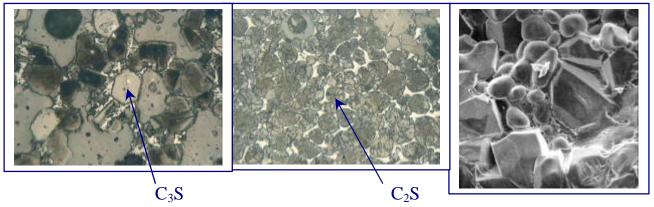
7. CEMENTOS Y HORMIGONES

7.1 <u>CEMENTOS</u>


Materiales cementantes Cementos simples (sulfato de calcio, morteros de yeso, etc.)

Cementos complejos (cemento portland, etc.)

Cementos portland: mezcla de clínker (molido) + 2 a 3% de yeso

- Materias primas:
 - $\begin{array}{ccccc} \text{-} & \text{cal (CaO)} & \rightarrow & \text{C} \\ \text{-} & \text{sílice (SiO}_2) & \rightarrow & \text{S} \\ \text{-} & \text{alúmina (Al}_2\text{O}_3) & \rightarrow & \text{A} \end{array}$
 - óxido de hierro (Fe_2O_3) $\rightarrow F$
- Proceso:
 - a) molienda y mezcla, en proporciones adecuadas, de las materias primas.
 - b) mezcla se somete a temperaturas entre 1400 y 1650 °C en un horno rotatorio.
 - c) producto obtenido: clinker
 - d) el clinker se enfría, se mezcla con yeso (CaSO₄•2H₂O), y se pulveriza
- Composición química: consta de 4 componentes:

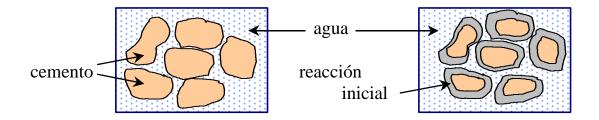
Componente	Fórmula química	Abreviatura
silicato tricálcico	3CaO•SiO₂	C_3S
silicato dicálcico	2CaO•SiO ₂	C_2S
aluminato tricálcico	3CaO•Al ₂ O ₃	C ₃ A
ferroaluminato tetracálcico	4CaO•Al ₂ O ₃ •Fe ₂ O ₃	C ₄ AF

Figs. Estructura del clinker

Materiales de Ingeniería - E. Donoso

Endurecimiento del cemento: endurece al reaccionar el C₃S y C₂S con el agua (reacción de hidratación), produciendo el silicato tricálcico hidratado (gel coloidal de partículas de menos de 1 μm) e hidróxido de calcio (material cristalino)

Reacciones de hidratación:


$$2(3\text{Ca} \bullet \text{SiO}_2) + 6\text{H}_2\text{O} \rightarrow 3\text{CaO} \bullet 2\text{SiO}_2 \bullet 3\text{H}_2\text{O} + 3\text{Ca}(\text{OH})_2 + \text{calor}$$

$$\{ 2 \text{C}_3\text{S} + 6 \text{H} \rightarrow \text{C}_3\text{S}_2\text{H}_3 + 3 \text{CH} \}$$

$$2(2\text{Ca} \bullet \text{SiO}_2) + 4\text{H}_2\text{O} \rightarrow 3\text{CaO} \bullet 2\text{SiO}_2 \bullet 3\text{H}_2\text{O} + \text{Ca}(\text{OH})_2 + \text{calor}$$

$$\{ 2 \text{C}_2\text{S} + 4 \text{H} \rightarrow \text{C}_3\text{S}_2\text{H}_3 + \text{CH} \}$$

$$\text{gel coloidal} \qquad \text{H} = \text{agua}$$

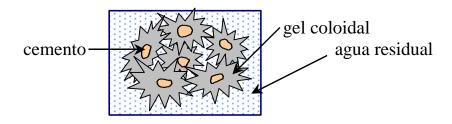
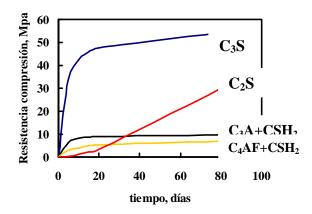



Fig. Resistencia a la compresión de los componentes del cemento en función del tiempo de curado

Materiales de Ingeniería – E. Donoso

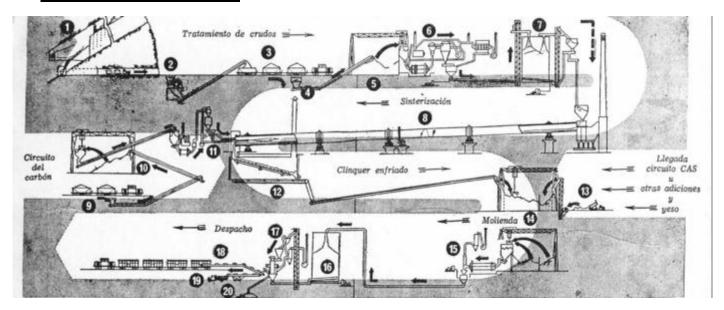
Grado (resistencia mecánica)

	Tiempo de	Tiempo de	Resistencia a	Resistencia a	Resistencia	Resistencia
	fraguado	fraguado	compresión	compresión	a flexión	a flexión
	(h)	(h)	(kg/cm ²)	(kg/cm ²)	(kg/cm^2)	(kg/cm^2)
	I.F.	F.F.	7 días	28 días	7 días	28 días
Corriente	≥ 1	≤ 12	≥ 180	≥ 250	≥ 35	≥ 45
Alta resistencia	≥ 3/4	≤ 10	≥ 250	≥ 350	≥ 45	≥ 55

^{*} I.F.: Inicio de fraguado F.F.: Fin de fraguado.

Tipos de cementos portland:

Tipo de cemento	Composición, % en peso *			
	C_3S	C_2S	C_3A	C ₄ AF
Común	55	20	12	9
Moderado (calor y resistencia al sulfato)	45	30	7	12
Endurecimiento rápido	65	10	12	8
Bajo calor de hidratación	25	50	5	13
Resistente al sulfato	40	35	3	14


^{*} Las diferencias corresponden a yeso y a componentes como MgO, sulfatos alcalinos, etc.

Otros Tipos de cementos:

- ➤ Cementos puzolánicos: Inicialmente se usó puzolana (arcillas y esquistos calcinados) mezclada con cal. Actualmente se añade en fábrica al clínker portland, junto al yeso
- Cementos siderúrgicos: se emplea escoria de alto horno (enfriada bruscamente con exceso de agua) como adición al clínker.

Clasificación	Portland	Portland Siderúrgicos	Siderúrgicos	Portland Puzolánicos	Puzolánicos
Componentes (%)	•	C			
Materias extrañas	≤ 3	≤ 3	≤ 3	≤ 3	≤3
Clinquer	≥ 93	≥ 63	18 - 70	≥ 63	43 - 70
Puzolana	-	-	-	≤ 30	30 - 50
Escoria	-	≤ 30	30 - 75	-	-
Sulfato (SO ₃)	≤ 4	≤ 4	≤ 4	≤ 4	≤ 4

Fabricación del Cemento

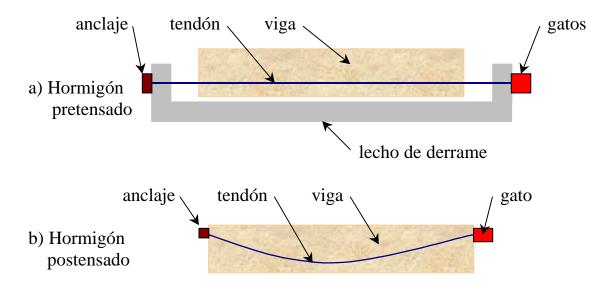
- I. **Materia prima**: (1) Caliza proveniente de la mina. (2) Planta trituradora, se reduce de tamaño el mineral. (3) tren calero, deposita el mineral en las tolvas. (4) Tolvas de acceso a la fábrica.
- II. **Tratamiento de crudos**: (5) Cancha de ingredientes primarios, se mantiene el mineral separado (alta y baja ley). (6) Dosificación y mezcla, donde después pasa a los molinos secadores. (7) Silos de crudo, antes de ingresar a los silos el polvo seco es homogeneizado.
- III. **Sinterización**: (8) Hornos rotatorios, por la derecha entra el crudo y por la izquierda sale el sinterizado y entra el combustible y el aire (la temperatura aumenta a medida que el material avanza hacia su salida). (11) Combustible, carbón de piedra molido y seco. (9) y (10) Tratamiento del combustible (es este caso carbón).
- IV. **Ingredientes finales**: (12) Enfriadores, donde se descarga el producto del horno: CLINKER. (14) Cancha de ingredientes finales, además del clinker acá se encuentran las adiciones como la puzolana, yeso crudo, etc. (13) Acceso de adiciones.
- V. **Molienda final**: (15) Molienda del clinker granulado grueso más las adiciones y aditivos. (16) Silos de almacenamiento del cemento.
- VI. Envasado del cemento y despacho (17) a (20).

7.2 HORMIGON ó Concreto

- **Materias primas:** cemento (7 15 % en volumen)
 - Arena (24 30 % en vol.)
 - Agregados (31 50 % en vol.)
 - Agua (14 21 % en vol.)
- Agregados: materiales inertes como arena, grava y piedras que se mezclan con el cemento. Su función es actuar como material de relleno (60 a 80 % del volumen total).
- agregado fino: arena \rightarrow agregado que pasa por completo una malla N° 4 (4,75 mm), y retiene casi por completo una malla N° 200 (75 μ m)
- agregado grueso: grava y piedras \rightarrow material retenido en la malla N° 4 (4,75 mm)
- Factores a considerar en una mezcla de hormigón:
 - Trabajabilidad del hormigón: debe ser capaz de fluir o ser compactado a la forma del recipiente.
 - Resistencia y durabilidad: debe tener requerimientos específicos de resistencia y durabilidad.
 - Economía y producción: debe considerarse el costo de producción.

> Otros factores:

- El reforzamiento es mayor, mientras más pequeñas y uniformes sean las partículas, aunque la resistencia óptima se logra (empaquetamiento denso del agregado y buen contacto de las intercaras) con partículas de dos diferentes tamaños; partículas finas de arena deben ocupar los espacios vacíos entre partículas de grava.
- Deficiencia de $H_2O \Rightarrow$ unión incompleta entre el cemento y el agregado.
- Exceso de $H_2O \Rightarrow$ aumento de la porosidad
- Mortero: mezcla de: cemento + agua + agregado fino
- Hormigón o concreto: mezcla de: cemento + agua + agregado grueso


• Módulo de elasticidad del hormigón, E_H

$$\mathbf{E}_{\mathbf{H}} = \left\{ \frac{\mathbf{V}_{\mathbf{a}}}{\mathbf{E}_{\mathbf{a}}} + \frac{\mathbf{V}_{\mathbf{c}}}{\mathbf{E}_{\mathbf{c}}} \right\}^{-1}$$

- E_a, E_c: módulos de elasticidad del agregado y cemento respectivamente.
- V_a, V_c: fracciones volumétricas del agregado y cemento respectivamente.

Tipos de hormigones:

- Hormigón armado: hormigón reforzado con barras de acero. Debido a su baja resistencia a la tracción del hormigón, estos esfuerzos son transferidos desde el hormigón a las barras de acero.
- Hormigón pretensado y postensado: Aumento de la resistencia a la tracción del hormigón armado mediante las barras de acero tensionadas (tendones), normalmente cables trensados. La tensión (y el trensado) se logra mediante un anclaje externo y un gato ajustable,

- Hormigón de baja, moderada y alta resistencia
- Hormigón polimérico (se reemplaza el cemento por un polímero)
- Hormigón de azufre.