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Abstract

This paper uses an estimated noise transfer function
to filter the input-output data and presents a filtering
based recursive least squares algorithm for ARMAX mod-
els. Through the data filtering, we obtain two identification
models, one including the parameters of the system model,
and the other including the parameters of the noise model.
Thus, the recursive least squares method can estimate the
parameters of these two identification models, respectively,
by replacing unmeasurable noise terms in the information
vectors with their estimates. The proposed F-RLS algorithm
has high computational efficiency because the dimensions
of its covariance matrices become small and can generate
more accurate parameter estimation compared with other
existing algorithms.

1 Introduction

Consider a CARMA model (Controlled Auto-Regressive
Moving Average model), or called ARMAX model (Auto-
Regressive Moving Average model with eXogenous input)
[1], depicted in Figure 1,

A(z)y(t) = B(z)u(t) + D(z)v(t), (1)

where u(t) and y(t) are the system input and output, respec-
tively, v(t) is a stochastic white noise with zero mean and
variance σ2, the disturbance e(t) := D(z)v(t) is an MA
model, A(z), B(z) and D(z) are polynomials in z−1, and
defined by

A(z) = 1 + a1z
−1 + a2z

−2 + · · · + ana
z−na ,

0This work was supported by Colleges and Universities In Shandong
Province of Outstanding Young Teachers Visiting Scholar at the Domestic-
Funded Projects.

B(z) = b1z
−1 + b2z

−2 + · · · + bnb
z−nb ,

D(z) = 1 + d1z
−1 + d2z

−2 + · · · + dnd
z−nd .

Assume that the degrees na, nb and nd are known and
y(t) = 0, u(t) = 0 and v(t) = 0 for t ≤ 0.
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� �
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A(z)

�v(t)

�+
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Figure 1. The ARMAX system

For special cases of the system in (1), many approaches
can estimate their parameters. For example, when D(z) =
1, the system in (1) reduces to an equation error model, i.e.,
CAR model (Controlled Auto-Regressive model), or called
ARX model (Auto-Regressive model with eXogenous in-
put),

A(z)y(t) = B(z)u(t) + v(t),

for which the recursive least squares algorithm can estimate
its parameters ai and bi [1–3]. The recursive extended least
squares algorithm or prediction error methods can identify
the parameters ai, bi and di of the ARMAX systems in
(1) [1, 2, 4] and can obtain the parameter estimates of both
system models and noise models.

Although the instrumental variable least squares and bias
compensation/correction least squares algorithms can iden-
tify the systems in (1) [1, 5–10], the disadvantages are that
they fail to obtain the parameter estimates of the noise mod-
els.

This paper discussed identification problems for AR-
MAX systems based on the input-output data filtering tech-
nique. The objective is to present a filtering based recur-
sive least squares algorithm (F-RLS) to estimate the system

2009 International Conference on Communications and Mobile Computing

978-0-7695-3501-2/09 $25.00 © 2009 IEEE

DOI 10.1109/CMC.2009.140

331

2009 International Conference on Communications and Mobile Computing

978-0-7695-3501-2/09 $25.00 © 2009 IEEE

DOI 10.1109/CMC.2009.140

331



parameters (ai, bi, ci, di) from available input-output data
{u(t), y(t)} and to evaluate the accuracy of the parameter
estimates by simulations on computers.

Briefly, the paper is organized as follows. Section 2 sim-
ply gives the RELS algorithm for ARMAX systems. Sec-
tion 3 derives a filtering based recursive least squares algo-
rithm for ARMAX systems. Section 4 provides an illustra-
tive example for the results in this paper. Finally, conclud-
ing remarks are given in Section 5.

2 The RELS algorithms

To show the advantages of the F-RLS algorithm we will
propose, the following gives the recursive extended least
squares algorithm for comparisons.

Define the parameter vector θ and the information vector
ϕ0(t) as

θ :=
[

θs

θn

]
∈ R

n,

θs := [a1, a2, · · · , ana
, b1, b2, · · · , bnb

]T ∈ R
na+nb ,

θn := [d1, d2, · · · , dnd
]T ∈ R

nd ,

ϕ0(t) =
[

ϕs(t)
ϕn(t)

]
∈ R

n,

ϕs(t) := [−y(t − 1),−y(t − 2), · · · ,−y(t − na),
u(t − 1), u(t − 2), · · · , u(t − nb)]T ∈ R

na+nd ,

ϕn(t) := [v(t − 1), v(t − 2), · · · , v(t − nd)]T ∈ R
nd ,

Thus, we have

e(t) = D(z)v(t)
= ϕT

n(t)θn + v(t), (2)

y(t) = [1 − A(z)]y(t) + B(z)u(t) + e(t)
= ϕT

s(t)θs + e(t)
= ϕT

s(t)θs + ϕT
n(t)θn + v(t)

=: ϕT
0(t)θ + v(t), (3)

Because the information vector ϕn(t) in ϕ0(t) on the right-
hand sides contains unmeasurable noise terms v(t − i), the
following standard recursive least squares algorithm cannot
generate the estimate of the parameter vector θ,

θ̂(t) = θ̂(t − 1) + L(t)[y(t) − ϕT
0(t)θ̂(t − 1)], (4)

L(t) =
P (t − 1)ϕ0(t)

1 + ϕT
0(t)P (t − 1)ϕ0(t)

, (5)

P (t) = [I − L(t)ϕT
0(t)]P (t − 1), P (0) = p0I. (6)

The solution is to replace these unmeasurable noise terms
v(t−i) in ϕn(t) of ϕ(t) with their estimated residuals v̂(t−
i) and define

ϕ̂n(t) := [v̂(t − 1), v̂(t − 2), · · · , v̂(t − nd)]T ∈ R
nd ,

ϕ(t) :=
[

ϕs(t)
ϕ̂n(t)

]
.

Let θ̂(t) =
[

θ̂s(t)
θ̂n(t)

]
be the estimate of θ =

[
θs

θn

]
. Replac-

ing ϕ0(t) and θ in (3) with ϕ(t) and θ̂(t), respectively, the
estimate v̂(t) can be computed by

v̂(t) = y(t) − ϕT(t)θ̂(t).

Note that ϕ(t) is known at time t. Replacing ϕ0(t) in (4)-
(6) with ϕ(t) yields a recursive extended least squares al-
gorithm (RELS) to identify the parameters of the ARMAX
model in (3):

θ̂(t) = θ̂(t − 1) + L(t)[y(t) − ϕT(t)θ̂(t − 1)], (7)

L(t) =
P (t − 1)ϕ(t)

1 + ϕT(t)P (t − 1)ϕ(t)
, (8)

P (t) = [I − L(t)ϕT(t)]P (t − 1), (9)

θ̂(t) =
[

θ̂s(t)
θ̂n(t)

]
, ϕ(t) =

[
ϕs(t)
ϕ̂n(t)

]
, (10)

ϕs(t) = [−y(t − 1),−y(t − 2), · · · ,−y(t − na),
u(t − 1), u(t − 2), · · · , u(t − nb)]T, (11)

ϕ̂n(t) = [v̂(t − 1), v̂(t − 2), · · · , v̂(t − nd)]T, (12)

v̂(t) = y(t) − ϕT(t)θ̂(t). (13)

3 The filtering based recursive least squares
algorithm

If the input-output data are filtered through the ratio-
nal fraction 1

D(z) (a linear filter), model (1) becomes “an
equation error model”, then the recursive least squares al-
gorithm can be applied. Because 1

D(z) is unknown, its esti-

mate 1
D̂(t,z)

is generally used to filter the input-output data.

The identification method based on this idea is called the
filtering based recursive least squares one (F-RLS).

For the ARMAX system in (1), define the filtered input
uf(t), filtered output yf(t) and filtered information vector
ϕf(t) as

uf(t) :=
1

D(z)
u(t), yf(t) :=

1
D(z)

y(t), (14)

ϕf(t) := [−yf(t − 1), · · · ,−yf(t − na),
uf(t − 1), · · · , uf(t − nb)]T ∈ R

na+nb . (15)

Dividing both sides of (1) by D(z) gives

A(z)
1

D(z)
y(t) = B(z)

1
D(z)

u(t) + v(t),

or
A(z)yf(t) = B(z)uf(t) + v(t).

This filtered model is an equation error model (CAR/ARX
model) and can be rewritten in a vector form,

yf(t) = [1 − A(z)]yf(t) + B(z)uf(t) + v(t)
= ϕT

f(t)θs + v(t). (16)

332332



Define the inner variable:

e(t) := D(z)v(t). (17)

or
e(t) = ϕT

n(t)θn + v(t). (18)

For two identification models (16) and (18), using the fol-
lowing two least squares algorithms cannot generate the es-
timates θ̂s(t) and θ̂n(t) of θ,

θ̂s(t) = θ̂s(t − 1) + Lf(t)[yf(t) − ϕT
f(t)θ̂s(t − 1)],(19)

Lf(t) =
P f(t − 1)ϕf(t)

1 + ϕT
f(t)P f(t − 1)ϕf(t)

, (20)

P f(t) = [I − Lf(t)ϕT
f(t)]P f(t − 1), (21)

θ̂n(t) = θ̂n(t − 1) + Ln(t)[e(t) − ϕT
n(t)θ̂n(t − 1)],(22)

Ln(t) =
P n(t − 1)ϕn(t)

1 + ϕT
n(t)P n(t − 1)ϕn(t)

, (23)

P n(t) = [I − Ln(t)ϕT
n(t)]P n(t − 1). (24)

Because the polynomial D(z) is unknown, then uf(t) and
yf(t) are unknown, the information vector ϕf(t) and ϕn(t)
are unknown, the algorithms in (19)-(24) are impossible to
realize. Here, we still adopt the idea of replacing the un-
known variables with their estimates to derive our F-RLS
identification algorithms.

Since

e(t) = A(z)y(t) − B(z)u(t)
= y(t) − ϕT

s(t)θs. (25)

From the above equation and (18), we get

y(t) = ϕT
s(t)θs + e(t)

=: ϕT
0(t)θ + v(t) (26)

Replacing the unknown θs on the right-hand side of (25)
with the estimate θ̂s(t), the estimate ê(t) can be computed
by

ê(t) = y(t) − ϕT
s(t)θ̂s(t).

Let the estimate of v(t) be v̂(t) and use v̂(t− i) to construct
the estimate of ϕn(t) as follows:

ϕ̂n(t) = [v̂(t − 1), v̂(t − 2), · · · , v̂(t − nd)]T ∈ R
nd .

From (18), we have

v(t) = e(t) − ϕT
n(t)θn.

Replacing ϕn(t) and θn in the above equation with ϕ̂n(t)
and θ̂n(t), the estimate ê(t) can be computed by

v̂(t) = ê(t) − ϕ̂T

n(t)θ̂n(t).

Using the parameter estimates of the noise model,

θ̂n(t) = [d̂1(t), d̂2(t), · · · , d̂nd
(t)]T

to construct the estimates of C(z) and D(z),

D̂(t, z) = 1 + d̂1(t)z−1 + d̂2(t)z−2 + · · · + d̂nd
(t)z−nd .

Filtering u(t) and y(t) with 1
D̂(t,z)

to get the estimates of

uf(t) and yf(t) as follows:

ûf(t) =
1

D̂(t, z)
u(t), ŷf(t) =

1
D̂(t, z)

y(t).

or

D̂(t, z)ûf(t) = u(t),
D̂(t, z)ŷf(t) = y(t).

Also ûf(t) and ŷf(t) can be recursively computed by

ûf(t) = [1 − D̂(t, z)]ûf(t) + u(t)

=−d̂1(t)ûf(t − 1) − · · · − d̂nd
(t)ûf(t − nd) + u(t),

ŷf(t) = [1 − D̂(t, z)]ŷf(t) + y(t)

=−d̂1(t)ŷf(t − 1) − · · · − d̂nd
(t)ŷf(t − nd) + y(t).

Construct the estimate of ϕf(t) with ŷf(t− i) and ûf(t− i)
as follows:

ϕ̂f(t) = [−ŷf(t − 1),−ŷf(t − 2), · · · ,−ŷf(t − na),
ûf(t − 1), ûf(t − 2), · · · , ûf(t − nb)]T ∈ R

na+nb ,

Replacing the unknown information vector ϕf(t) in (19)-
(21) with ϕ̂f(t), yf(t) in (19) with ŷf(t), ϕn(t) in (22)-(24)
with ϕ̂n(t), and the unknown noise terms e(t) in (22) with
ê(t), we obtain the filtering based recursive least squares
algorithms (F-RLS) of estimating the parameter vectors θs

and θn for the ARMAX systems:

θ̂s(t) = θ̂s(t − 1) + Lf(t)[ŷf(t) − ϕ̂T

f(t)θ̂s(t − 1)], (27)

Lf(t) =
P f(t − 1)ϕ̂f(t)

1 + ϕ̂T

f(t)P f(t − 1)ϕ̂f(t)
, (28)

P f(t) = [I − Lf(t)ϕ̂
T

f(t)]P f(t − 1), P f(0) = p0I, (29)

ϕ̂f(t) = [−ŷf(t − 1),−ŷf(t − 2), · · · ,−ŷf(t − na),
ûf(t − 1), ûf(t − 2), · · · , ûf(t − nb)]T, (30)

ŷf(t) =−d̂1(t)ŷf(t − 1) − · · · − d̂nd
(t)ŷf(t − nd) + y(t),

(31)

ûf(t) =−d̂1(t)ŷf(t − 1) − · · · − d̂nd
(t)ŷf(t − nd) + u(t),

(32)

θ̂n(t) = θ̂n(t − 1) + Ln(t)[ê(t) − ϕ̂T

n(t)θ̂n(t − 1)], (33)

Ln(t) =
P n(t − 1)ϕ̂n(t)

1 + ϕ̂T

n(t)P n(t − 1)ϕ̂n(t)
, (34)
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P n(t) = [I − Ln(t)ϕ̂T

n(t)]P n(t − 1), P n(0) = p0I, (35)

ϕ̂n(t) = [v̂(t − 1), v̂(t − 2), · · · , v̂(t − nd)]T, (36)

ê(t) = y(t) − ϕT
s(t)θ̂s(t), (37)

v̂(t) = ê(t) − ϕ̂T

n(t)θ̂n(t), (38)

ϕs(t) = [−y(t − 1),−y(t − 2), · · · ,−y(t − na),
u(t − 1), u(t − 2), · · · , u(t − nb)]T, (39)

θ̂s(t) = [â1(t), · · · , âna
(t), b̂1(t), · · · , b̂nb

(t)]T, (40)

θ̂n(t) = [d̂1(t), · · · , d̂nd
(t)]T. (41)

The proposed F-RLS algorithm has high computational
efficiency because the dimensions of its covariance matrices
become small and can generate more accurate parameter es-
timation compared with the RELS algorithm.

To initialize the F-RLS algorithm, we take

θ̂s(i) = 1na+nb
/p0, θ̂n(i) = 1nd

/p0, i ≤ 0, (42)

P f(0) = p0Ina+nb
, P n(0) = p0Ind

, p0 = 106. (43)

The steps involved in the F-RLS algorithms are list as fol-
lows:

1. Set u(t) = 0, y(t) = 0 for t ≤ 0.

2. Let t = 1, set initial values of parameter estima-
tion vectors and covariance matrices according to (42)-
(43).

3. Compute ŷf(i) by (31) and ûf(i) by (32), construct
ϕs(i) by (39), compute ê(i) = 0 for i ≤ 0 by (37)
and v̂(i) by (38).

4. Collect the input-output data {u(t), y(t)}, construct
information vectors ϕs(t) by (39), ϕ̂f(t) by (30) and
ϕ̂n(t) by (36).

5. Compute the gain vector Lf(t) by (28) and the covari-
ance matrix P f(t) by (29).

6. Update the parameter estimate θ̂s(t) by (27).

7. Compute ê(t) by (37), v̂(t) by (38), ŷf(t) by (31) and
ûf(t) by (32).

8. Compute the gain vector Ln(t) by (34), the covariance
matrix P n(t) by (35).

9. Update the parameter estimate θ̂n(t) by (33).

10. Compare θ̂s(t) with θ̂s(t − 1), and θ̂n(t) with θ̂n(t −
1), if they are sufficiently close, or for pre-set small
positive constant ε > 0, if

‖θ̂s(t)− θ̂s(t−1)‖ < ε and ‖θ̂n(t)− θ̂n(t−1)‖ < ε,

terminate the procedure, and obtain the parameter esti-
mates θ̂s(t) and θ̂n(t); otherwise increment t by 1, go
to step 4, and continue recursive computing.

4 Example

Consider the following stochastic system,

A(z)y(t) = B(z)u(t) + D(z)v(t),
A(z) = 1 + a1z

−1 + a2z
−2 = 1 + 1.50z−1 + 0.80z−2,

B(z) = b1z
−1 + b2z

−2 = 0.22z−1 + 1.80z−2,

D(z) = 1 + d1z
−1 = 1 − 0.10z−1,

θ = [a1, a2, b1, b2, c1, d1]T

= [1.50, 0.80, 0.22, 1.80,−0.10]T.

The input {u(t)} is taken as an uncorrelated persistent ex-
citation signal sequence with zero mean and unit variance,
and {v(t)} as a white noise sequence with zero mean and
variance σ2 = 0.502. Applying the RELS and the F-RLS
algorithms to estimate the parameters of this system, the
parameter estimates and their errors are shown in Table 1
and the estimation errors δ := ‖θ̂(t) − θ‖/‖θ‖ versus t are
shown in Figure 2.

0 500 1000 1500 2000 2500 3000
0

0.05

0.1

0.15

0.2

   t

δ

RELS F−RLS

Figure 2. The estimation errors δ vs. t

From Table 1 and Figure 2, we can get the following
conclusions:

• The parameter estimates given by the F-RLG algo-
rithm converge to their true values fast compared with
the RELS algorithm.

• The parameter estimation errors become (generally)
smaller and smaller with the data length t increasing.
This shows that the proposed algorithm is effective.

5 Conclusions

A filtering based recursive least squares algorithm for
an ARMAX systems is derived by filtering the input-output
data with an estimated transfer function. The proposed al-
gorithms can require less computation and give highly ac-
curate parameter estimates compared with the recursive ex-
tended least squares algorithms.
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Table 1. The parameter estimates and their errors (σ2 = 0.502)
Algorithms t a1 a2 b1 b2 d1 δ (%)

RELS 100 1.51608 0.82413 0.17231 1.83460 -0.18736 4.39338
200 1.52716 0.83508 0.18245 1.82662 -0.05085 3.24145
500 1.51498 0.81975 0.20168 1.83135 -0.05701 2.47189

1000 1.51090 0.81554 0.21259 1.79658 -0.03484 2.74807
2000 1.51027 0.81276 0.20942 1.80989 -0.04230 2.48041
3000 1.50858 0.80882 0.20943 1.80214 -0.07690 1.13785

F-RLS 100 1.44348 0.73554 0.21174 1.83492 -0.03567 4.54344
200 1.49946 0.78603 0.27288 1.80789 -0.17941 3.88895
500 1.49680 0.79624 0.22583 1.80115 -0.10023 0.31056

1000 1.49692 0.79841 0.23022 1.79488 -0.06414 1.51923
2000 1.49543 0.79487 0.22716 1.79132 -0.09050 0.65333
3000 1.49676 0.79804 0.22243 1.80156 -0.12038 0.84121

True values 1.50000 0.80000 0.22000 1.80000 -0.10000
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