
PRINCIPLE OF ENVIRONMENTAL MATHEMATICS 

Shooting Methods 

We now take the approach of attempting to convert a boundary value problem 
into an equivalent initial value problem. This would permit the use of the powerful 
and accurate techniques developed in preceding sections for initial value problems. 

To illustrate the approach, we turn again to the example used earlier: 

 (1) 

  

This problem can be recast as the following initial value problem: 

 (2) 

 

where U is unknown, and must be chosen such that y(L) and thus the boundary value 
problem (1) is reproduced, if we arbitrarily choose a value for U, and solve the initial   
value problem (2) by any standard numerical method, the solution might appear 
graphically as shown in Fig.1. (We will assume that the step size is sufficiently small 
that truncation error is negligible, and we will neglect round off error. Since y(L) is 
not zero, we have not reproduced the boundary value problem (1). (Since y(L) is 
clearly a function of U. we have denoted y(L) as y,(U).) In order to bring yL (U) closer 
to zero the strategy should apparently be lo reduce U. (The similarity to a ballistics 
problem is of course the motivation for the term “shooting method.”) Seeking the 
appropriate value of U in order to satisfy the boundary condition at x = L can be stated 
as searching for U such that 

 (3) 

 



Figure 1 

 

This is a root solving problem, and we can employ any of the standard methods which 
do not utilize explicitly [lie derivative of the function. Thus bisection or the secant 
method is likely candidates in this situation. Since the secant method is more rapidly 
convergent for well-behaved functions with simple roots, it will usually be the first 
choice for the present application. 

We have only to provide two estimates of the root of (3); call them U∞ and U0. Now 
two solutions of the initial value problem (2) are carried out, yielding yL (U∞) and   
yL (U0). A new estimate of U can then be obtained, given by 

 (4) 

The process is continued to convergence, with each functional evaluation of yL (U) 
requiring a numerical solution of the initial value problem (2). Examples are given in 
Problems 1. 

Since iteration to convergence may require from three to ten or more iterations, 
depending on many factors, it makes good economic sense in many cases to use a 
reasonably efficient method to solve the initial value problem. One of the 
predictor-corrector schemes such as the fourth-order Adams method or Hamming's 
method would seem suitable. However, since the solution must be obtained precisely 
at x = L, the use of a method winch makes automated slop size changes is probably 
not desirable. Instead, it may be best to use a fixed step size or a series of 
predetermined step sizes which together arrive exactly al x = L. (If the end point is not 
hit exactly, the value of y at this point can be found by interpolation, but this is just 
another complicating factor and adds to the possibility of error.) 



Example 1: 

By using the shooting method described above, solve the boundary value 
problem. We first transform the boundary value problem to an equivalent initial value 
problem: 

 

where U is unknown and must be determined such that y(10)=0, We choose U = 10 
for our first attempt. (From the preceding problem a reasonable estimate can be 
obtained for this slope; in many cases the initial guess will be farther off, but the 
method will usually still work unless the initial estimate is very far the correct value.) 
Using a fourth-order Rung-Kutta method with △x = 0.1, we find y(10) = 3.74517. A 
second solution must be obtained before the root solving approach discussed above 
can be employed. If U = 11 is used, then the numerical solution of the initial value 
problem yields y(10)= 1.82730. This is (perhaps surprisingly) closer to the desired 
value of zero than the solution for U = 10. (One would be tempted to reduce the slope 
if y(10) is too high for the first estimate of U. However, this is by no means always 
the proper approach. The secant method will eventually converge to the correct value 
in any case.) Enough information is now available to determine the next estimate of U 
based on the secant method given by (4). We let U∞ = 10 and U0 = 11. Then        
yL (U∞)=3.74517 and yL(U0)=1.82730. Equation (4) then yields 

 

The solution to the initial value problem with this as z(0) gives y(10) = 5.72205×10-5. 
This is remarkably small, and we will accept this solution, which is 

 y (0) = 0 y (6) = 67.0530 

 y (1) = 15.3783 y (7) = 53.5809 

 y (2) = 34.8260 y (8) = 34.8250 

 y (3) = 53.5817 y (9) = 15.3776 

 y (4) = 67.0535   y (10) = 0.000057 

 y (5) = 71.9429 

Comparison with Table 9.7 shows that these values differ from the exact solution by 
less than 1 digit in the third decimal place. Only three solutions of the initial value 
problem were necessary to obtain this solution. More iterations would be required if 
poorer initial estimates of U were made. 



Example 2: 

 

 
 
Simulate the removal of phenol from wastewater by biofilm. The governing equation can be 

formulated by Haldane equation at steady state is given by: 

 

 

Boundary conditions:       

Df = diffusion coefficient of phenol in biofilm 

S0= Conc. of phenol in wastewater 

k = maximum specific rate of the substrate utilization 

Sf = Conc. of phenol in biofilm 

kf = mass transport factor of liquid�solid interface 

Xf = biofilm density 

KI = resistant factor 

KS = semisaturation coefficient 

  

k = 0.51day-1; Ks = 40 mg/L; KI = 40.4 mg/l; Xf = 50000 mg/l; Df = 0.85 cm2/day;  

kf = 2 × 10-7 m/sec; Lf = 1.68 mm; S0 = 5000 mg/l; Ss�0.9 S0 . 

Please plot the concentration of phenol as function of Z-direction (Sf (Z)). 



Flowchart for example 2 

 



 Solution: 

 
 

 

 


