
0.3dB and the number of processors in the Viterbi decoder is 
reduced to eight. This is acceptable in practical realisations. We 
note that the performance is greatly degraded in the case of two- 
state and four-state decoders. 
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Fig. 3 Block diagram of eight-state partial erasure decoder 
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Implementation: If we compare the eight-state trellis from Fig. 1 to 
the EPR4 trellis we note that they are structurally identical. This 
means that they have the same number of states, the same number 
of branches, and the same connectivity. This suggests that the 
eight-state Viterbi decoder can be easily constructed by modifying 
an EPR4 Viterbi decoder. Basically the only difference between 
these two decoders is that in the EPR4 Viterbi decoder there is 
only one branch symbol associated with each branch. In the case 
of the eight-state Viterbi decoder, there are two possible branch 
symbols associated with a branch and the selections of branch 
symbols depend on x,c-3 which is obtained from the path hstory 
of each reduced trellis state. This only affects the branch metrics 
generation (BMG) module. The hardware requirements for the 
branch metrics generator modules are compared in Table 1. The 
block diagram of the eight-state partial erasure Viterbi decoder is 
shown in Fig. 3; u , ~  denotes the noisy version of y,  and X,,, denotes 
the truncation depth of the Viterbi decoder. Note that the two 
remaining modules (state metrics updating and survivor sequence 
storage) remain the same as in the EPR4 Viterbi decoder which 
means that we can use the same processor architectures and the 
same survivor management techniques as in the EPR4 Viterbi 
decoder. 
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Robust speech pulse detection using 
adaptive noise modelling 

N.B. Yoma, F. McInnes and M. Jack 

Indexing terms: Speech recognition, Adaptive filters 

The problem of speech pulse detection with additive noise at a 
signal-to-noise ratio (SNR) as low as 0 and -6dB is addressed. 
The noise is assumed to be reasonably stationary and correlated. 
Three techniques have been examined: the autoregressive analysis 
of noise; spectral density comparison; and the non-stationarity 
measure. 

Introduction: The inaccurate detection of the endpoints is a major 
cause of errors in automatic speech recognition systems. Most of 
the endpoint detecting techniques are based on energy levels, 
pitch, zero- and/or level-crossing rates, and timing [ 11. However, in 
many real environments the speech signal is corrnpted by additive 
noise and these parameters may be insufficient for the correct 
detection of a speech pulse if the signal-to-noise ratio (SNR) is 
low. 

The contributions of this Letter concerns: (i) adaptive autore- 
gressive modelling of noise in order to reduce the influence of the 
corrupting signal; and speech pulse detection aided by (ii) spectral 
density comparison between noise and noisy speech signals or (iii) 
non-stationarity measures. 

The FIR fdters used in the autoregressive analysis are trained 
with the LMS algorithm during non-speech intervals. The spectral 
density comparison is made between noisy speech frames and an 
estimation of noise in non-speech intervals. In contrast, non-sta- 
tionarity measures are based on spectral distances between contig- 
uous frames and do not require noise estimation. Preliminary 
experiments have shown that the AR analysis generally increases 
the discrimination between speech and noise, and that spectral 
density comparison and non-stationarity measures might be more 
effective than energy in indicating the presence of a speech pulse 
at low SNRs. 

AR analysis of the noise signal: It is assumed that the noise n(i) 
could be described by an AR process of order M, i.e. it would sat- 
isfy the following equation [2]: 

H A ( z ) N ( z )  = w(z) (1) 
where N(z) and W(z) are the z transform of the noise and a white 
noise process, respectively, and HA(.) is defined as 

If the noise is reasonably stationary, its autoregressive filter 
HA(Z) estimated in non-speech intervals may be used to increase 
the energy gap between the noise and the noisy speech signals. 
Since the speech signal is intrinsically non-stationary and has com- 
ponents in all the considered band (25CL3200 Hz), its spectral den- 
sity and that of the noise are likely to differ along time, even if the 
noise is correlated and mainly concentrated in low frequencies 
(below 1000Hz). Consequently, it is expected that the attenuation 
caused by H4(Z)  will be lower on average for the speech than for 
the corrupting signal. The filter H,(Z) is transversal or FIR, and 
its coefficients can be estimated using the classical LMS algorithm. 
If the coefficients a, are replaced with c,, where c, = -ar, the tap 
weights adaptation is given by 

c k ( i  + 1) = cic(z) + vn(z ~ k ) e ( i )  ( 3 )  
where q is the learning rate and e(i) corresponds to the prediction 
error: 

Spectral density comparison: If the noise is assumed to be reasona- 
bly stationary, the noise spectral density could be considered valid 
between two consecutive silence periods and could be useful in 
detecting speech pulses. In the results presented in this Letter, the 
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spectral estimation was made with a 14 channel Mel-fdter bank, 
the same used in recognition experiments [4], but neither logarith- 
mic compression nor normalisation was applied. The spectral den- 
sity comparison coefficient (SD(i)) for a frame i is defined, in the 
Euclidean metric context, as 

Optimum FIR order 

where S, = (E, ,, Ez2, E, ;, ..., E, 14) and s” = (E,“, E2n, ..., E14n) 
correspond, respectively, to the spectral estimation of frame i and 
that of the noise; E,; and Eik represent the filter k output energies. 
The noise spectral estimation was computed as the average spec- 
trum in 10 non-speech frames. 

2 2 4 

Stationarity coeficient: If the noise is reasonably stationary its sta- 
tistical properties are constant or change slowly, or might even 
present fast but small variations along time. To use these features 
of the corrupting signal in speech pulse detection, the non-station- 
arity coefficient (NSr(i)) for a frame i is defined, in the Euclidean 
metric context, as 

G (dB) 

where S,-, = E,+,,,, ..., E1-1.14) and sz = (E,,l, E1,2, E,,;, ..., 
correspond, respectively, to the spectral estimations of two 

contiguous frames. 

13.1 I 6.6 5.3 

Results: The experiments were carried out using the Noisex-92 
database [3]. The signals were lowpass filtered using a 10th order 
Tchebychev filter with a cutoff frequency of 3700 Hz, downsam- 
pled from 16000 to 8000 sample/s, and highpass filtered using a 
fourth order Tchebychev filter with a cutoff frequency of 120Hz 
and a minimum attenuation equal to 2SdB. The data signal was 
divided in 2Sms frames without overlapping. Each frame was 
processed with a Hamming window before the frame energy and 
spectral estimation being computed. 

Three noises from Noisex-92 were considered (car, speech and 
Lynx) and for each case one AR FIR filter was trained using the 
noise-only samples files and the LMS algorithm. The learning rate 
was made equal to 0.1/(M x noixejower)  and the LMS algorithm 
was active for 10 training frames (250 ms). The FIR taps were set 
to 0 at the beginning of the iterative procedure. To determine the 
optimum prediction order, several configurations were tested and 
the one that gave the lowest prediction error was chosen. The 
clean and noisy speech signals belonged to the male speaker from 
the Noisex-92 database. Table 1 shows the optimum number of 
taps for each filter and the ratio G between the attenuation gain 
on clean speech signals and the attenuation gain on the training 
noise signal after the AR FIR filter being estimated. This quotient 
G gives an idea of the energy gap increase between noise and 
speech due to the AR FIR filter. The clean signals corresponded 
to 10 utterances (one per digit) automatically end detected. 

Table 1: Optimum AR FIR order and quotient (G) between the 
energy attenuation gains on clean speech signal and training noise 

I Noise I Car I Speech noise I Lynx I 

Figs. 1 and 2 present the power envelope, spectral comparison 
and non-stationarity coefficients before and after processing the 
signal with the AR FIR filter. The power envelope corresponds to 
the difference between the mean frame energy (dB) and the mean 
noise energy estimation (dB) made in 10 non-speech frames. The 
utterance corresponds to the digit ‘one’ in the car noise, with SNR 
equal to 0 and -6dB, respectively. The word ‘one’ was chosen 
because it presents a signal mainly concentrated in low frequen- 
cies, and constituted a more challenging problem than, e.g. the 
digit ‘six’. 
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Discussion: As can be seen in Table 1, the AR analysis led to a 
higher attenuation on average for the noises than for speech sig- 
nals. According to Figs. 1 and 2, the AR FIR filters increased the 
discrimination between the speech signal and backgound noise in 
the power, spectral comparison and non-stationarity coefficient 
domains. When compared with the power envelope, spectral com- 
parison and non-stationarity coefficients slightly increased the dif- 
ference between speech and non-speech pulses before FIR 
processing, but gave similar results after FIR at SNR equal to 
0dB (Fig. 1). According to Fig. 2 (SNR = -6dB), these coefficients 
increased the difference between speech and non-speech pulses 
after FIR processing, but the improvement achieved before AR 
analysis was not enough to highlight the speech signal from the 
backgound. 
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Concluding, the observed improvements were mainly due to the 
AR analysis, although spectral comparison and the non-stationar- 
ity coefficient might be useful at low SNRs. The AR FIR fdters 
needed a low number of taps, the LMS aigorithm seems to be fast 
enough to capture slow variations of the noise characteristics and 
only one microphone is necessary. Moreover, the AR analysis 
might be used by noise cancelling techniques in speech recogni- 
tion. Future work includes some heuristics to develop an endpoint 
detector, automatic threshold estimation, and the study of AR 
adaptation techniques. 
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Delay analysis of multiserver ATM buffers 

B. Vinck and H. Bruneel 

Indexing terms: Asynchronous transfer mode, Queueing theory 

A discrete-time multiple-server queue with FIFO discipline and 
deterministic service times of one slot each is studied. A 
relationship between the mass-functions of the delay of an 
arbitrary customer, and the system contents, during an arbitrary 
slot is derived under the most general conditions possible. 

Introduction; In [ 11 a general relationship between the probability 
distributions of the delay of an arbitrary customer, and the buffer 
contents, during an arbitrary slot was derived for a stable discrete- 
time single-server queue with deterministic service times equal to 
one slot. That relationship was ‘general’ in the sense that no mod- 
elling assumptions (concerning the arrival process), other than 
those necessary to guarantee the existence of the quantities 
appearing in the relationship, are required. 

We extend that relationship to the case of a multiple-server 
queue with deterministic service times. 

The result we obtain has been observed to hold under various 
more restrictive conditions, none of which is it necessary to 
impose when following the proof presented in this letter. In [2] a 
rather general proof of the result is given, but the authors require 
the system to reach a slot-wise limit distribution, thereby excluding 
all arrival processes that lead to a different limit behaviour. We 
also notice that our approach is mathematically much less com- 
plex than their approach. 

Model und result: We consider a discrete-time qucuelug system 
with c servers and a deterministic service time of one slot for each 
customer. Owing to the discrete-time operation, time appears as 
being divided into fiied length slots S, = (t,, t,+J; all customer 
arrivals and departures occur at the slot boundaries. Customers 
arrive according to a general arrival process and are queued for 
service according to a FIFO service discipline. The number of cus- 

tomers arriving at t, is denoted as A,. The buffer contents, i.e. the 
number of customers present, during slot S;, is denoted as U,, and 
the delay of the j th customer C, denoted as 0,. 

For any sample path of the queueing process, the average 
arrival rate A is defined as: 

assuming the limit exists. Likewise, using the notation # to indi- 
cate the number of elements in a set, the distribution of the buffer 
contents U during an arbitrary slot can be characterised as: 

#{ZlU% = R ,  1 5 2 5 k }  Pr[G = 721 := lim n 2 0  
k i m  k 

and the delay distribution for an arbitrary customer is given by: 

again, under the assumption that these limits exist. A sufficient 
condition for this is that the limit h in eqn. 1 exists and be strictly 
less than e. 

In this Letter we prove this regardless of the precise nature of 
the arrival process: 

c - jpl) Pr[U = c n  + p ]  Pr[D =n] = - ( 1 

p=--c+l 

n = 1 , 2 ,  ... (2) 

ProoJI We can make use of the result obtained in [l] for the single- 
server queue with deterministic service times when we divide each 
slot in c mini-slots of equal length and consider an equivalent sin- 
gle-server queue that serves one customer per mini-slot and 
receives the same arrivals as the original queue. In the equivalent 
queue. customers are also served according to a FIFO discipline. 
The boundaries of the mini-slots are denoted as &, whereby i,, = 
t,, for any k E N, see Fig. 1. 

- slot 3 

t k  
4L-L 

‘ck + P  mini-slot 

Fig. 1 Multiple server queue 

In the equivalent single-server queue the number of ’time-units’ 
is raised by a factor c, so that the load is Uc < 1. From [l] we can 
copy the result for the ‘equivalent’ single-server queue: 

where U is the system contents during an arbitrary mini-slot and 
D is the delay - expressed in a number of mini-slots - of an arbi- 
trary customer in the equivalent single-server queue. 

We now translate eqn. 5 into a relationship between the mass- 
functions of the stochastic variables related to the actual multiple- 
server queue. 

First, we observe that during each slot the multiserver queue 
and the equivalent single-server queue serve the same customers. 
A customer that leaves the multiserver queue at tk+, leaves-the 
equivalent single-server queue at ikc+,, ZlritZ, ... or = tk+,, 
while the arrival instants are the same in both queues. Therefore, 

D, = R * D, E { C R ,  - I, ..., cn - c + 1 )  

so that for any 1 E B: 
c-1 

#{C,lDj = n , l < j < Z )  = x # { C j i O j  = cn-p , l< j<Z} 
p=o 
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