
Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 7

Developed By: Paul D. Franzon

Finite State Machines

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 7

Developed By: Paul D. Franzon

Reset

• Reset is a global signal that the designer can not modify

• It is generally asserted on power up or a “hard” reset

• It is used to start the machine in a “known” state

• Thus it must be distributed to

 All FSMs

 Selected counters

 Selected status registers

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 7

Developed By: Paul D. Franzon

Finite State Machine Types

• Finite State Machines can be classified by the following

attributes:

• Moore or Mealy type outputs

Moore Outputs

Outputs depend solely on

state vector (generally, a

Moore FSM is the simplest

to design)

Mealy Outputs

Outputs depend on inputs

and state vector (only use

if it is significantly smaller

or faster)

Next

State

Logic

Output

Logic

State

Reg.
State Vector

Next

State

Logic

Output

Logic
State

Reg.
State Vector

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 7

Developed By: Paul D. Franzon

… FSM Types

• State Vector Encoding

 Minimal encoding

 Minimum number of bits

 Minimum, sequential encoding

 Minimum number of bits and states in sequence

 Does not necessarily optimize „next state logic‟ size

 Gray encoding

 state bit changes by only one bit between sequential states

 Minimizes switching activity in state vector register

 One-hot encoding

 one bit per state

 usually gives fastest „next state‟ logic

• Example: 7-state FSM, states S0 … S7:

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 7

Developed By: Paul D. Franzon

… FSM Types

• Resets:

 Reset usually occurs only on power-up and when someone hits

the „reset‟ button

 Asynchronous reset:

 FSM goes to reset state whenever reset occurs

 Synchronous reset:

 FSM goes to reset state on the next clock edge after reset occurs

 Asynchronous reset leads to smaller flip-flops while synchronous reset is

„safer‟ (noise on the reset line is less likely to accidently cause a reset).

• Fail-Safe Behavior:
 If the FSM enters an „illegal‟ state due to noise is it guaranteed to then

enter a legal state?

 „Yes‟ is generally desirable

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 7

Developed By: Paul D. Franzon

… FSM Types

• Sequential Next state or output logic
 Usually, these blocks are combinational logic only

 However, can place sequential logic (e.g. a counter, or a toggle-flip-flop) in these blocks if it is

advantageous

 AVOID DOING THIS AS MUCH AS YOU CAN UNLESS YOU ARE REALLY SURE ABOUT

WHAT YOU ARE DOING

 Sequential next state or output logic can get very confusing to design and debug

• Registered or Unregistered Outputs
 Do not register the outputs unless you need to „deglitch‟ the outputs (for example, for

asynchronous handshaking - combinational logic has to be assumed to be glitchy) or are

pipelining the control

 e.g.
Next

State

Logic

Output

Logic

State

Reg.
State Vector

reg_out

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 7

Developed By: Paul D. Franzon

Example - Drag Racing Lights

• At the start of a new race („car‟), go through the Red-

Yellow-Green sequence:

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 7

Developed By: Paul D. Franzon

Drag Light Controller ...Verilog

module traffic_light_controller (clock, reset, car, red, yellow, green);

input clock;

input reset;

input car;

output red, yellow, green;

parameter [1:0] // synopsys enum states

S0 = 2'b00,

S1 = 2'b01,

S2 = 2'b10,

S3 = 2'b11;

reg [1:0] /* synopsys enum states */ current_state, next_state;

// synopsys state_vector current_state

reg red, yellow, green;

/*------- Sequential Logic ----*/

always@(posedge clock or negedge reset)

if (!reset) current_state <= S0;

else current_state <= next_state;

/* next state logic and output logic */

always@(current_state or car)

begin

red = 0; yellow = 0; green = 0; /* defaults to prevent latches */

case (current_state) // synopsys full_case parallel_case

S0: begin

red = 1;

if (car) next_state = S1

else next_state = S0;

End

S1: begin

yellow = 1;

next_state = S2;

End

S2 : begin

green = 1;

next_state = S0;

End

default : next_state = S0;

Endcase

end

endmodule

Next

State

Logic

Output

Logic

cu
rr

en
t_

st
at

e

n
ex

t_
st

at
e

re
d

 y
el

lo
w

 g
re

en

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 7

Developed By: Paul D. Franzon

FSM Verilog Notes

• Code each FSM by itself in one module.

• Separate Sequential and Combinational Logic

• Is this reset Synchronous or Asynchronous?

 Asynchronous usually results in less logic (reset is actually synchronized

when it enters the chip).

• Note use of Synthesis directives:
 //synopsys enum states and //synopsys state_vector

current_state tell Synopsys what the state vector is.

 You can optionally use Synopsys FSM optimization procedures

 Why can we state //synopsys full_case parallel_case for

FSMs?

• How to we prevent accidently inferring latches?

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 7

Developed By: Paul D. Franzon

FSM State Encoding Options

• Can either do `by hand‟ in Verilog source code or by reassigning states in Synopsys:

 Binary or Sequential (minimal) encoding:
State 0 = 000

State 1 = 001, etc.

 Gray encoding gives the minimum change in the state vector between states:
State 0 = 000

State 1 = 001

State 2 = 011, etc

 Reduces state transition errors caused by asynchronous inputs changing
during flip-flop set-up times.

 Minimizes power consumed in state vector flip-flops
Synopsys: set_fsm_encoding_style gray //+ See manual

 One-hot encoding assigns one flip-flop per state:
State 0 = 0001

State 1 = 0010

State 2 = 0100, etc

 Fastest but largest design
Synopsys: set_fsm_encoding_style one_hot

 Custom: Assign states by hand in Verilog of Synopsys

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 7

Developed By: Paul D. Franzon

Registering FSM Outputs

• Sometimes useful to register the outputs of FSMs:

 Necessary when these outputs are interfacing asynchronously with other

modules or off-the-chip

 e.g. RAS and CAS outputs for a memory interface

 Useful if delays in output combinational logic are making it hard to meet

timing requirements in the module they are connected to.

 assumes flip-flop t_cp_Q is faster (might not be - look in library sheets)

• e.g.
always@(posedge clock)

begin
red <= int_red;
yellow <= int_yellow;

green <= int_green;
end

...
case (current_state)

S0: begin int_red=1;

 Note: changes now delayed one clock when compared with previous

version

Output

Logic

from

FSM

Synopsys University Courseware

2008 Synopsys, Inc.

Lecture - 7

Developed By: Paul D. Franzon

Review Questions

• What is the final Mantra?

• What types of controllers are there?

• What coding style is used for FSMs?

