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stract: The authors address the problem of 
speech recognition with signals corrupted by 
white Gaussian additive noise at moderate SNR. 
The energy of the noise is not required. A 
technique based on a lateral inhibition process 
approximation with a multilayer neural net (the 
lateral inhibition net (LIN)) and neural net 
processing efficacy weighting in acoustic pattern 
matching algorithms is proposed. In the 
recognition procedure, the local SNR is computed 
by means of the autocorrelation function and is 
employed to estimate the efficacy of LIN in noise 
cancelling which is taken into account as a weight 
in a pattern matching algorithm. A general 
criterion based on weighting the frame influence 
in decisions according to the reliability in noise 
reduction is suggested, and modified versions of 
both HMM and DTW algorithms have been 
designed. To be more coherent with the 
conditions that define LIN, a modification in the 
backpropagation algorithm is also proposed. 

Many of the techniques that have been proposed to 
solve the noise sensitivity of automatic speech recogni- 
tion systems (ASRS) are based on the estimation of 
noise at intervals where there are no speech signals. 
This restriction could be accepted in some real applica- 
tions of isolated word recognition, but it is very 
inappropriate for general real environments and 
especially for continuous speech recognition, where the 
time separation between two consecutive silence inter- 
vals can be much larger than in the isolated word case. 
The noise signal can change in energy andlor spectral 
distribution and the noise estimation can become 
obsolete between two silence intervals. In addition, the 
efficacy of noise cancelling methods cannot be the same 
along the speech signals, first, because the local SNR is 
not constant, and secondly, because the response of the 
noise reduction system can also depend on the charac- 
teristics of the input speech. 
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This paper describes a method to improve the noise 
robustness of ASRS to white Gaussian additive noise 
at moderate SNR by emulating spectral lateral 
inhibition with a neural net, and the noise reduction 
efficacy weighting in acoustic pattern matching 
algorithms. The noise power is not required by this 
approach. Four problems have been addressed. These 
are: first, the approximation of the lateral inhibition 
function with multilayer neural nets (LIN); secondly, 
frame-by-frame computation of the SNR; thirdly, 
estimation of the effectiveness of the LIN processing; 
and finally reliability weighting in acoustic pattern 
matching algorithms. The backpropagation algorithm 
was modified to be more coherent with the LIN 
definition. 

The conception of the neural net training procedure 
inspired by lateral inhibition had as its main purpose a 
possible generalisation of the LIN structure to other 
types of noise. Because lateral inhibition is basically the 
attenuation of the lowest by the highest energies, this 
mechanism could reduce the influence of any noise if 
the local SNR preserves the highest components of the 
speech signal. 

The local SNR estimation proposed herein does not 
need the noise power estimation in silence intervals and 
can be efficiently computed frame by frame, although 
the method loses accuracy if the speech signal is poorly 
correlated. Furthermore, the evaluation of the efficacy 
of a noise cancelling method seems to be a generic 
approach and can be applied to other techniques. 

The DTW algorithm based on the dynamic program- 
ming equation proposed in this research (DPW) is just 
one-step, and has similar performance to the two-step 
DTW previously proposed in [4]. The modified Viterbi 
algorithm for HMM has not been previously reported. 
In addition, the modified DTW and HMM algorithms 
are sufficiently generic to be employed with other noise 
cancellation techniques. 

Masking is basically the suppression of the lowest by 
the highest spectral components. Lateral inhibition is 
one of the processes responsible for the masking 
phenomena in different sensory systems and this 
concept was used to train the noise reduction neural 
network, LIN, employed in this research. 

Given that: * Ej is the logarithm of the normalised 
energy at the output of the filter j in a bank of N fil- 
ters. e e = (E:, E;, E:, ..., E;) is frame i of the clean 
signal; and l?'= (E?, E; E; ..., E;) is frame i after it 

IEE Proc.-Vis. Image Signal Process., Vol. 143, No. 5, October 1996 324 



has 
(LI 

noise added, then the lateral inhibition function 
can be set as 

LI(Ez) =Ez’;+f(El,Ez,E3,...,EN) (1) 
where the function ,510 was approximated with multi- 
layer perceptrons with one hidden layer. Multilayer 
perceptrons were chosen because they can store the 
information from a large amount of training data, and 
produce a correct input-output mapping even when the 
input is slightly different from the examples used to 
train them (generalisation). Fig. 1 shows the topology 
employed to approximate eqn. 1. 

output 

LI(E1) LI(E2) LI(E3) LI(E4) 
I l t l  

E1 E2 E3 E4 4 

Fig. 1 Multilayer perceptron to approximate lateral inhibition function set 
by eqn. 1 

input 

The output function for the hidden layer nodes was 
a ( x )  = 1/(1 + e-”) and the output function for input 
and output layers is linear. Each input node receives 
the energy of one filter and the same energy is fedfor- 
ward to the output node to compound eqn. 1. The 
number of input, hidden and output nodes was equal 
to the number of filters, N .  

The LIN was trained with the following conditions 
that define the lateral inhibition function: 

The first condition specifies that Ff and e should give 
approximately the same result after they are processed 
by LIN. The second condition settles that LI of a clean 
signal must give the same clean signal, so that the 
spectral information is preserved and no distortion is 
introduced. 

All the weights of the neural net (except those on the 
feedforward connections from the inputs to the outputs 
which were always equal to 1) were estimated with the 
classical backpropagation algorithm [ 11 with cross- 
validation [2]. The training data were made up of 
input-reference pattern pairs. Initially, the reference 
patterns were frames of clean signal, e, and the input 
patterns were generated adding white Gaussian noise to cc at four different SNRs (clean, 18 dB, 12dB, and 
6dB). Therefore, each frame originated four training 
input-reference pairs. In a modified version of the 
training algorithm, LI(Ff) was used instead of as 
reference patterns. 

The training of the neural network was carried out 
frame by frame and not utterance by utterance, so the 
LIN should be able to recover the information from a 
noisy frame independently of the context. Moreover, 
the SNR training condition (SNR 2 6dB) guarantees 
that the highest components are preserved from the 

LI(FF) M LI(l?f) LI(F:) M Ff 
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reference to the input training pattern, and, on the 
other hand, the generalisation feature of the neural nets 
should be able to mask the noises when the SNR is not 
included among the training conditions or even 
perhaps when the noise is poorly correlated but not 
white. 

2.1 LIN input 
To normalise the inputs between 0 and 1, first the 
maximum energy of the frame was determined. Then 
the energy of the other filters was computed in decibels 
using the maximum energy as reference, and all 
components 50dB below this maximum energy were 
made equal to -50dB. Finally, the energies in dB were 
linearly transformed from the range [-50dB, Odb] to 
[O, 11. 

2.2 LIN training database 
Sounds that present low energy (typically fricatives) are 
the first to be masked by corrupting signals, and using 
these speech frames as training patterns could mean 
learning the neural network with information that is 
lost even for moderate SNRs. In [7] the use of periodic- 
ity as a criterion to select training patterns was pro- 
posed. Periodicity was defined as 

where R,(m) is the autocorrelation of the speech signal 
and was computed with all ms in the range of funda- 
mental periods. The main purpose of this coefficient 
was to choose voiced frames with high energies but it 
was observed that some frames, specially at the end of 
the utterances, presented a high periodicity coefficient 
and a very low energy. In the results reported in this 
paper, energy was used as a discriminative parameter. 
Initially the maximum energy of the utterance was 
computed and then all the frames that were below a 
given threshold from the maximum energy were dis- 
carded. According to some preliminary experiments a 
suitable threshold would be 25dB. 

Fig. 2 Two-dimensional interpretation of LIN training with ordinary 
back-propagation algorithm 
Reference is constant and equal to the clean frame 

3 LIN and reliability in noise reduction 

Initially the quadratic error at the backpropagation 
algorithm was computed between the reference and 
the output L I ( e ) ,  which should result in an estimation 
of the clean frame F:. Given that FLIXdb corresponds to 
a noisy frame with local SNR equal to 18dB, FL12db to 
a noisy frame with local SNR equal to 12dB, F>db to 
noisy frame with local SNR equal to 6dB, Fig. 2 shows 
a two-dimensional interpretation of the LIN training 
algorithm. In recognition tests, reference (clear 
utterances) and testing patterns (noisy utterances) are 
processed by LIN, and hence in the acoustic pattern 
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matching algorithm the local distances correspond to 
d[LI(F,C), LI(E)] instead of d[F,C, F3, where k denotes 
a reference frame and i a test one. In the experiments 
reported here, the distance function d was the 
Euclidean metric. 

aJ 
32 

28 

24 

" 6  
, 

- 
- 
- 
- 
- 

- 

distortion 
Fig. 3 Reliability coeflcient plotted against distortion 
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A noise cancelling neural net can be seen as a system 
that processes a noisy input and produces an output 
with the influence of noise reduced. Since there are sev- 
eral levels of distortions and the backpropagation 
training algorithm is essentially stochastic (most com- 
mon patterns have more influence in the weights re- 
estimation process), it is reasonable to suppose that the 
LIN efficacy depends on the input and each noisy 
frame could be associated to a reliability coefficient 
that attempts to measure how reliable is the result of 
LIN processing. As the noise cancelling depends on 
d[LI(F:),  LI(F)] (the smaller this distance, the better is 
the noise influence cancelling), the reliability coefficient 
could be related to this distortion by means of the 
curve shown in Fig. 3. If d[LI(Ff), LI (Y)]  is smaller 
than a threshold 6, the reliability will be 1.0; and if 
d[LI(Ff) ,  LI(F)] > 6, the reliability will be inversely 
proportional to d[LI(E) ,  LI(F)]. This curve is analyti- 
cally described by the following function: 

if d[LI(F,"), L I ( F p ) ]  5 6 
r = {  d [L I (F,') 6 > L 1 (F," 11 if d[LI(F,C), LI(F,")] > 6 

It is interesting to highlight that LIN tends to preserve 
the highest energies and the position of local spectral 
peaks (see Fig. 4), or in other words, tends to preserve 
the phonetic information of the frame. For this reason, 
if d [ L I ( e ) ,  LI(F,")] was low for any SNR, the 
recognition error would be also low independently of 
the noise level. 

At the recognition procedure, the clean version FF of 
the noisy testing frame l?' is not available but, because 
the power spectral distribution of the corrupting signal 
is known (white Gaussian noise), FF can be set as a 
function of F and the local SNR. After LIN has been 
trained, the training database could be used to approx- 
imate the relation between d[(LI(F;)), LI (Y)] ,  and e 
and the local SNR. Consequently, if the segmental 
SNR could be computed frame by frame and given 
that is available, the reliability coefficient could be 
estimated frame by frame at the recognition process. 

3. I Local SNR estimation 
If the noise is poorly correlated and uncorrelated with 
the speech signal, it is possible to estimate the power of 
the clean speech from the autocorrelation function of 
the noisy signal [7]. Given that R,(m), R,(m) and &(m) 

1 
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are the autocorrelation functions of the noisy speech, 
the clean speech and the noise signals, respectively, the 
following coeffficient can be computed frame by frame: 

1 i f S N R = o o  
n = {  0 i f S N R = - m  

where RJ0) was estimated by means of applying some 
properties of the autocorrelation function and quad- 
ratic interpolation [7] 

The coefficient n can be computed frame by frame 
because it needs just the autocorrelation of the noisy 
signal at points m = 0, 1 and 2. Observe that the 
estimation of the noise power in silence intervals is not 
needed and the method captures the dynamic of the 
speech and noise signals energy. Given that 

the segmental SNR and the coefficient n are related by 
10SNR/10 

n= 1 + 10SNW10 (4) 

The more correlated is the speech signal, the more 
accurate is the local SNR estimation. If the speech 
signal is poorly correlated, the method loses accuracy. 

48 

20- 

HZ x 103 
1 2 3 

Fig.4 Noisy frame with local SNR equal to 6dB before and after LIN 
processing 
Frame corresponds to vowel E 
Highest component tends to be preserved and position of second format does 
not change 
- LIN input spectrum (SNR = 6dB) 
..... LIN output spectrum 

3.2 Mean distortions 
As an approximation, it can be assumed that the dis- 
tortion d [ L I ( c ) ,  LI(F)] depends exclusively on the 
local SNR. The mean distortions for each SNR can be 
estimated at the LIN training procedure and, once the 
local SNR can be efficiently computed for correlated 
speech signals [7], d[LI(Ff) ,  LI (Y)]  could be estimated 
at the recognition process. Given: * DY, the distortion 
d[LI(FF), LI(C)] for ~ the frame e with local SNR 
equal to snr; and 0 D,,, , =mean-distortion at local 
SNR equal to snr; then D,, can be computed for 
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some SNRs at the LIN training procedure and, by 
means of linear interpolation, it can be estimated for 
other values of SNR. Fig. 5 shows the curve D,,, 
against SNR estimated with a LIN that was trained 
with the female speaker. The limitation of this method 
concerns the fact that d[LI (e ) ,  LI (T)]  depends on I;I" 
and not only on the segmental SNR. 
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LIN training), in each epoch the backpropagation 
minimises the quadratic error of the following sequence 
of pairs reference-output: (1) FF and LI(E;"); (2) LI(Ff) 
and L I ( e ) ,  for all the local SNRs included in the 
training database, which is more coherent with the 
conditions that define the lateral inhibition function 
(see Section 2). Fig. 6 shows the two-dimensional 
interpretation of the MLT algorithm. It is interesting to 
note that the reference is not constant, as in the 
ordinary backpropagation algorithm, but is modified 
iteration by iteration because L I ( e )  depends on LIN, 
and LIN's weights are re-estimated each time that a 
reference-output pair is presented to the training 
algorithm. 

Fig. 6 Two-dimeniional interpretation of modij7ed LIN training algorithm 
(MLT) 

0 5 10 15 
SNR,dB 

Fig.5 against SNRforfemale speaker 

For the results presented in this paper, D,, was 
computed for SNR = 18, 12, 6, 3 and OdB by 
employing the LIN training database, after LIN had 
been trained. During the recognition procedure, the 
coefficient n was estimated by means of the 
autocorrelation __ function eqns. 2 and 3 and the curve 
D,,, x localSNR was mapped into the n domain using 
eqn. 4. The constant 6 was made equal to 0.004, a 
value that was shown to be suitable according to some 
tests. 

4 Modified backpropagation algorithm 

In the ordinary neural net training algorithm, the 
quadratic error is computed between the reference Ff 
and the output LI(ljl"). However, the efficacy of LIN is 
related to the distortion d [ L I ( e ) ,  LI(K)]: the smaller 
d[LI(E;"), LI(C)] is, the smaller should be the recogni- 
tion error rate. As a consequence, it can be interesting 
to include the condition of minimisation of d [LI(Ff), 
LI(ljl")] in the training algorithm in a more explicit way. 
Fig. 2 shows the ordinary backpropagation approach, 
where the target is the minimisation of the distances 
d [ T ,  LI(C)] instead of d[LI(Ff),  LI(F)].  The minimi- 
sation of d[FF, LI(F?)] leads to the reduction of 
d[LI(F;), LI (F3] ,  but this distance also depends on the 
angle between L I ( e )  - Ff and L I ( e )  - (see Fig. 2). 
In the modified algorithm, the clean signal was 
replaced with LI(Ff) as the reference for the noisy 
frames, and the quadratic error was computed between 
the reference LI(E;") and the output LI(E;1z). 

At the ordinary LIN training algorithm (BLT- 
backpropagation LIN training), in each epoch the 
backpropagation minimises the quadratic error of the 
following sequence of pairs reference-output: (1) 
and LI (c ) ;  (2) and LI(ljl"), for all the local SNRs 
included in the training database. 

At the modified training algorithm (MLT-modifled 
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5 Weighted matching algorithms 

Some modifications were included in matching 
algorithms to weight the reliability of the information 
extracted from testing frames. A weighting coefficient 
w(t)  (w(t) = 1, maximum reliability; w(t) = 0, minimum 
reliability) is associated with each testing frame 
employed in the modified versions of the DTW and 
Viterbi (HMM) algorithms. In this paper w was made 
equal to the coefficient n, related to the segmental SNR 
estimation (Section 3.1), and to r ,  reliability in LIN 
processing. The main idea behind the modifications 
made on the Viterbi (HMM) and DTW algorithms is 
that the influence of a frame on decisions must be 
proportional to its coefficient w. The proposed 
weighted DP algorithm was compared with the two- 
step DP algorithm proposed in [4]. The modified 
Viterbi algorithm has not yet been tested. 

5.1 HMM: modified Viterbi algorithm 
The reliability coefficient can be included in the Viterbi 
algorithm [3] by raising the output probability of 
observing the frame 0, to the power of w(t). This 
modification leads to the following algorithm: 
Step 1: Initialisation. For each state i, 

&(i) = 7rt x [b,(01)]"(1)  

$1(4 = 0 
Step 2: Recursion. From time t = 2 to T, for all statesj, 

~ t ( j )  = max[St-l(i) x aZ3] x [ b , ( ~ t ) l " ( ~ )  

Step 3: Termination. (* indicates the optimised results). 
P* = max[S~(s)] 

S € S f  

Consequently, the influence of the probability 
bi(Ot-l) in the decision Maxi[G,l(i) x aii] = 
Ma~~[Maxh[S,~(h) x ahi] x [bi(O,l)]"("l) x aii] at Step 2 
depends on w(t - 1): if w(t - 1) = 1 (high reliability), 
the influence of bi(O,J is maximal; if w(t - 1) = 0 (very 
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low reliability); the influence of bi(O,,) is zero because 
[bi(~,- ,) lo = 1 for all states i. 

5.2 DTW: modified DP equation 
The same principle of weighting the importance of a 
frame according to w(i) leads to a modified dynamic 
programming (DP) equation. The proposed DP 
equation is 

G ( i , j )  = min 

G ( i , g - l ) x W ( i , g - l ) + d ( z , ~ ) ~ w ( Z )  
W(z,j-l)+w(i) 

W(z--l,j-1)+2xw(i) 

W(z--1,3)+w(t) 

G(z-1,j-1) X W ( i - l , j - l ) + Z x d ( z , g )  Xw(Z) 

G(i-l,g)xW(~-l,j)+d(~,~) X W ( ~ )  

W(2,j - 1) + w(2) 
W ( i  - 1 , j  - 1) + 2 x w(2) 

W(2 - 1,j) + w(2) 
This DP equation takes into account the weight w(i) 
frame by frame, and the calculation of the overall dis- 
tance, G(i, j ) ,  is affected by d(i, j )  according to w(i) : if 
w(i) = 1 (high reliability or local SNR), the weight of 
d(i, j )  is maximal; if w(i) = 0 (very low reliability or 
local SNR), the importance of d(i, j )  is zero. 

5.3 Two-step DP matching 
This algorithm [4] consists of the following two-step 
processing. First, the optimal alignment path ciC = (iic, 
jJ, k = 1, 2, ..., K is obtained using the ordinary DP 
matching algorithm with symmetric weight, where ik 
and j ,  are the frame numbers of the testing and 
reference patterns, respectively. The second step is the 
calculation of the global distance between the 
utterances weighted by w(&) along the optimal path 
obtained at the first step. 

6 Experiments of word recognition 

6. I Database 
The proposed methods were tested with speaker- 
dependent isolated word (English digits from 0 to 9) 
recognition experiments. The tests were carried out 
employing the two speakers (one female and one male) 
from the Noisex database. The isolated clean words 
were automatically end detected and generated the 
database used in this research. For each speaker, the 
100 training clean utterances (ten repetitions per digit) 
generated ten reference sets (set of repetition 1 of each 
word, set of repetition 2 of each word etc). The 100 
testing clean utterances were used to create the noisy 
database by adding white noise at five global-SNR lev- 
els: clean speech, +18dB, +12dB, +6dB, +3dB and 
OdB. The global-SNR was defined as in [5].  First, the 
total energy E of the clean word was computed. Then, 
the mean energy per sample Et was determined dividing 
E by the number of samples of the signal. Finally, Et 
was used to set the variance of the zero mean white 
Gaussian noise to be added. 

6.2 Preprocessing 
Before the Gaussian noise was added, the speech 
signals were lowpass filtered, using a 10th-order 
Tchebychev filter with cut-off frequency equal to 
3700Hz, and down sampled from 16000 to 8000 
samplesisecond. The band from 300 to 3400Hz was 
covered with 14 Me1 second-order IIR digital filters. 
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The energy of each filter was an input of LIN as 
explained in Section 2.1. After LIN processing ten 
cepstral coefficients were computed. 

6.3 Training the neural network 
For each speaker, the frames from the set of repetition 
1 of the training database (Section 6.1) generated the 
input-reference pattern pairs used by the LIN training 
algorithm to estimate the weights. The frames from the 
set of repetition 2 of the training database generated 
the input-reference pattern pairs used to evaluate the 
performance of the LIN. Several training conditions 
(learning rate, initial weights and database) were tested 
and the one that gave the best results on the test data 
was chosen. For each speaker, the LIW training varia- 
bles were kept constant to compare the MLT and BLT 
algorithms at the same conditions. 

6.4 Results 
The results presented in this paper were achieved with 
1000 recognition tests for each SNR: ten reference sets 
x 100 testing utterances. The following configurations 
were tested: the ordinary DTW algorithm with cepstral 
coefficient without (DP-C) and with (DP-L) LIN 
processing; the proposed weighted DP algorithm with 
LIN processing, (DPW-D) with the mean-distortions 
method for reliability estimation and (DPW-n) with 
local SNR estimation; and finally, the two-step DP 
matching with LIN, (DP2-D) with the mean-distortions 
method for reliability estimation and (DP2-n) with 
local SNR estimation. Table 1 shows the number of 
iterations required by each algorithm. The recognition 
error rates are presented in Table 2 for the female 
speaker, and in Table 3 for the male one. 

Table 1: Number of iterations needed to train LIN 

Speaker Female Male 

B LT 6132 7403 

M LT 3869 1702 

7 Discussion 

7. I 
The LIN showed a substantial reduction in error rates 
even without reliability weighting. With the ordinary 
DTW algorithm (DP-L) the LIN practically eliminated 
the influence of the noise at SNR = 18 and 12dB, and 
resulted in a mean reduction of 87, 70 and 48% at SNR 
= 6, 3 and OdB, respectively. Moreover, the error 
introduced for testing the clean signal was almost zero. 

LIN efficacy in noise cancelling 

7.2 Comparison between weighting 
coefficients 
As can be seen in Table 2 (female speaker) and 
Table 3 (male speaker), the reliability coefficient 
estimated with the mean-distortions method gave a 
greater reduction in the error rate than the SNR 
weighting in all noisy conditions. When the LIN was 
trained by means of the MLT algorithm, the reduction 
due to reliability weighting was as high as 100, 84 and 
57% at SNR = 12, 6 and 3dB, respectively, while the 
SNR estimation resulted in a much smaller reduction 
in most of the cases and even in an increase of the 
error rate in other cases. 

The proposed one-step weighted algorithm showed 
almost the same performance as the two-step one with 
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Table 2: Recognition error rate (%I for the female speaker. LIN 
was trained with MLT and BLT (results in parentheses) 
algorithms 

SNR Cln 18dB 12dB 6dB 3dB OdB 

DP-c 0.1 3.5 31.9 67.0 70.6 75.6 

DP-L 0.1 (0.1) 0.2 (0.1) 0.6 (1.2) 5.9 (11.5) 10.6 (31.9) 24.5 (53.5) 

DPW-6 0.1 (0.2) 0.0 (0.1) 0.0 (0.1) 0.7 (4.0) 6.1 (17.2) 17.9 (33.3) 

DPW-n 0.1 (0.1) 0.1 (0.4) 0.3 (1.0) 3.0 (6.4) 9.5 (26.0) 30.1 (43.9) 

Df2-6 0.1 (0.1) 0.0 (0.0) 0.0 (0.1) 0.5 (3.5) 5.6 (15.9) 17.6 (32.1) 

D E - n  0.1 (0.1) 0.1 (0.2) 0.1 (0.4) 2.3 (4.0) 6.5 (20.6) 23.6 (38.2) 

Table 3: Recognition error rate (%) for male speaker. LIN was 
trained with MLT and BLT (results in parentheses) algorithms 

SNR Cln 18dB 12dB 6dB 3dB OdB 

D f - c  0.0 16.8 49.9 65.1 69.4 74.6 

DP-L 0.0 (0.3) 0.6 (0.4) 2.7 (1.6) 9.2 (9.8) 22.6 (21.9) 38.2 (41.8) 

DPW-6 0.1 (0.1) 0.0 (0.1) 0.0 (0.1) 2.2 (1.3) 7.8 (6.3) 24.1 (24.6) 

DPW-n 0.5 (0.5) 0.8 (0.5) 3.3 (3.4) 11.5 (10.4) 22.0 (20.6) 36.1 (43.4) 

DP2-D- 0.1 (0.1) 0.0 (0.1) 0.0 (0.2) 2.3 (1.2) 7.8 (6.6) 24.8 (25.2) 

DP2-n 0.3 (0.3) 0.0 (0.1) 0.9 (1.7) 8.5 (8.2) 17.7 (17.2) 31.6 (38.9) 

the reliability coefficient, but resulted in a poorer 
improvement when the SNR estimation was used as a 
weighting parameter. This must be due to the fact that 
in the one-step algorithm the influence of a frame on 
decisions must be proportional to its coefficient w, and 
the reliability coefficient includes not only the informa- 
tion concerning the segmental SNR, but also the LIN 
characteristic in the form of the mean-distortion curve 
(Fig. 5), and provides a more accurate estimation of 
the reliability of the information extracted from each 
frame. 

7.3 Comparison of MLT and BLT algorithms 
According to Tables 2 and 3, the reliability coefficient 
as a weighting parameter gave the best results, with the 
MLT algorithm for the female speaker and with the 
BLT algorithm for the male one. The error rate was 
kept below 1.5% at SNR = 6dB and below 10% at 
SNR = 3dB for both speakers. 

Some preliminary experiments showed that the best 
results were achieved with the combination of MLT 
and reliability coefficient weighting. This could be the 
result of: first, the weakening of the learning 
constraints imposed by MLT, and secondly, the better 
matching between these constraints and the estimation 
of d [ L I ( c ) ,  LI(83] required by the reliability 
coefficient computation. In the MLT algorithm, the 
approximation between L I ( e )  and LI(E)  (Fig. 6) 
seemed to be more natural than the approximation 
between F; and L I ( p )  in BLT (Fig. 2). However, 
further tests showed that the BLT algorithm could 
lead, depending on the LIN training conditions, to 
better results than the MLT one (male speaker). 

8 Conclusions 

The combination of LIN and weighted DP algorithms 
proved to be effective in reducing the influence of white 
Gaussian noise, and the error introduced for testing the 
clean signal was almost zero. The reliability coefficient 
gave better results than the SNR estimation as a 
weighting parameter and this must arise from the fact 
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that this coefficient takes into account not only the 
local SNR estimation but also the characteristic 
response of LIN in the form of the mean-distortion 
curve (Fig. 5). The weighted DP algorithms helped to 
reduce the error rate, but its improvement decreased 
when the SNR became more severe. The proposed one- 
step DP matching was also shown to be effective in 
reducing the error rate, and led to approximately the 
same error rates as the two-step matching [4] when the 
reliability weighting was used. 

The reliability coefficient as a weighting parameter 
seems to be a generic approach and could be employed 
with other noise cancelling techniques. Further studies 
are needed in order to develop a more accurate and 
generic estimation for this coefficient. 

The MLT algorithm appears to be an interesting 
option to be used in combination with reliability 
weighting, although further tests are needed to delimit 
its efficacy. A drawback of LIN is the strong influence 
of training conditions (learning rate, initial weights and 
database) in the final results and several configurations 
had to be tested. In this sense, the inclusion of the 
reliability coefficient seems to be an important advance 
because it caused a reduction of the error rate in all the 
cases, independently of the training configurations. 
Future work includes the generalisation of the LIN 
structure to other types of noises, adaptation to new 
environments and a more precise delimitation of the 
influence of the training conditions. 
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