improve Performance

Course "Mantras"

- One clock, one edge, Flip-flops only
- Design BEFORE coding
- Behavior implies function
- Clearly separate control and datapath

Mantra #1

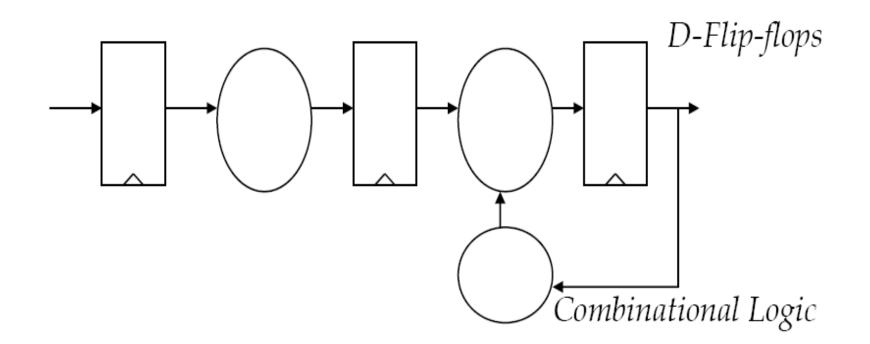
One clock, one edge; Flip-flops only

- For your design (at least for each module) use one clock source and only one edge of that clock
- Only use edge-triggered flip-flops

Why?

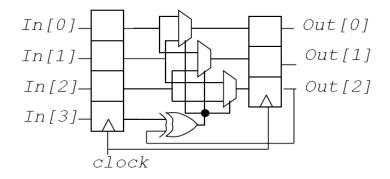
- Moving data between different clock domains requires careful timing design and synthesis "scripting"
- If you need multiple clocks in your design
- Make them related by a powers of 2
 - E.g 50, 100 and 200 MHz
- Consider one clock per module
- Consider resynchronizing using flip-flops between clock domains

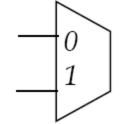
Caveat

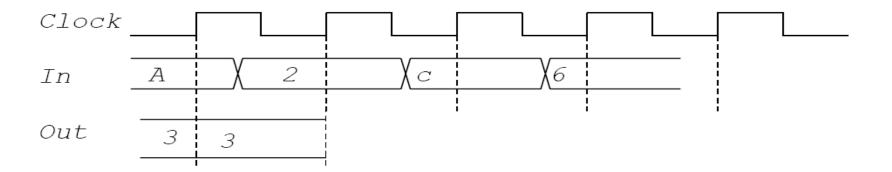

• Tools and designers are getting better at using latches and multi-phase clocks. However, this requires some experience to get correct.

General Approach to Timing Design

 In general, all signals start and end in registers every clock period

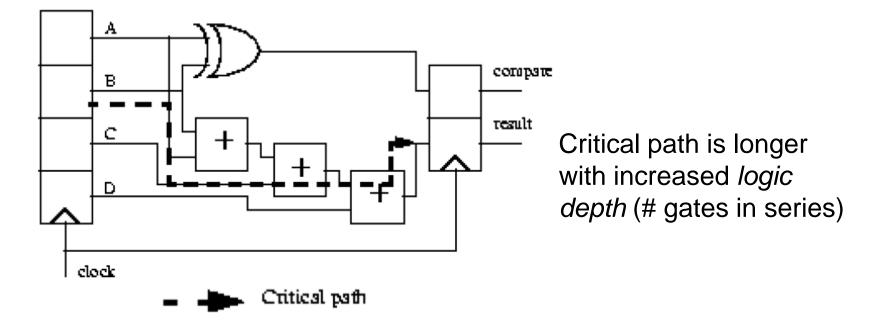






Clock Level Timing

Example (Revision):



Critical Path

Thus, the clock speed is determined by the slowest feasible path between registers in the design

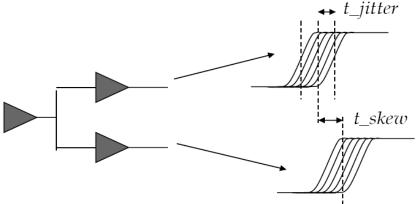
Often referred to as "the critical path"

Synchronous Clock Distribution

The goal of clock tree is for the clock to arrive at every leaf node at the same time:

Usually designed after synthesis: Matched buffers; matched capacitance loads

Common design method:


- "H tree"
- Clock tree done after design
- Balance RC delays
- Balance buffer delays

Clock skew and jitter

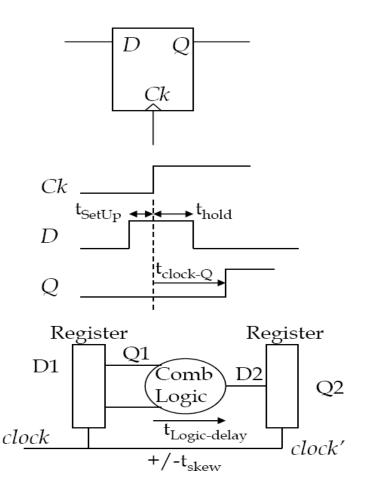
- Clock skew = systematic clock edge variation between sites
 - Mainly caused by delay variations introduced by manufacturing variations
 - Random variation
- Clock jitter = variation in clock edge timing between clock cycles
 - Mainly caused by noise

Comments on Clock Skew

- ASIC design relies on automatic clock tree synthesis
 - Works to guarantee a global skew target
- Custom clock distribution can be used to add the following features to a clock:
 - Smaller skews
 - Local skews < Global skew</p>
 - Multiple non-overlapping clock phases
 - Deliberate non-random skew at flip-flop/latch level
 - Future automatic clock tree synthesis tools might include features like this

Flip-Flop based design

Edge triggered D-flip-flop


Q becomes D after clock edge

Set-up time:

 Data can not change no later than this point before the clock edge.

Hold time:

- Data can not change during this time after the clock edge.
- t_clock-Q
- Delay on output (Q) changing from positive clock edge

Preventing Set-Up Violations

Set-up violation:

Logic is too slow for the correct logic value to arrive at the inputs to the register on the right before one set-up time before the clock edge Constraint to prevent this:

$$t_{clock} \ge t_{clock-Q-\max} + t_{\log ic-\max} + t_{set-up} + t_{skew}$$

$$t_{clock'} + t_{clock-Q} + t_{set-up}$$

$$t_{clock'} + t_{clock-Q} + t_{set-up}$$

$$t_{clock'-Q} + t_{set-up}$$

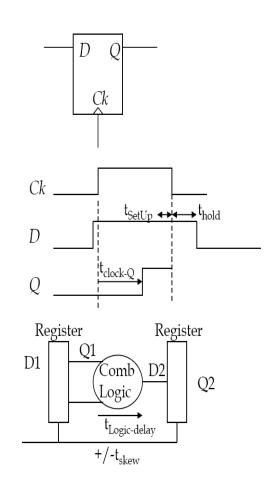
Preventing hold Violations

Hold violations occur when race-through is possible Constraint to prevent hold violations:

$$t_{hold} + t_{skew} \leq t_{clock-Q-\min} + t_{\log ic-\min}$$

$$t_{clock'} = t_{clock-Q} = t_{clo$$

Synopsys University Courseware 2008 Synopsys, Inc. Lecture - 2 Developed By: Paul D. Franzon

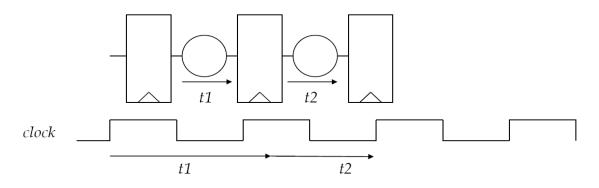

Latch Based Design

D-latch

- Q follows D while clock is high ("transparent")
- Value on D when clock goes low is stored on Q

Set-up and hold times:

- D can not change close to the falling ('latching') clock edge.
- t_clock-Q
- Delay from clock going high to Q changing

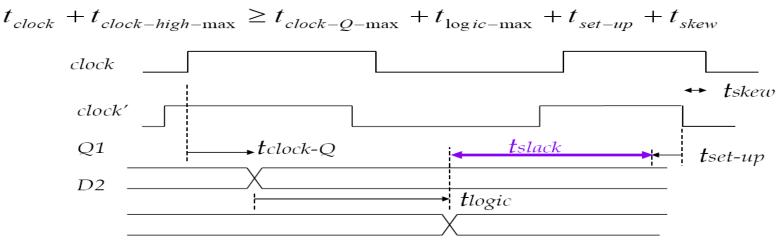

Latch Timing Constraints

 Set-up constraints under nominal design same as for flipflop

$$t_{clock} \ge t_{clock-Q-\max} + t_{\log ic-\max} + t_{set-up} + t_{skew}$$

"Transparency" of latch can be used to improve flexibility of timing

e.g.: If critical path is in logic block 1:



Latch Timing Constraints WITH cycle stealing

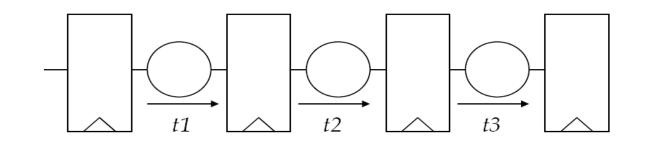
To prevent set-up violations:

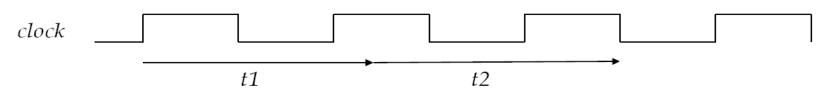
Notes:

- The percentage of time the clock is high is referred to as the *duty-cycle*
- If part of the following clock-high time is used to allow this logic to be slower, then the logic-block connected to Q2 must be proportionally faster
- Using the clock-high time like this is called cycle-stealing

Latch Set Up Violations

Notes:

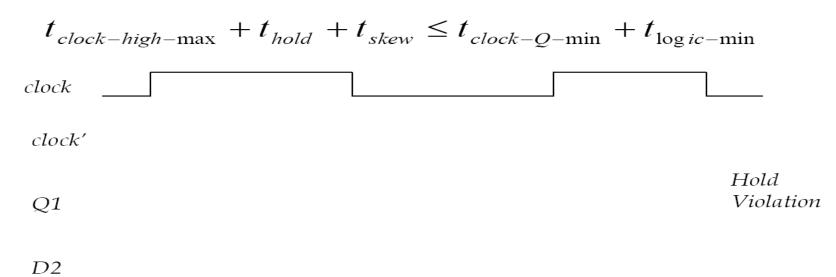

- The percentage of time the clock is high is referred to as the *duty-cycle*
- If part of the following clock-high time is used to allow this logic to be slower, then the logic-block connected to Q2 must be proportionally faster
- Using the clock-high time like this is called cyclestealing
 - Normally cycle stealing is not enabled



Latches ... Cycle Stealing

- Can use up to a total of t_clock_high within a pipeline structure, to help in timing closure
 - Example:

t1,t2 > tclock (cycle stealing)

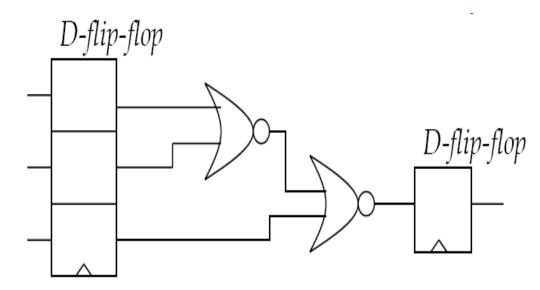

What can t3 be?

...Latch timing constraints

To prevent hold violations:

Note:

Hold violations are harder to prevent in latch-based designs


Revision – So far

- What is a set-up violation?
- How is a set-up violation fixed?
- What is a hold-violation?
- How is a hold-violation fixed?
- Why are edge-triggered flip-flops preferred over latches?

Example:

min : typ : max Tclock-Q = 3 : 4 : 5TNOR = 1 : 2 : 3Tsu_max = 1Thold_max = 2Tskew = 1 ns

If this is the critical path, what is the fastest clock frequency? Is there potential for a hold violation?

CMOS Drive Strength

Revision: CMOS transistors operating in the linear region:

$$I_{ds} = \beta ((V_{gs} - V_t)V_{ds} - V_{ds}^2 / 2$$

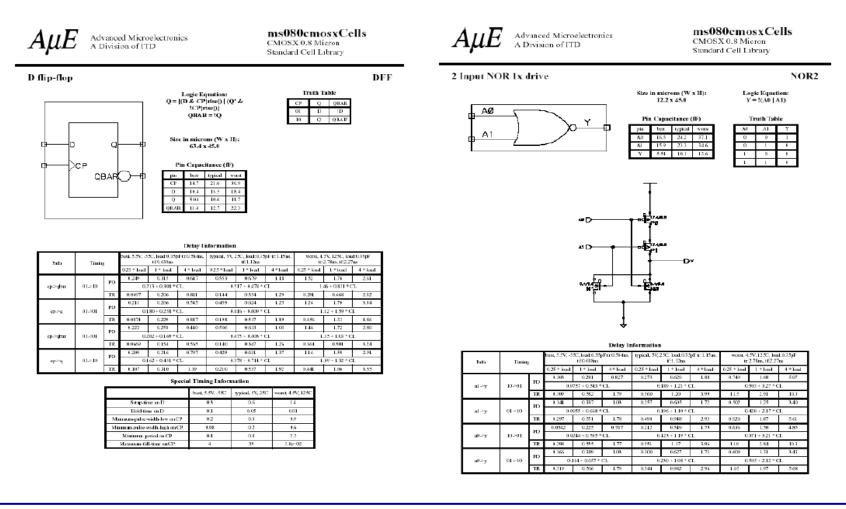
where $\beta = (\mu \varepsilon / t_{ox})(W / L)$

where is the transistor width, and is the channel length

i.e. To a first approximation, $I_{ds} \approx V_{ds} / R_{on}$ $R_{on} \approx 1/\beta(V_{GS}-V_T)$

Thus, delay in CMOS circuits depends largely on W/L of the drive transistor and the capacitance of the load it is driving. That capacitance consists of:

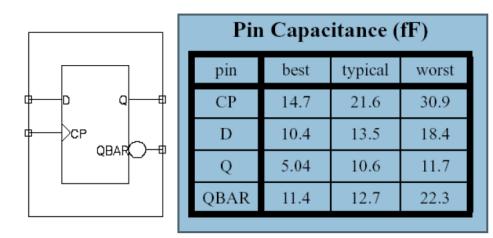
- Input gates of cells being driven, and
- Capacitance of wiring

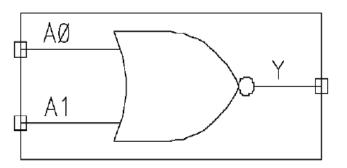


Synopsys University Courseware 2008 Synopsys, Inc. Lecture - 2 Developed By: Paul D. Franzon

 $\tau = R_{on}C_{load}$

Cell Library Example




SYNOPSYS°

Synopsys University Courseware 2008 Synopsys, Inc. Lecture - 2 Developed By: Paul D. Franzon

Cload on flip-flop

 = output capacitance of flip-flop + input capacitance of NOR gate

Pin Capacitance (fF)

pin	best	typical	worst
A0	16.5	24.2	37.1
A1	15.9	23.3	34.6
Y	5.54	10.1	13.6

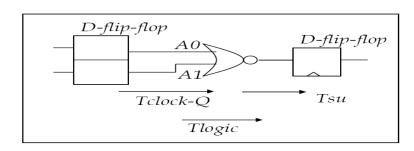
Synopsys University Courseware 2008 Synopsys, Inc. Lecture - 2 Developed By: Paul D. Franzon

Timing Tables

Predict delay

Note delay different for rising and falling edges

Path	Timing	1	best, 5.5V, -5	5C, load:0.35p tE0.638ns	oF tr: 0.584ns,	typical, 5V, 3	25C, load:0.35 tf:1.12ns	pFtr:1.15ns,		5V, 125C, 1oa 2.78ns, tf:2.27	
			0.25 * load	1 * kad	4 * load	0.25 * load	1 * load	4 * load	0.25 * kod	1 * lead	4 * kod
		PD	0.249	0.315	0.647	0.553	0.679	1.18	1.52	1.76	2.61
cp⇒qbar	01 > 10	r.,	0.2	13 + 0.308 *	CL	0.5	$517 \pm 0.478 * 0$	CL	L	46 + 0.831 * 0	T
		TR.	0.0697	0.206	0.811	0.144	0.354	1.29	0.281	0.668	2.32
		PD	0.211	0.266	0.545	0.459	0.624	1.25	1.24	1.70	3.34
cp≥q	$01 \ge 01$	PD	0.1	80+0.258 *	CL	0.4	16 + 0.609 *	CL	1	.12 + 1.59 * C	L
		TR	0.0874	0.229	0.847	0.198	0.517	1.89	0.456	1.33	4.86
		PD	0.222	0.258	0.440	0.506	0.613	1.03	1.44	1.72	2.80
op>qoar	01 > 01	r.	0.2	02+0.169*	ĊL	0.4	75 + 0.403 * (CL	1	.35 + 1.03 * C	L
		TR	0.0669	0.154	0.565	0.140	0.347	1.26	0.364	0.901	3.24
		PD	0.209	0.316	0.797	0.429	0.631	1.37	1.16	1.59	2.91
ap⇒d	01 > 10	PD	0.1	62 + 0.451 *	CL	0.3	78 + 0.714 * (CL	1	.09 + 1.32 * C	L
		TR	0.107	0.310	1.19	0.210	0.537	1.92	0.441	1.06	3.55


Delay Information

SYNOPSYS°

Synopsys University Courseware 2008 Synopsys, Inc. Lecture - 2 Developed By: Paul D. Franzon

Data Sheet Example

 Using timing approximations in the datasheet, what is the maximum clock frequency for this circuit (ignore wire load, Tskew):

	_		ς κ-Q .		
		PD	1.24	1.70	3.34
cp->q	01->01		_	1.12 + 1.59 * 0	CL .
		TR	0.456	1.33	4.86
	1	· •	1	1	1
			1.16	1.59	2.91
cp->q	01->10	PD -	1	.09 + 1.32 * C	L
		TR	0.441	1.06	3.55

CL:

Telock_O.

Q -> A0:

 $CL_max = 0.0371+0.0117 \text{ pF} = 0.0488 \text{ pF}$ $T_cp-Q_max = max (1.12+1.59*CL, 1.09 + 1.32*CL)$ = max (1.12+1.59*0.0488, 1.09 + 1.32*0.0488) = max (1.2, 1.15) = 1.2 ns $Q->A1: T_cp-Q_max = 1.2 \text{ ns}$

Pin Capacitance (fF)

pin	hest	typical	worst
A0	16.5	24.2	37.1
A1	15.9	23.3	34.6
Y	5.54	10.1	13.6

DFF

Pin Capacitance (fF)

pin	best	typical	worst
CP	14.7	21.6	30.9
D	10.4	13.5	18.4
Q	5.04	10.6	11.7
QBAR	11.4	12.7	22.3

SYNOPSYS[®]

...Example

Tlogic	:			ł		5V, 125C, loa 2.78ns, tf:2.27				CI						
			PD	1	0.25 * load	1 * load	4 * load									
	a1->y	10->01	PD		0.749	1.68	5.07		Pin	i Capac	itance (fF) N	OR2			
			TR	1	0.5	503 + 3.27 * 0	CL		pin	best	typical	worst				
				1	1.15	2.91	10.3		A0	16.5	24.2	37.1				
	a1->y	01->10	PD		0.502	1.25	3.40								DF	F
	, in the second s		TR		0.4	420 + 2.17 * 0	CL		A1	15.9	23.3	34.6				
			IK	0	0.920	1.87	5.61		Y	5.54	10.1	13.6	Pir	і Сарас	itance (fF)
	0.		PD		0.636	1.50	4.85	_					pin	hast	tunical	warnt
	a0->y	10->01			0.371 + 3.21 * CL								·	best	typical	worst
			TR		1.10	2.84	10.3						CP	14.7	21.6	30.9
				1	0.609	1.31	3.43						D	10.4	13.5	18.4
	a0->y	01->10	PD		ļ	505 + 2.12 * 0							Q	5.04	10.6	11.7
			TR	1	1.05	1.97	5.68	N	OR2				QBAR	11.4	12.7	22.3

CL= 0.0136 + 0.0184 = 0.032 pFFrom A0 : Tlogic = max (0.503 + 3.27*0.032, 0.420+2.17*0.032) = 0.61 ns From A1 : Tlogic = max (0.505+2.12*0.032, 0.371 +3.21*0.032) = 0.57 ns

...Example

Tsu

	best, 5.5V, -55C	typical, 5V, 25C	worst, 4.5V, 125C
Setup-time on D	0.3	0.6	1.4
Hold-time on D	0.1	0.05	0.01
Minimum-pulse-width-low on CP	0.2	0.3	0.9
Minimum-pulse-width-high on CP	0.08	0.2	0.6
Minimum-period on CP	0.4	0.8	2.2
Maximum-fall-time on CP	4	39	3.8e+02

Special Timing Information

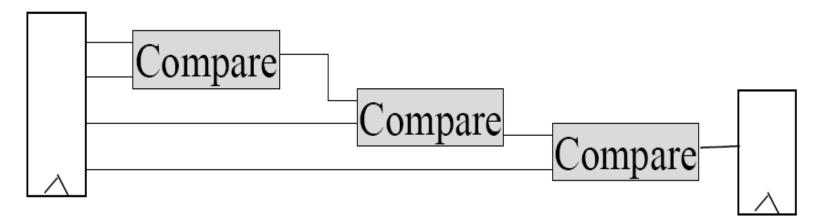
Tclock > Tcp-Q_max + Tlogic_max + Tsu_max = 1.2 + 0.61 + 1.4 = 3.21 ns Fclock < 311 MHz

Estimating and Improving Performance

- With a focus on timing:
- Topics:
 - Metrics : FO-4
 - Typical timing budgets
 - Pipelining and Parallelism
 - Logic style

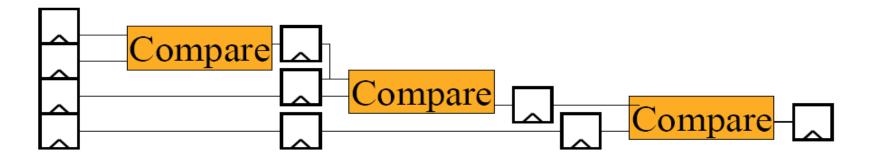
Delay Metric

- Usual Metric for delay:
 - Fanout of 4 inverter delay: FO4
- Estimating FO4:
 - Typical ~ 360 x Leff (ps)
 - Worst Case ~ 600 x Leff (ps)
 - Leff = Effective gate length in um ~ 0.7 x Ldrawn
 - E.g. In a 0.18 um process, Leff = 0.126 um and FO-4 <= 75 ps
- Exemplar delays:
- Inverter = FO-4 1-bit adder = 10 FO4 Flip-flop t_cp-Q = 4 FO Clock skew = 4 FO4 Clock jitter = 2 FO4


2-input NAND gate = 2FO4 2-input Multiplexer = 4 FO4 4 Flip-flop t_su / t_h = 2 FO4

Examples of Improving Timing Performance

- Example 1 : Benefits of Pipelining and Parallelism
- Example:

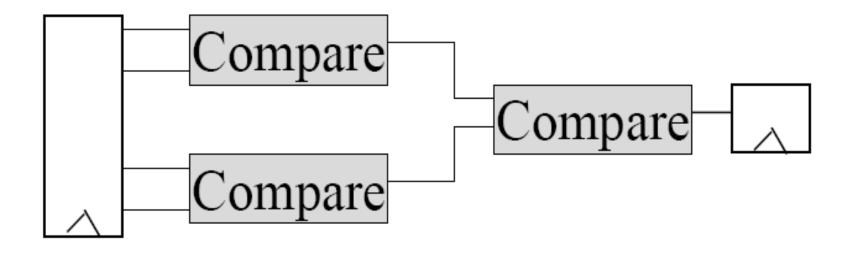

If t_comparator = 20 FO4, what is the clock period? (Use values on previous page)

Pipelining

• Replace with:

$$T_cp = t_ck-Q + t_logic + t_su + t_skew + t_jitter$$

= 4 + 20 + 2 + 4 + 2 = 32 FO4


- What is the delay improvement?
- What is the drawback?

Logic Level Parallelism

• Replace with:

- Clock Period = 52 FO-4
- No increase in area

Retiming

- Impact of critical paths can often be reduced by retiming or rebalancing a design:
- Example:
 - Before:

$$T_cp = 4 + 20 + 5 + 2 + 4 + 2 = 37 FO4$$

• After:

 $T_cp = 4 + 20 + 2 + 4 + 2 = 32 FO4$

Note: Clock level logic sequence has been changed

Timing in CAD Flow

- During synthesis
 - Tool calculates path delays under worst-case delay conditions
 - Determines critical path
 - Moves logic to a faster path if setup violation predicted
- After synthesis:
 - Perform Static Timing Analysis
 - Determine no setup violations exist under worst case conditions
 - Determine no hold violations exist under best case conditions
- After place and route:
 - Perform Timing Analysis
 - i.e. Run timing verification tools on netlist with actual delays
 - Back-annotate actual delays to netlist from later tools

Initial Delay Estimation Flow

- Primetime: Gate-level static timing analysis tool
 - Report timing for critical path
- Back-annotate wire parasitics for more accuracy
 - SPEF file from place and route tool

Sidebar

Not Examinable!

- What is asynchronous design?
- Can we use deliberate local clock skew in a design?
- Are you sure flip-flops are better, cycle stealing sounds useful?

Message: The CAD tools' capabilities constrain your design flexibility.

Summary

- 1. What determines the maximum clock frequency?
- 2. What is a hold violation?
- 3. Why do we prefer flip-flop designs over using latches?
- 4. What tool is used to check timing at design closure?

Remember

Methodology for purposes of ASIC Design class

- If at all possible one-edge of one clock
- If you need multiple clocks, they must have a common root and be related by factors of 2
 - E.g. Root clock : Tclock = 5 ns
 - This is BEST: Tclock only!!
 - This is OK:
 - Tclock, Tclock10, Tclock20
 - Tclock10 = 10 ns (Tclock*2)
 - Tclock20 = 20 ns (Tclock*4)
 - This is NOT OK
 - Tclock, Tclock15, Tclock17
 - Tclock15 = 15 ns (Tclock*3)
 - Tclock17 = 17 ns (??)

