
17-1 DYNAMIC ANALYSIS

Estimating the ultimate capacity of a pile while it is being driven into the ground at the site
has resulted in numerous equations being presented to the engineering profession. Unfortu-
nately, none of the equations is consistently reliable or reliable over an extended range of
pile capacity. Because of this, the best means for predicting pile capacity by dynamic means
consists in driving a pile, recording the driving history, and load testing the pile. It would
be reasonable to assume that other piles with a similar driving history at that site would de-
velop approximately the same load capacity. This chapter will examine some of the driving
equations, the load test, and some of the numerous reasons why dynamic pile prediction is
so poor. Some of the field problems associated with pile driving such as splicing, redriving,
and heave will also be briefly examined. A brief introduction to the wave equation method
of dynamic analysis will also be presented.

Probably one of the best sources of practical considerations in pile driving is given by Hal
Hunt, Design and Installation of Driven Pile Foundations, published by the Associated Pile
and Fitting Corp., Clifton, NJ, 1979 (217 pages).

17-2 PILE DRIVING

Piles are inserted into the ground using a pile hammer resting on or clamped to the top of the
pile cap, which is, in turn, connected to the pile. The pile may contain a capblock between
the cap and hammer as shown in Fig. 17-1. The cap usually rests on the pile and may be of,
or contain, adequate geometry to effect a reasonably close fit. A pile cushion is sometimes
used between the cap and pile (particularly concrete piles) to make the hammer impulses
produce a more uniform driving pressure across the pile cross section. The pile and hammer
are aligned vertically using leads suspended by a crane-type device except for the vibratory
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(c) Diesel hammer. Crane initially lifts ram. Ram is
released and falls; at select point fuel is injected. Ram
collides with anvil, igniting fuel. Resulting explosion
drives pile and lifts ram for next cycle.

Figure 17-1 Schematics of several pile hammers.

(d) Vibratory hammer. External power source (electric
motor or electric-driven hydraulic pump) rotates
eccentric weights in relative directions shown.
Horizontal force components cancel—vertical force
components add.
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hammers, which normally do not use leads. Piles may also be inserted by jetting or partial
augering.

Leads provide free travel of the hammer as the pile penetrates the soil and are on the order
of 6 m longer than the pile to provide adequate space for the hammer and other appurtenances.

Mandrels are used to assist in driving pipe piles. These devices fit inside the pipe and
rest on the baseplate when the pipe is closed-end; they become the pile point for open-end
piles. The mandrel becomes the driving element, which basically drags the pipe down with
it during driving so that the thin pipe shell is not damaged.

Spuds are sometimes used in pile-driving operations to penetrate hard strata or seat the
pile in rock. The spud may be a separate driving device or simply a massive point attached to
the pile, especially for HP piles seated into rock. Seating a driven pile into sloping rock is a
difficult task as the pile may tend to follow the rock slope. This tendency may not be readily
detected without a load test. Special driving points may be required to assist in seating the
point adequately into the rock slope.

Pile hammers are the devices used to impart sufficient energy to the pile so that it penetrates
the soil. Several pile hammers are described in the following paragraphs.

Drop Hammers

Drop hammers are still occasionally used for small, relatively inaccessible jobs. The drop
hammer consists of a metal weight fitted with a lifting hook and guides for traveling down
the leads (or guides) with reasonable freedom and alignment. The hook is connected to a
cable, which fits over a sheave block and is connected to a hoisting drum. The weight is
lifted and tripped, freely falling to a collision with the pile. The impact drives the pile into
the ground. Principal disadvantages are the slow rate of blows and length of leads required
during the early driving to obtain a sufficient height of fall to drive the pile.

Single-Acting Hammers

Single-acting hammers are idealized in Fig. U-Ia. Steam or air pressure is used to lift the
ram to the necessary height. The ram then drops by gravity onto the anvil, which transmits
the impact energy to the capblock, thence to the pile. The hammer is characterized by a
relatively slow rate of blows. The hammer length must be such as to obtain a reasonable
impact velocity (h or height of ram fall), or else the driving energy will be small. The blow
rate is considerably higher than that of the drop hammer. In general the ratio of ram weight
to pile weight including appurtenances should be on the order of 0.5 to 1.0. Table A-2 in the
Appendix gives typical lengths and other useful data.

Double-Acting Hammers

These hammers (Fig. H-Ib) use steam both to lift the ram and to accelerate it downward.
Differential-acting hammers are quite similar except that more control over the steam (or air)
is exerted to maintain an essentially constant pressure (nonexpansion) on the accelerating side
of the ram piston. This increase in pressure results in a greater energy output per blow than
with the conventional double-acting hammer. The blow rate and energy output are usually
higher for double-acting or differential hammers (at least for the same ram weight), but steam
consumption is also higher than for the single-acting hammer. The length may be a meter or
more shorter for the double-acting hammer than for the single-acting hammer with length



ranges on the order of 2 to 4.5 m. The ratio of ram weight to pile weight should be between
0.50 and 1.

When compressed air instead of steam is used with single- or double-acting hammers,
there is the additional problem of the system icing up at temperatures close to freezing.

Diesel Hammers

Diesel hammers (Fig. 17-Ic) consist of a cylinder or casing, ram, anvil block, and simple
fuel injection system. To start the operation, the ram is raised in the field as fuel is injected
near the anvil block, then the ram is released. As the ram falls, the air and fuel compress and
become hot because of the compression; when the ram is near the anvil, the heat is sufficient
to ignite the air-fuel mixture. The resulting explosion (1) advances the pile and (2) lifts the
ram. If the pile advance is very great as in soft soils, the ram is not lifted by the explosion
sufficiently to ignite the air-fuel mixture on the next cycle, requiring that the ram be again
manually lifted. It is thus evident that the hammer works most efficiently in hard soils or
where the penetration is quite low (point-bearing piles when rock or hardpan is encountered)
because maximum ram lift will be obtained.

Diesel hammers are highly mobile, have low fuel consumption (on the order of 4 to 16
L/hr), are lighter than steam hammers, and operate efficiently in temperatures as low as 00C.
There is no need for a steam or air supply generation unit and the resulting hoses. The diesel
hammer has a length varying from about 3.5 to 8.2 m (4.5 to 6 m average). The ratio of ram
weight to pile weight should be on the order of 0.25 to 1.0.

Jetting or Preaugering

A water jet is sometimes used to assist in inserting the pile into the ground. That is, a high-
pressure stream of water is applied at the pile point to displace the soil. This method may be
used to loosen sand or small gravel where for some reason the pile must penetrate to a greater
depth in the material than necessary for point bearing. Care must be exercised that the jetting
does not lower the point-bearing value. Some additional driving after the jet is halted should
ensure seating the point on firm soil.

Preaugering is also sometimes used where a firm upper stratum overlies a compressible
stratum, which in turn overlies firmer material into which it is desired to seat the pile point.
Preaugering will reduce the driving effort through the upper firm material.

For both jetting and preaugering, considerable engineering judgment is required to model
the dynamic pile capacity equations (and static equations) to the field system.

Pile Extraction

Piles may be pulled for inspection for driving damage. Sudden increases of penetration rate
may be an indication of broken or badly bent piles. Pile extractors are devices specifically
fabricated for pulling piles. Double-acting steam hammers may be turned upside down and
suitably attached to the pile for the driving impulse and to a hoisting device (crane) to apply
a pull at least equal to the weight of the hammer and pile. The hammer impacts loosen and
lift the pile, and the crane provides a constant pull to hoist it from the hole. The lower broken
part of a wooden pile (metal piles seldom break) is usually left in place, but may cause further
driving problems.



Vibratory Drivers

Since about 1949 vibratory drivers have been used to insert piles. The principle of the vi-
bratory driver is two counterrotating eccentric weights (Fig. 17-Id). The frequency (ranging
from 0 to about 20 Hz) is readily computed using equations given in Chap. 20. The driver
provides two vertical impulses of as much as 70O+ kN at amplitudes of 6 to 50 mm each
revolution—one up and one down. The downward pulse acts with the pile weight to increase
the apparent gravity force. The pile insertion (also for terraprobing) is accomplished by

1. The push-pull of the counterrotating weights— push (+pile weight) > pull upward
2. The conversion of the soil in the immediate vicinity of the pile to a viscous fluid

Best results using vibratory driving are obtained in cohesionless deposits. Results are fairly
good in silty and clayey deposits. Impulse hammers are used in heavy clays or soils with
appreciable numbers of boulders.

Three principal advantages of the vibratory driver (where soils are compatible) are these:

1. Reduced driving vibrations—the vibrations are not eliminated but they are less than using
impact drivers.

2. Reduced noise.
3. Great speed of penetration—penetration rates of 5O+ mm/s are possible.

At present the ultimate pile capacity Pu for vibration-driven piles can only be estimated
using static pile methods, although Davisson (1970) developed an equation that purports to
estimate the capacity of the patented Bodine Resonant Driver (BRD) used principally by
Raymond Concrete Pile company. Other vibratory drivers currently used include the patented
vibro driver of the L. B. Foster company and a hydraulic-powered device available from
McKiernan-Terry Corporation. The BRD equation (but not for tip on rock) is

Pu = A ( y o
+ / c P Ob^kN) (17-1)

A = 550 ft • lb/s (Fps); 0.746 kJ/s (SI)
B = hammer weight, 22 000 Ib in Fps; 98 kN in SI for Bodine hammers
rp — final rate of penetration, m/s or ft/s
fl = frequency, Hz
SL = loss factor, ft/cycle or m/cycle (see table following)
hp = horsepower delivered to the pile

Loss factor for:
Closed-end pipe HP piles

Soil at pipe tip m/cycle x 10~3 (ft/cycle)

Loose silt, sand, or gravel 0.244 (0.0008) -0.213 (-0.0007)
Medium dense sand or sand 0.762 (0.0025) 0.762 (0.0025)
and gravel
Dense sand or sand and gravel 2.438 (0.008) 2.134 (0.007)



Example 17-1. Use the BRD equation to estimate the dynamic pile capacity on p. 12 of Foundation
Facts [the page following the Davisson (1970) reference]:

hp = 414 Final penetration rp = 240 s/ft = 787.4 s/m = 0.001 27 m/s

Closed-end pipe pile 325 X 4.54 mm wall approximately 30.5 m long and
filled with concrete after driving. Soil is dense coarse sand and gravel
(based on SPT blow count); thus, SL = 2.44 X 10"3 m/cycle from table,
a = 126 Hz.

Substituting, and with Bodine driver, we find

_ 0.746(414) + 98(0.001 27) _
^ " 0.00127 + 126(0.00244) ~ 1 U U U K W

The load test (pipe filled with concrete) indicated P14 = 2450 kN. The pile insertion was terminated
nearly on rock for which no SL was given, and one may debate if that action affects the foregoing
results. In pile driving, however, piles are often driven until the point reaches approximate refusal—
this practice will always affect the final penetration rate used in Eq. (17-1). It is expected that the
computed capacity of friction piles compared to load tests might be in closer agreement.

17-3 THE RATIONAL PILE FORMULA

Dynamic formulas have been widely used to predict pile capacity. Some means is needed
in the field to determine when a pile has reached a satisfactory bearing value other than by
simply driving it to some predetermined depth. Driving the pile to a predetermined depth may
or may not obtain the required bearing value because of normal soil variations both laterally
and vertically.

It is generally accepted that the dynamic formulas do not provide very reliable predictions.
Predictions tend to improve by using a load test in conjunction with the equation to adjust
the input variables. Predictions by persons with experience in a given area and using certain
equipment and with a good knowledge of the input variables of weights, etc., are often con-
siderably better than many of the predictions found in the literature where authors use the
reported results of other writers in statistical types of analyses.

The basic dynamic pile capacity formula, termed the rational pile formula, will be derived
in the following material. Nearly all the dynamic pile formulas currently used are based on
this equation—generally by simplifying certain terms. The rational pile formula depends
upon impulse-momentum principles.

For the derivation of the rational pile formulas, refer to Fig. 17-2 and the following list of
symbols. Applicable symbols from this list are used also with the several pile formulas of the
next section and in Table 17-1. The units for the symbol are in parentheses; e.g., (FTL) is the
product of variables with units of force, time, and length.

A = pile cross-sectional area (L2)
E = modulus of elasticity (FL"2)

eh = hammer efficiency
Ef1 = manufacturer's hammer-energy rating (FL)
g = acceleration of gravity (LT"2)
h = height of all of ram (L)



/ = amount of impulse causing compression or change in momentum (FT)
k\ = elastic compression of capblock and pile cap and is a form of PnLlAE (L)
&2 = elastic compression of pile and is of a form PnLfAE (L)

£3 = elastic compression of soil, also termed quake for wave equation anal-
ysis (L)

L = pile length (L)

m = mass (weight/g) (FT2L"1)
Mr = ram momentum = mrv[ (FT)

n = coefficient of restitution
nl = amount of impulse causing restitution (FT)
Pn = ultimate pile capacity (F)
s = amount of point penetration per blow (L)

vbe = velocity of pile and ram at end of compression period (LT ~ ])
Vi = velocity of ram at the moment of impact (LT" l)
vpr = velocity of pile at the end of period of restitution (LT"1)
vrr = velocity of ram at the end of the period of restitution (LT"x)
Wp = weight of pile including weight of pile cap, all or part of the soil "plug,"

driving shoe, and capblock (also includes anvil for double-acting steam
hammers) (F)

Wr = weight of ram (for double-acting hammers include weight of casing) (F)

At impact, the ram momentum is

Figure 17-2 Significance of certain terms
used in the dynamic pile-driving equations.

Position of pile just as
hammer impacts on cap

End of impact

y = s + elastic compression of partscap



TABLE 17-1

Several dynamic pile formulas (use any consistent set of units)
Many (of the more progressive) building codes no longer specify the pile-driving equation(s) to use
to estimate pile capacity. A suitable equation is left to the designer (who may have to justify it to
the local building official). Several other dynamic formulae are given in Young (1981).

Canadian National Building Code (use SF = 3) as used in Table 17-5 but C3 simplified to that shown
here

Note that product of C2CT1 gives units of s.

Danish formula [Olson and Flaate (1967)] (use SF = 3 to 6)

(units of s)

Eytelwein formula (use SF = 6) [Chellis (1961)]

P» = s + Ch(Wp/Wr) C = 2.5 mm = 0.1 in.

Gates formula [Gates (1957)] (use SF = 3)

eh = 0.75 for drop and 0.85 for all other hammers

Janbu [see Olson and Flaate (1967), Mansur and Hunter (1970)] (use SF = 3 to 6)

Use consistent units to compute P11. There is some disagreement of using eh since it appears to be in Q ;
however, a better statistical fit tends to be obtained by using en as shown.



TABLE 17-1

Several dynamic pile formulas (use any consistent set of units) (continued)

Modified ENR [ENR (1965)] formula (use SF = 6)

Hw][^ ] '-«—a,-
AASHTO [(199O)1; Sec. 3.6.2 p. 251] P14 < 1 and SF = 6; primarily for timber piles]

2KWr + Arp) C = 2.5 mm = 0.1 in.

For double-acting steam hammers take Ar = ram cross-sectional area and p = steam (or air) pressure;
for single-acting and gravity, Arp = 0. Use consistent units. Take eh = 1.0. The above or other formulas
may be used for steel and concrete piles. Set s = penetration of last 10 to 20 blows for steam hammers.

Navy-McKay formula (use SF = 6)

= ehEh = W1

U 5(1+0.3Ci) Wr

Pacific Coast Uniform Building Code (PCUBC) (from Uniform Building Code,2 Chap. 28) (use SF = 4)

_ ehEhCx _ Wr + kWp

^ S + C2
 C l Wr + Wp

k = 0.25 for steel piles

= 0.10 for all other piles

P L
C2 = -£=r (units of s)

In general start with C2 = 0.0 and compute value of Pu; reduce value by 25 percent; compute C2 and a
new value of P14. Use this value of Pu to compute a new C2, etc. until Pu used = Pu computed.

1AASHTO (1990) allows any Department of Transportation-approved pile formula in addition to this one.
2Not in 1976 and later UBC editions; it can still be used, just not in code.

At the end of the compression period the ram momentum is

Mr=^-I
g

with a velocity of

If we assume at this instant the pile momentum Mp = /,the pile velocity is

Vbc = j f / (b)
VVp

Next, if we assume that the pile and ram have not separated at the end of the compression
period, the instantaneous velocities of the pile and ram are equal; therefore, combining equa-
tions (a) and (Z?), we have

(C)



At the end of the period of restitution, the momentum of the pile is

W
I + nl = — % r (d)

8

and substituting Eq. (c) for / and solving for the pile velocity, we see that

Wr + nWr

At the end of the period of restitution, the momentum of the ram is

*d!< - / - « / = * * = if)
8 8

Substituting for / and solving for vrr, we obtain

Wr -nWp
Vrr = Wr+Wp

Vl (8)

The total energy available in the pile and ram at the end of the period of restitution is

(\mv2
pr)vi\Q + (\mv2

r)V2im

and substituting (e) for vpr and (g) for vrr and with some simplification one obtains

Wr 2 ^ Wp 2 u,,
W' + n2WP

J-/rr + ^/Pr = ehWrh ^ + ^ (h)
If the system were 100 percent efficient, the ultimate load P11 multiplied by the point dis-
placement s should be

Pus = ehWrh

The instant pile top displacement is s + k\ 4- &2 + &3, of which only s is permanent, and the
actual input energy to the pile system is

ehWrh = Pu(s + k{+ k2 + k3) = Pu(s + C)

Replacing the equivalent energy term with the equivalent from equation (Zz), we find

_ ehWrhWr + n2Wp

Cummings (1940) correctly points out that Eq. (h) already includes the effects of the losses
associated with kc, however, the form of Eq. (/) is generally accepted and used.

The term ki can be taken as the elastic compression of the pile PUL/AE with the corre-
sponding strain energy of P2

UL/2AE.
Rewriting Eq. (/) and factoring out \ from all the k terms for strain energy, the Hiley

(1930)1 equation is obtained:

_ [ ehWrh TXWr + JW,]
" |_5 +'$(*! + *2 + *3)]L Wr + Wp J

 V

Cummings (1940) indicates that Redtenbacher (ca. 1859) may be the originator of this equation.



For double-acting or differential steam hammers, Chellis (1941, 1961) suggested the follow-
ing form of the Hiley equation:

p -\ g*£" i r ^ + " 2 ^ ! (17.3)
" [s+^kl + k2 + k3)\[ W + Wp \ (Ui)

According to Chellis, the manufacturer's energy rating of Ey1 is based on an equivalent ham-
mer weight term W and height of ram fall h as follows:

Eh = Wh = (Wr + weight of casing)/*

Inspection of the derivation of the Hiley equation indicates the energy loss fraction should be
modified to W as shown in Eq. (17-3) also.

A careful inspection of the Hiley equation or Eq. (/), together with a separation of terms,
results in

Energy in = work + impact loss + cap loss + pile loss + soil loss

ehWrh = Pus + euWh^1'^ + Pukx + Puk2 + Puk3

Wp + W r

Best results from the dynamic formula as a pile capacity prediction tool are obtained when a
careful and separate assessment is made of the several loss factors.

There may be some question of the correctness of computing the strain energy k2 based on
a gradually applied Pu as P]1LlIAE when an impulse-type load is actually applied for which
the strain energy is P\L/AE. Use of the given equation form seems to give an adequate
estimate of the ultimate pile capacity; however, we might note that the k2 term would not
produce a great difference in Pu whether used as k2 or the more correct value of Ic2Jl.

It is necessary to use consistent units in Eqs. (17-2) and (17-3) so that the value of Pu is
obtained in the force units contained in Wr. For example, if h = ft and s = in., it is necessary
to multiply by 12; if h = m and s = mm, it is necessary to multiply by 1000 to obtain the
correct value of Pu.

17-4 OTHER DYNAMIC FORMULAS
AND GENERAL CONSIDERATIONS

All of the dynamic pile-driving formulas except the Gates formula shown in Table 17-1 are
derived from Eq. (17-2) or (17-3) by using various assumptions. The assumptions usually
reflect the author's personal experiences and/or attempts to simplify the equation for practi-
cal use. Since interpretation of user experience is highly subjective and coupled with wide
variability of soils and hammer conditions, the dynamic formulas do not have very good corre-
lation with field experience—especially when used by others in different geographical areas
or for statistical comparisons. Statistical comparisons are especially difficult owing to the
scarcity of realistic input into the equations of hammer efficiencies, and weights of hammer
and driving equipment such as caps, capblocks, and driving points and any soil "plug." For
example, Chellis (1961) suggested that pile tips founded on rock or relatively impenetrable
material should use a value for pile weight of Wp/2. This can make some, even considerable,
difference in the loss factor. Also, where is the breakpoint for the factor 2? It would appear
that for medium dense materials a factor of 0.75 might be used, gradually increasing to 1.00
for friction piles. Likewise, if the user does not adjust the Hiley equation to include correctly
the ram and/or applicable portions of casing and anvil weights, considerable discrepancies



can result. Finally, the equations are heavily dependent on hammer efficiency, which must
be estimated and which can change during driving operations on the same job.

If we define the impact term in the Hiley equation as

= Wr + H2Wp
1 Wr + Wp

and rearrange it to

1 + Yl1WrIWp
C l 1 + WrIWp

and take n2WrIWp = 0, we obtain

1 1 + WrIWp

which becomes the starting point for the several formula factors.
The Engineering News (commonly, but incorrectly termed the ENR) formula was pub-

lished in the Engineering News ca. 1888 (which merged with McGraw-Hill in 1917 to be-
come the Engineering News-Record) and was developed for wood piles using a drop hammer
with an approximate safety factor (SF) of 6. The formula has been modified for different driv-
ing equipment and is probably the most used of the several "dynamic" pile formulas. It was
obtained by lumping all the elastic compression into a single factor C = 25 mm (1 in.) with
C\ = 1 to obtain for drop hammers (length units of s and h must be the same)

P. - £g <n-4>
and for steam hammers with C = 2.54 mm (0.1 in.) obtain

_ ehWrh

Equations (17-4) and (17-5) will be called the ENR formulas.2 A more recent ENR modifi-
cation (and approximately as used in Table 17-5) is

p _(ehWrh\(Wr + niWp\
P"-{s + c)[Wr + Wp j

 ( 1 7 6 )

Values of k\ for use in Eq. (17-2) or (17-3) are presented in Table 17-2. Values of hammer
efficiency depend on the condition of the hammer and capblock and possibly the soil (espe-
cially for diesel hammers). In the absence of known values the following may be taken as
representative of hammers in reasonably good operating condition:

Type Efficiency eh

Drop hammers 0.75-1.00
Single-acting hammers 0.75-0.85
Double-acting or differential 0.85
Diesel hammers 0.85-1.00

2The author will refer to these formulas as the ENR since this is its commonly used designation in nearly all of the
technical literature on pile driving.



TABLE 17-2
Values for k\—temporary elastic compression of pile head and cap*
For driving stresses larger than 14 MPa use k\ in last column

Driving stresses PIA on pile head or cap, MPa (ksi)

Pile material 3.5(0.5) 7.0(1.0) 10.5(1.5) 14(2.0)

&i, mm (in.)

Steel piling or pipe
Directly on head 0 0 0 0
Directly on head of timber pile 1.0(0.05) 2.0(0.10) 3.0(0.15) 5.0(0.20)

Precast concrete pile with
75-100 mm packing inside cap 3.0(0.12) 6.0(0.25) 9.0(0.37) 12.5(0.50)

Steel-covered cap containing wood
packing for steel HP or pipe piling 1.0 (0.04) 2.0 (0.05) 3.0 (0.12) 4.0 (0.16)

5-mm fiber disk between two
10-mm steel plates 0.5 (0.02) 1.0 (0.04) 1.5 (0.06) 2.0 (0.08)

*AfterChellis(1961).

Chellis (1961) suggested increasing the efficiency 10 percent when using Eq. (17-2) or
(17-3) to compute the driving stresses. Since the reliability of the equations is already with
considerable scatter both (+) and (-), it does not appear necessary to make this adjustment.

Table 17-3 presents representative values of the coefficient of restitution n. Again the ac-
tual value will depend upon the type and condition of the capblock material and whether a
pile cushion is used with concrete piles.

The term ki is computed as PUL/AE, and one may arbitrarily take the /^ term (quake) as

&3 = 0.0 for hard soil (rock, very dense sand, and gravels)
= 2.5 to 5 mm (0.1 to 0.2 in.)

Equation (17-2) and following must be adjusted when piles are driven on a batter. It will be
necessary to compute the axial pile component of Wrh and further reduce this for the friction
lost due to the normal component of the pile hammer on the leads or guide. A reasonable
estimate of the friction coefficient/ between hammer and leads may be taken as

/ = tan0 = 0.10

TABLE 17-3

Representative values of coefficient
of restitution for use in the dynamic
pile-driving equations*

Material n

Broomed wood 0
Wood piles (nondeteriorated end) 0.25
Compact wood cushion on steel pile 0.32
Compact wood cushion over steel pile 0.40
Steel-on-steel anvil on either steel or concrete pile 0.50
Cast-iron hammer on concrete pile without cap 0.40

•After ASCE (1941).



For small wood piles on the order of 100 to 150 mm used to support small buildings on
soil with a water table at or very near the ground surface Yttrup et al. (1989) suggest using

PU = ^ (17-7)

in kN when W = kN; h, s = m. This formula is applicable for drop hammers mounted on
small conventional tractors.

PLUG WEIGHT. Open-end pipe piles always cut a soil plug. The plug usually does not fill
the pipe when observed from above since it is much compressed both from vibration and
from side friction on the interior walls. The plug weight can be estimated as

Wpiug = y' X Vpipe (17-8)

where Vpipe = internal pipe volume. This weight may be critical when the pile is nearly
driven to the required depth since it is a maximum at that time.

HP piles will also have a plug of unknown dimensions; however, it would not be a great
error to assume the plug length Lpiug is one-half the embedded length of the pile (when blow
counts are taken for pile capacity or for penetration resistance). The plug weight (refer also
to Fig. 16-lie) in this case is

Wplug = 0.50Lpile XbfXdXy' (17-8«)

Equation (H-Sa) includes the web tw and flange thickness tf in the soil volume but the plug
length is an estimate, so the computation as shown is adequate.

Use effective unit weight y' for the soil, as the water will have a flotation effect for both
the soil and the pile.

The "pile" weight should be the actual weight Wp plus plug, or

Wp = Wp + Wplug (17-9)

for use in any of the equations given that uses a pile weight term Wp.
The plug weight was not included in the past because few persons ever checked the deriva-

tion of the equations to see how the pile weight term was treated. Do not include the plug
weight unless the equation you are using includes the pile weight in a term similar to the
second term in the Hiley equation.

Example 17-2. Estimate the allowable pile capacity of test pile No. 1 reported by Mansur and
Hunter (1970, Tables 2, 4, 5, and 6) by the ENR, Janbu, Gates, and Hiley equations (see Table
17-1) and Eq. (17-3). The data have been converted to SI for this edition. (The example in Fps is in
the previous edition.)

Other data:

Hammer = Vulcan 140C Wr = 62.3 kN (Table A-2 of Appendix)
Hammer Ef1 = 48.8 kN • m eh = 0.78 (efficiency table, this section)
Pile = 305 mm pipe A = 11 045 mm2 (incl. instrumentation)
PiIeZ7, = 16.76 m E = 200000MPa yst = 77.0 kN/m3

Pile set s = 305/16 =19 mm/blow (given in reference)

Pile cap + capblock = 7.61 kN
Pile driven closed end—no plug
Load test: Pu = 1245.4 kN



Solution.

a. By the ENR equation [Eq. (17-5)] and using SF = 6:
Make a direct substitution:

_ ehWrh 0.78X48.8X1000 t _ . , M

^ = 7^254 = I9TZ54 = 1 2 4 5 k N

Pa = 1^1 = 295 kN
6

b. By the Janbu equation (see Table 17-1) and average SF = 4.5:

Weight of pile (no plug) = Ap X yst X Lp

11 045
= i i ^ i x 77.0 x 16.76 = 21.86 kN

10°

AE = 11 045 X 0.200 = 2209 MN (the 106 terms cancel)

Cd = 0.75 + 0.15 X ^ = 0.75 + 0.15 X 7 ^ - = 0.80
Wr 63.3

Making the necessary substitutions, we find

_ ehEh _ 0.78X48.8 _
' " " U " 1.93X0.019 - 1 U ' 5 8 k N

c. By the Gates equation (see Table 17-1) with SF = 3:

P11 = a J^E~h(b - logs) = 104.5 7 ^ ( 2 . 4 - log5)

Making substitutions, we obtain

Pu = 104.5 V0.78 X 48.8 (2.4 - log 19) = 754 kN

Pa = 1 ^ = 251 kN

d. By the Hiley equation [Eq. (17-3)] with SF = 4:

_ [ ehEh l r w + ^ w , !
"̂ [J + l(Jfc1 + ifc2 + )k3)J[ W + Wp J ( 1 / 3 )

W = weight of hammer = 125 kN (see Table A-2 of Appendix)
Let us estimate fci:



From Table 17-2 we have

3.0 10.5
5.0 14.0

Interpolating, we obtain k\ = 3 . 5 mm.
The term k$ = 2.5 mm [given in text following Eq. (17-6)]. Then we obtain ks by trial. As a
first trial, assume P14 = 900 kN:

P L 900 X 16 76
k2 = ~-=r = '— = 6.8 mm (Note: The 10" terms cancel as used.)

s = 1 9 mm (set per blow and given) n = 0.5 (Table 17-3)

Substituting values into Eq. (17-3) (1000 converts kN • m to kN • mm), we obtain

_ I" 0 . 7 8 x 4 8 . 8 x 1 0 0 0 If 125 + Q.52 x 21.861

" ~ [ 19 H- ^(3.5 + 6.8 + 2.5)J[ 125 + 21.86 J

= ^ | ^ 1 x 0.888 = 1331 kN (rounded)
25.4

Since we used P14 = 900 kN and computed 1331 kN, we must revise ks to something between
900 and 1331. Try P11 = 1260 and by proportion obtain k2 = 6.8x1260/900 = 9.5 mm; again,
substituting, we have

Pu = 1 9
Q

+
7 ^ ^ 8

+
8

9
X

5 ^ Q
2

Q
5 X 0.888 = 1264 kN ~ 1260 kN used (O. K.)

Use P14 = 1260 kN

Pa = 1260/4 = 315 kN

Summary.

Method PM,kN Pfl, kN

ENR 1245 295
Janbu 1038 231
Gates 754 251
Hiley 1260 315
Measured 1245

The Gates value of Pa for design would be recommended. It was developed for this range of pile
capacities. It does not, however, give the best load test value. Both the ENR and Hiley equations give
better values for this case. The ENR and Gates equations have the advantage of simplicity. From
this spread of Pu it is evident that one should always use more than one equation to see if there are
large differences. The agreement of the ENR and Hiley equations may be as much coincidence as
equation accuracy.

Example 17-3. Estimate the ultimate pile capacity Pu of test pile No. 6 (HP pile) from the Mansur
and Hunter (1970) reference. Use the ENR, Janbu, and PCUBC equations. The original Fps data



were soft-converted to SI by the author. Given:

HP360 X 109(14 X 73) (see Table A-I of Appendix for pile section data)
Capblock = 5.4 kN (1220 Ib) Pile length L = 12.18 m (40 ft)
Hammer: Vulcan 80C Eh = 33.12 kN • m y' = 9.8 kN/m3

Wr = 35.58 kN (see Table A-2 of Appendix)
Pile weight without plug = 109 X 9.807 X 12.18/1000 = 13.01 kN
Pile weight + capblock = Wp = 13.01 + 5.4 = 18.4 kN
Pile weight with plug = 18.4 + 0.5 X 12.18 X 0.346 X 0.371 X 9.8 = 26.2 kN
AE = 3 313 000 kN Take eh = 0.84
Set = 17 blows/ft -» 18 mm/blow Load test: 1245 kN

Solution,

a. By the ENR equation (Eq. 17-5), we can directly substitute C = 0.1 in. = 2.5 mm = 0.0025
m, s = 18 mm = 0.018 m, to find

b. By the Janbu equation in Table 17-1 (but we will not use plug), we find

d = 0.75 + 0 . 1 5 ^ = 0.75 + 0 . 1 5 - ^ r = 0.83
Wf JJ . JO

ehEhL 0.84X33.12X12.18
AEs2 3.313X106X0.0182

K = C l̂ + f^j = 0.83̂1 + f^§Y L805

P11=
6J^= Q-J* x 3 ^ = 856 kN < 1245 measured

kus 1.805 X 0.018

c. By the PCUBC formula of Table 17-1, and using a pile plug, based on computation methods (a)
and (Z?), Pu - 900 kN.

Also use k = 0.25 (from Table 17-1) to find

r PUL 900X12.18 n _ _ _ 1
C2 = -AE = 3.313 x 106 -0.00331m

_ / ehEh \(Wr + kWp\ _ / 0.84X33.12 \/35.58 + 0.25 X 26.2\
u ~ [s +C2)[Wr+ Wp ) " \0.018 + 0.00331 ) \ 35.58 + 26.2 J

= 1305.5 x 0.682 = 890 kN < 1245

Since the 900 kN assumed is sufficiently close to the 890 kN computed, we will use Pu =
89OkN.

Summary,

Pu,kN

ENR 1357
Janbu 856
PCUBC 890
Measured 1245



The use of a soil plug for the PCUBC formula reduces the computed value from about 960 to
890 but appears (when compared with the other methods) to give a more reasonable value—or at
least as good a value as not considering the plug.

17-5 RELIABILITY OF DYNAMIC PILE-DRIVING
FORMULAS

Many attempts have been made to improve the reliability of the dynamic formulas. A most
comprehensive pile-testing program was undertaken under the direction of the Michigan
State Highway Commission (1965). In this program 88 piles were driven and tested as shown
in Table 17-4 using the following hammers in the driving operations:

Vulcan No. l,50C and 80C
McKiernan-Terry DE30 and DE40
Raymond 15-M
Link-Belt 312 and 520
DelmagD12andD22

From using the various dynamic formulas based on pile-load tests this study found that
the true safety factors are as indicated in Table 17-5. The table indicates reasonable values
for the Gates formula in the 0- to 1800-kN load range (range in which the formula was de-
rived). The modified Engineering News-Record [Eq. (17-6)] formula is reasonably valid over
the entire range of load tests. It was proposed from these tests that the modified Engineering
News-Record formula as given in Eq. (17-6) be further modified as shown in Table 17-1. This
study also brought to light that the amount of energy actually input to the pile for penetration
is considerably different from the manufacturer's rating. The actual energy input was heavily

TABLE 17-4
Summary of piles driven in the Michigan State Highway Commission (1965) test
program

Dimensions, Weight Manufactured Approx. length Number
Pile type mm kN/m by range, m driven

HP sections CBP124 305 flange 0.773 US Steel 13.4-26.8 48
(HP 12 X 53)

305mm OD pipe piles 6.35 wall 0.458 Armco 13.4-54.3 16
(mandrel-driven) 5.84 wall 0.433 6

4.55 wall 0.330 11

Monotube piles, fluted 305 nominal F 0.286 Union Metal 16.8-24.4 5
tapered, F 12-7 (9.1 m N 0.358 Manufacturing
taper section) and an Co.
N 12-7 entension

Step-taper shell with 241OD tip Varies Raymond 17.7-20,4 2
2.4 m sections International



TABLE 17-5
Summary of safety factor range for equations used
in the Michigan Pile Test Program

Upper and lower limits of SF = Pu/Pd*
Range of PU9 kips

Formula 0 to 900 900 to 1800 1800 to 3100

Engineering News 1.1-2.4 0.9-2.1 1.2-2.7
Hiley 1.1-4.2 3.0-6.5 4.0-9.6
Pacific Coast Uniform Building Code 2.7-5.3 4.3-9.7 8.8-16.5
Redtenbacher 1.7-3.6 2.8-6.5 6.0-10.9
Eytelwein 1.0-2.4 1.0-3.8 2.2-4.1
Navy-McKay 0.8-3.0 0.2-2.5 0.2-3.0
Rankine 0.9-1.7 1.3-2.7 2.3-5.1
Canadian National Building Code 3.2-6.0 5.1-11.1 10.1-19.9
Modified Engineering News 1.7-4.4 1.6-5.2 2.7-5.3
Gates 1.8-3.0 2.5-4.6 3.8-7.3
Rabe 1.0-4.8 2.4-7.0 3.2-8.0

*PM = ultimate test load.
Pd = design capacity, using the safety factor recommended for the equation (values range from

2 to 6, depending on the formula).

dependent on hammer base, capblock, pile cap, and pile cap-pile interfacing. Energy input/E^
was found to range from about 26 to 65 percent—averaging less than 50.

Olson and Flaate (1967) performed a statistical analysis on some 93 other piles and con-
cluded that the Hiley equation [Eq. (17-3)] and the Janbu and Gates formulas (Table 17-1)
produced the least deviations and highest statistical correlations. This analysis was based
largely on data reported in the literature; thus, some considerable estimating of pile weight,
average penetration, pile cap weight, capblock weight, and condition (for n and use of a cush-
ion for concrete piles) was required. The hammer condition, which would be particularly
critical in obtaining either en or En, was generally not known.

An earlier statistical analysis of 30 piles of timber, steel, and concrete was presented by
ASCE (1946, p. 28) from a previous discussion of a progress report [ASCE (1941)], which
prompted Peck (1942) to propose a pile formula of Pu = 810 kN (91 tons). For the reported
data it was statistically as good as any of the several dynamic equations used for computing
the pile capacity.

A major problem with using statistical analyses primarily based on piles reported in tech-
nical literature is that although one can obtain a large data base it is not of much value.
The reason is that there are not sufficient data given for the reader to make a reliable judg-
ment of significant parameters to consider. Where the person making the analysis uses a
self-generated data base (as in the case of Gates) results are generally more reliable.

17-6 THE WAVE EQUATION

The wave equation is based on using the stress wave from the hammer impact in finite-
element analysis. This method was first put into practical form by Smith (1962) and later by
others. A more detailed discussion of the principles and a reasonably sophisticated computer
program are readily available [Bowles (1974a) or B-27] and will not be repeated here.



The wave equation has particular application for piling contractors in determining pile
drivability with available equipment in advance of project bidding. It may also be used to es-
timate pile-driving stresses but does not have much application in prediction of pile capacity.

According to a pile practice survey reported by Focht and O'Neill (1985) the wave equa-
tion was used by about 30 percent of the practitioners at the time of the survey with most
usage in the United States and Canada. The survey did not include contractors, so their usage
is unknown. This lag between state-of-art and the state of practice is typical and results, in
this case, partly from requiring both a computer and a computer program [although the lat-
ter may not be a valid reason, since this textbook included a program in 1968 as well as in
Bowles (1974)]. Programs by others have been available for purchase for some time as well.

Uses of the Wave Equation

The wave equation is usually used to investigate the following problems:

1. Pile capacity. A plot of P14 versus set is made and the load test plotted on the curve to
obtain the correct curve.

2. Equipment compatibility. Solutions are not obtained when the hammer is too big or too
small for the pile.

3. Driving stresses. Plots of stress versus set can be made to ensure that the pile is not over-
stressed.

For the discussion to follow, refer to the list of symbols:

A = cross-sectional area of pile

Cm = relative displacement between two adjacent pile elements

D9Jn = element displacement two time intervals back
D'm = element displacement in preceding time interval DT (previous DT)

Dm = current element displacement

Dsm = plastic ground displacement
DT = time interval (At on Fig. 17-3c)
Ep = modulus of elasticity of pile material
Fm = element force = CmKm

Fam = unbalanced force in element causing acceleration (F = ma)

g = gravitation constant
Ji = damping constant; use Js for side value, Jp = point value

Km = element springs = AE/L for pile segments
K'm = soil springs = /?/quake
Li = length of pile element (usually constant)

Rm = side or point resistance including damping effects
R'm = amount of pile resistance (fraction of R14) estimated to be carried by each element

including the pointy'; for 100 percent of Ru on pointy, the values of R^ through Ru
of Fig. 17-36 are zero, and Rn = Rw Usually Rm of the first pile element is taken
as zero for any assumed distribution of side and point resistance.

Ru = assumed ultimate pile capacity (same as Pu used previously)



(a) (b)

Figure 17-3 Formulation of pile into a dynamic model to solve the wave equation [After Smith (1962)].

t = current instant in time = number of iterations X DT
vm = velocity of element m at DT
v'm = velocity of element m at DT - 1

Wm = weight of pile segment m

A pile is formed into a set of discrete elements as shown in Fig. 17-3. The system is then
considered in a series of separate time intervals DT chosen sufficiently small that the stress
wave should just travel from one element into the next lower element during DT. Practically,

K12 = Rp = point resistance

Forces on element m

Ram
Ram
Wx

Capblock

Pile
cap

Cushion
if used

Pile

K2 - "Spring" for capblock;
its small weight
is neglected.

Pile cap

First pile
segment



this time choice is not possible, and DT is taken as a value that usually works, as in the
following table:

Element material Length, m Trial DT, s

Steel 2.4-3.1 0.00025
Wood 2.4-3.1 0.00025
Concrete 2.4-3.1 0.00033

For shorter lengths, DT should be made correspondingly smaller. The actual time DT can be
approximately computed as

DT = C 1^tL9 s
V AEPS

where C is 0.5 to 0.75; L1 = element length; g = 9.807 m/s2 (in SI).
The finite-element form of the differential equation used in the wave analysis is

Dm = 2D'm -D'm + ^ ( D T ) 2 (17-10)

It is not necessary to solve this equation directly, however, since the items of interest for each
assumed value of ultimate pile capacity Pu are these:

1. Forces in each pile segment
2. Displacement (or set) of the pile point

The instantaneous element displacement is computed alternatively as

Dm = D'm + i;m(DT) (a)

With the instantaneous element displacements, the relative compression or tension movement
can be computed between any two adjacent elements as

Cm = Dm-Dm+l (b)

The force in segment m is

Fm = Cm ( — j = CmKm (C)
\ L Im

The soil springs are computed as

The side or point resistance term is obtained using damping with the side or point value of J
and K1 as appropriate:

Rm = (Dm - Dsm)Km(l + Jvm) (*)

The accelerating force in segment m is obtained by summing forces on the element to obtain



The element velocity is computed as

vm = v'm + % ^ ( D T ) (g)

The wave equation requires the following computation steps:

1. Compute the displacements of each element in turn using Eq. (a) and consistent units. At
DT = 1 there is only a displacement in element m = 1; at DT = 2 there are two dis-
placements; at DT = 3 there are three displacements; DT = m computes displacements
in all m pile elements.

2. Compute the plastic ground displacements Dsm. Values will be obtained only when Dm >
quake or elastic ground displacement, i.e.,

Dsm = Q-Dm (butDsm>0)

This step requires two subroutines—one for the point element and one using a loop for all
the other pile elements.

3. Compute side and point resistance Rm (use p instead of m for point) using Eq. (e). Use
Js = side damping for all except the point element; use Jp = point damping for point
element. This requires one equation in a DO loop and a separate point equation.

4. Compute the spring compression in each element Cm using Eq. (b).

5. Compute the forces in each element using Cm and the spring constant AE/L as Eq. (c).
Forces in the capblock and pile cap are computed separately using subroutines because
these elements are not usually carrying tension and because of restitution with the dissim-
ilar materials in the capblock and cap cushion (if used).

6. Compute the velocity of each element using Eq. (g).

7. Set the computed Dm and vm into storage and reidentify as one time interval back (i.e.,
become D'm and v'm so new values can be computed for Dm and vm for the current (new)
DT).

8. Repeat as necessary (generally not less than 40 and not more than 100 iterations unless a
poor value of DT is chosen or the pile-hammer compatibility is poor) until
a. All the velocities become negative, and
b. The point-set value becomes smaller than on previous cycles(s).

The wave equation analysis requires input data as follows:

a. Height of ram fall and ram weight P (obtain from tables such as A-2). The height is either
given or back-computed as h = Eh/Wr. This is needed to obtain the velocity of the pile
cap at DT = 1 (instant of impact), which is computed as

vi = Jeh{2gh)

b. Weight of pile cap, capblock, pile segments, driving shoe, and modulus of elasticity of
pile material.

c. Values of capblock and pile cushion spring constants. Table 17-6 gives values of modulus
of elasticity E for several materials used for these elements for computing the spring as
K = AE/L. Use Table 17-3 for coefficient of restitution.



TABLE 17-6

Secant modulus of elasticity values
for several capblock and pile-
cushion materials*
(Approximate A = 12 in. or 30 cm square
and L=A unless other data are available to
compute spring constant of AEIL.)

Material E, ksi E, MPa

Micarta 450 3100
Hardwood, oak 45 310
Asbestos disks 45 310
Plywood, fir 35 240

Pine 25 170
Softwood, gum 30 205

*Data from Smith (1962) and Hirsch et al. (1970).

d. Soil properties:
Quake (same as £3 used earlier)
Point damping Jp (PJ in computer program)
Side damping Js (SJ in computer program)—usually about Jp/3
Sovinic et al. (1985) performed a number of load tests on pipe piles driven open-ended

and concluded that the soil plug reduces the point and side damping values on the order of
Jp/5 and Js/5. Although they did not test any HP piles, it would be reasonable to apply a
reduction for those as well—but not nearly so large. Smith (1962) initially did not consider
soil plugs; he used an HP310 X 79 (HP12 X 53) pile as an example, but most of the
pipe piles considered were apparently driven closed-end—some were mandrel-driven. It
is quite possible, however, that the original Smith HP pile example was for illustration of
the method and not one where there was a load test to compare with the computed capacity
by the wave equation analysis.

Typical values (no plug) for quake and for both Q and Jp (use Js = Jp/3) are as follows:

Quake Damping constant Jp*

Soil in. mm s/ft s/m

Sand 0.05-0.20 1.0-5.0 0.10-0.20 0.33-0.66
Clay 0.05-0.30 1.0-8.0 0.40-1.00 1.30-3.30
Rock > 0.20 > 5.0

* Reduce damping constants when there is a soil plug.

e. Estimate of percentage of the ultimate load Pu carried by the pile point (0 to 100 percent).
In general, no pile carries 100 percent of the load on the point, and one should not use more
than 80 to 95 percent on the point. Placing 100 percent of the load on the point produces a
discontinuity in computations, since side load from skin resistance will include damping
as shown in Eq. (/), with no side resistance K'm = 0.0.



Plots of Pu versus blows per centimeter (cm) (or inch) are made by assuming several
values of P11 and using the wave equation computer program to obtain the set. The blows per
centimeter Af is obtained as

N=1-
S

For any curve the percentage of Pu assumed to be carried by the pile point is held constant
as, say, 25, 50, 75, 95 percent.

Plots of l/s (or AO versus driving stress are obtained for any given Pu by obtaining from the
computer output the maximum element force and the corresponding point set for some value
of DT. Several other values of maximum element force (not necessarily in the same element)
and set at other DTs are also selected so that enough points are obtained to draw a curve. This
curve is somewhat erratic, owing to the mathematical model, and must be "faired" through
the origin, since it is usually not possible to obtain l/s values as low as 0.5,1.0 and 1.5 or 2.0.
In the region of large l/s it is evident that the curve will approach some asymptotic value of
driving stress. Curves of Pu versus blows per centimeter and driving stress versus blows per
centimeter are shown in Fig. 17-4.

Figure 17-4 Output from the wave equation used to plot curves of R11 = Pu versus 1/set and driving stresses versus 1/set
for field use and using the pile data shown on the figure. It is necessary to use cm units so that the blow/cm values are > 1, i.e.,
1/2.5 = 0.4 but 1/0.25 = 4 and can be plotted.

Pile data = HP 360x 109
L = 12.16 m; 8 elements
E = 200 000MPa; A = 0.0139m2

Ram « 33.58; h = 0.93 m; eh = 0.84
Q = 2.5 mm; Jp = 0.48; Js = 0.16 = Jp/3
Capblock = 300000 kN/m; e = 0.80
No drive point or cushion
Cap wt. = 6.67 kN; DT = 0.00025s

Blows/cm

(a) Plot of P11 (assumed values) versus blows/cm (or 1/set, cm) for several assumed point values.

Pu = 1000 kN; 0.50P on point

Blows/cm

(b) Plot of driving stress versus blows/cm (or 1/set, cm) for the assumed value of
Pu = 1000 kN at At values selected from the computer printout for that Pu.
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Figure 17-5 Plot of forces computed on pile elements by the wave equation using a HP310 X 79 pile. The plot
is shown for selected time intervals. The purpose of the figure is to show in a somewhat quantitative manner the
force distribution down the pile at the selected time intervals shown. The plot had to be reduced for text usage and
is too small to obtain actual force values.

Traces of several stress waves down a pile are shown in Fig. 17-5 for a pile with the
following data:

HP310 X 79 [HP12 X 53 as used by Smith (1962)]; Lp = 30 m;

Use 10 pile elements of 3 m each; Driving point = 0.44 kN;

Pile cap = 3.10 kN; pile cross section = 0.010 m2;

Wt./m of pile = 0.774 kN/m (steel p = 7850 kg/m3); E = 200000 Mpa;

Hammer: Ram = 22.2 kN; height of fall h = 0.91 m; eh = 0.80;

Jp = 0.50 s/m; Js = 0.16 s/m; Ar = 0.00025 s;

Capblockn = 0.5; capblock spring K = 350 000 kN/m;

Point load = 1 0 0 and 0 percent; estimated pile load Ru = 900 kN

The program FADWAVE (B-27) has several output options: one is just the set and last set
of computed pile element forces; a second option is that shown in Fig. 17-6; and a third option
(not shown but used to plot Fig. 17-5) outputs the data of Fig. 17-6 plus the pile forces for
each time increment DT (in program). The time values shown were selected, rounded, and
plotted as shown in Fig. 17-5.

The output sheet of Fig. 17-6 echoes the input data (given above) and for each DT gives
the set, point displacement D, maximum force in the pile F, and the element in which it
occurs. For example, at time increment DT = 1 6 when the first point displacement occurs,
the force in element 5 is 1240.3 kN. The point does not have any set until DT = 32, when it
is 0.407 mm, with a point displacement D = 2.907 mm. The maximum pile force at this DT
is in element 4 and is 964.3 kN. The maximum set = 10.417 mm and is the average of the
last 6 DT computations (if you add the set values for DT = 57 through 62 and divide by 6 you

Force, kN x 104 Force, kN x 104

Point carries 100% of load (P11)
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TRIAL PILE HP310X79 X 30 M FOR FIG. 17-5 OF 5/E--SI

NAME OF DATA FILE FOR THIS EXECUTION: FIG175A.DTA

++GENERAL INPUT DATA: NCHECK = 1
NO OF PILE SEGMENTS = 10
LENGTH OF PILE ELEM * 3.000 M

NO OF ELEMENTS INCL RAM & CAP = 12
PILE MODULUS OF ELAST = 200000. MPA

WT/M OF PILE = .7740 KN PILE X-SECT = .0100 M **2
ELEM WTS, KN : RAM = 22.200 PILE CAP = 3.1000

WT BOT ELEM + DRIVE PT = 2.7620 WT DRIVE PT = .4400
HT OF RAM FALL = .910 M HAMMER EFF = .80

SIDE DAMP CONST,SJ = .160 POINT DAMP CONST,PJ = .500 S/M

SPRING CONSTANT, KN/M: CAPBLOCK = 350000.0 PILE CUSHION = .0
1ST PILE SEG = 666666.6 2ND PILE SEG = 666666.6

COEFF OF RESTIT: CAPBLOCK = .500 PILE CUSHION = 1.000
TIME INTERVAL, DT = .0002500 SEC

I RU(I), KN +++ ASSUMED ULT PILE RESIST RUTOT = 900.00 KN
4 .000
5 112.500
6 112.500
7 112.500
8 112.500
9 112.500

10 112.500
11 112.500
12 112.500
13 .000 ( % POINT = .000)

++ SUM OF ABOVE RU(I) SHOULD = 900.00 KN

NO OF ITERATIONS = 62 INPUT QUAKE = 2.500 MM
AVERAGE SET = 10.417 MM NO OF VALUES USED IN AVERAGE SET = 6

DT= 1 2 3 4 5 6 7 8 9 10 11
SBT= .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000
D= .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000
F= .0 43.6 157.5 341.9 572.0 808.6 1013.9 1163.4 1250.3 1274.5 1260.0
ELBM NO 13 3 3 3 3 3 3 3 3 3 4

DT= 12 13 14 15 16 17 18 19 20 21 22
SET= .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000
D= .00000 .00000 .00000 .00000 .00001 .00006 .00023 .00075 .00224 .00601 .01472
F= 1331.0 1341.6 1302.1 1258.6 1240.3 1185.5 1171.5 1132.6 1097.5 1073.4 1075.7
ELEM NO 4 4 4 5 5 5 6 6 7 7 4

DT= 23 24 25 26 27 28 29 30 31 32 33
SET= .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .40762 1.19905
D= .03326 .06968 .13620 .24950 .42996 .69938 1.07688 1.57391 2.18949 2.90762 3.69905
F= 1074.0 1055.8 1029.8 1006.9 994.0 990.9 991.9 989.7 980.3 964.3 946.2
ELEM NO 4 4 4 4 4 4 4 4 4 4 4

DT= 34 35 36 37 38 39 40 41 42 43 44
SET= 2.02634 2.85062 3.63777 4.36279 5.01162 5.58071 6.07526 6.50681 6.89071 7.24339 7.57950
D= 4.52634 5.35062 6.13777 6.86279 7.51162 8.08071 8.57526 9.00681 9.39071 9.74339 10.07950
F= 931.1 921.3 915.8 910.7 902.7 890.3 875.0 859.4 845.5 833.0 819.0
ELEM NO 4 4 4 4 4 4 4 4 4 4 4

DT= 45 46 47 48 49 50 51 52 53 54 55
SET= 7.90916 8.23601 8.55677 8.86294 9.14414 9.39206 9.60339 9.78066 9.93055 10.06052 10.17556
D= 10.40916 10.73601 11.05677 11.36294 11.64414 11.89206 12.10339 12.28066 12.43054 12.56052 12.67556
F= 799.7 771.3 731.5 683.9 649.5 601.6 536.8 453.4 351.1 231.7 110.2
ELEM NO 4 4 4 3 3 3 3 3 3 3 7

DT= 56 57 58 59 60 61 62
SET= 10.27620 10.35895 10.41856 10.45084 10.45474 10.43253 10.38835
D= 12.77620 12.85895 12.91856 12.95084 12.95474 12.93253 12.88835
F= 126.3 121.9 133.9 136.1 116.2 195.5 279.9
ELEM NO 7 7 6 6 6 4 4

THE FORCES IN PILE SEGEMENTS ARE (3 = 1ST PILE SEGMENT)
ELEM # MAX ELEM FORCE DT LAST COMP FORCE, KN LAST V(M,2), S/M

2 1336.3 7 .0 -.981
3 1274.5 10 .0 -.551
4 1341.6 13 279.9 -.054
5 1258.6 15 167.4 -.260
6 1173.0 17 51.3 -.466
7 1097.5 20 12.2 -.358
8 1020.5 22 -20.3 -.229
9 943.6 24 3.6 -.259

10 873.2 27 -21.8 -.286
11 782.8 29 -96.7 -.213
12 538.6 29 -82.2 -.209
13 .0 62 .0 -.250

Figure 17-6 Wave equation output (using program FADWAVE) for the HP310 X 79 given in TITLE line.



should obtain 10.417). An average is used based on the difference between the maximum
set (occurs at DT — 60), and the program checks adjacent values and finds those within
0.12 mm of that value. All of these values are summed and divided by the number. Some-
times there are only three or four values—here there were six. The last six values are aver-
aged for the set since these are so close that it is difficult to determine exactly what the set
should be.

This large set (10.417 mm) occurs because the point is assumed not to carry any load. For
the case of the point carrying 100 percent of the load the set = 4.881 mm. These are the
two limiting cases—for the point carrying 20 to 80 percent of the load the point set would be
somewhere between 4.881 and 10.417 mm.

To plot Fig. Il-4a one would need to obtain the set from several assumed values of Ru (900,
1200, 1500, . . . ) and for each execution obtain the blow/cm (as 1/1.0417 = 0.959). Since
there is no such thing as a fraction of a blow, this should be rounded to 1 (an integer). The value
would be 1/10.417 = 0.09 using mm; for the point load case we obtain 1/0.4881 = 2.04,
which can be plotted as 2.0 (but not 1/4.881 = 0.20). Thus, it is necessary to plot these
curves using 1/set with set in cm and not mm.

To plot the curve of Fig. 17-4Z? we must extract the set and corresponding F from cal-
culations such as Fig. 17-6. We can use the list of maximum element forces versus DT to
find worst cases, but there must be a "set" for the cases selected. For example, the max-
imum force in element 2 occurs at DT = 7 but at this time the set = 0. The first set of
0.407 mm = 0.0407 cm occurs at DT = 32 when the force F = 964.3 kN. This data lo-
cates a curve point at a = F/A = 964.3/0.0139 = 69.4MPa versus 1/0.0407 - 24.6 -* 25
(blows/cm). At DT = 43 we have a = 833/0.0139 = 59.9 MPa versus 1/0.724 cm = 1.38
(blows/cm). We can plot the nonintegers, but the curve user can carry out only integer blow
counts. The reader should obtain several additional points and draw a curve similar to Fig.
17-46.

General Comments on the Wave Equation

There have been a number of modifications to the original wave equation to include what
the programmer asserts to be better modeling of the soil effects on the shaft sides [R(M)],
of the interface elements (ram, anvil, capblock, etc.) to the pile, and in the case of the diesel
hammer, to model the fuel-mixture explosion. In all these cases the result is little better than
the original Smith proposal (if proper allowances are made) for a number of reasons. The
point and shaft resistances and quake are at best factors that make the program give a solution.
The hammer impacts and resulting pile vibration will reduce the soil immediately adjacent
to the pile shaft and point to a viscous fluid. The "viscosity" probably does increase with
depth but this problem can be accounted for by inputting an R(M) different for each pile
segment. Since a wide range of quake gives solutions with not much difference, it is evident
that this is a "make it work factor," although certain factors do work better than others. Those
recommended by Smith work as well as any. A similar statement can be made for the side
and point damping factors.

Modeling the pile-hammer interface is at best an exercise in computational tenacity. The
different hammers have different anvil configurations (and dimensions), the driving cap
varies widely, and the capblock "spring" varies widely (even during driving the same pile)
depending on how much it has been used. Pile input energy is heavily dependent on the me-
chanical state of the hammer. Considering all these variables, it is suggested that the simplest



form of the wave equation is adequate. Any comparison between computer output and pre-
dicted pile capacity within a 30 percent deviation is likely to be a happy coincidence of input
data [see also the comprehensive study by Tavenas and Audibert (1977)] rather than com-
puter program sophistication. It is relatively easy with any of the wave equation programs
to back-compute excellent correlation with a load test. It is less easy to predict the load test
results in advance, however.

Since the wave equation is really concerned with the energy that the pile segments "re-
ceive,'* it should be evident that the energy input to the program is only an estimate unless it is
directly measured via strain gauges or velocity- or acceleration-measuring devices attached
to one or more of the upper pile segments. This approach is essentially that of Rausche and
Goble (1979) where the force/acceleration measurements are then directly input into a wave
equation type of program.

A number of programs purport to model the input energy of the diesel hammer using the
"blast energy." Since the fuel-explosion energy is somewhat indeterminate and as previously
stated the energy output depends on the mechanical condition of the hammer, it is evident
that the earlier programs, which are much simpler, can as easily be used. It is only necessary
to input the correct energy (i.e., adjust either ram weight or height of fall K) so that the energy
output is the same as assumed for the blast force. The capblock "spring" can be adjusted to
account for the interfacing of the diesel hammer elements, which might be different from a
steam hammer. Again, the problem is solved if the first pile segment is instrumented to obtain
the energy input.

A number of the early wave equation programs had an interface modeling error [in Smith's
original paper; found by the author when developing a wave equation for the vibratory pile
driver (unpublished)]. This error could affect the output by as much as 5 percent. This kind
of error is difficult to find since minor variations in input and order of magnitude of the output
forces are such that small errors are usually insignificant.

17-7 PILE-LOADTESTS

The most reliable method to determine the load capacity of a pile is to load-test it. This consists
in driving the pile to the design depth and applying a series of loads by some means. The usual
procedure is to drive several of the piles in a group and use two or more of the adjacent piles
for reactions to apply the load. A rigid beam spans across the test pile and is securely attached
to the reaction piles. A large-capacity jack is placed between the reaction beam and the top
of the test pile to produce the test load increments. The general setup (Fig. Yl-Ic) is similar
to the plate load test shown in Fig. 4-8 with the plate being replaced by the pile. The test
has been standardized as ASTM D 1143; however, local building codes may stipulate the
load increments and time sequence. Somewhat similar means are used to test laterally loaded
piles. Here the lateral load may be applied by jacking two adjacent piles apart or suitably
connecting several piles for the lateral reaction.

Figure 17-7 illustrates typical data from a pile-load test. Figure 17-7« is the usual plot for
a load test.

The ultimate pile load is commonly taken as the load where the load-settlement curve
approaches a vertical asymptote as for the 2200 kN load shown in Fig. 17-7«, or as the load
corresponding to some amount of butt settlement, say, 25 mm, based on the general shape
of the load-settlement curve, design load of the pile, and local building code (if any). The



Figure 17-7 Pile load-test data. This is the pile shown in Fig. Pl6-7 (356 diam X 7.9 mm wall X 15.24 m long). The method of estimating end bearing and side resistance
shown in (a) was suggested by Van Weele (1957).

(a) Usual method of presenting data. (Jb) Plot of load vs. net settlement computed as shown on the figure using data from (a).

Pile load, kN

Pile load, kN

End
bearing

Skin resistance



load-settlement curve must be drawn to a suitably large settlement scale so that the shape
(and slope) is well defined. Referring to Fig. Yl-Ia, we see that reducing the vertical scale
by a factor of one-half would make it very difficult to determine that the curve is becoming
nearly vertical between the 2000 and 2200 kN load.

An alternative method of interpreting Fig. Xl-Ia is based on the concept that the load
is carried mostly by skin resistance until the shaft slip is sufficient to mobilize the limiting
value. When the limiting skin resistance is mobilized, the point load increases nearly linearly
until the ultimate point capacity is reached. At this point further applied load results in direct
settlement (load curve becomes vertical). Referring to Fig. 17-Ia, these statements translate
as follows:

1. From 0 to point a the capacity is based on the skin resistance plus any small point con-
tribution. The skin resistance capacity is the principal load-carrying mechanism in this
region. Point a usually requires some visual interpretation since there is seldom a sharp
break in the curve.

2. From point a to b the load capacity is the sum of the limiting skin resistance (now a
constant) plus the point capacity.

3. From point b the curve becomes vertical as the ultimate point capacity is reached. Often
the vertical asymptote is anticipated (or the load to some value is adequate) and the test
terminated before a "vertical" curve branch is established.

This concept was introduced by Van Weele (1957) and has since been used by others [e.g.,
Brierley et al. (1979), Leonards and Lovell (1979), among others]. According to Van Weele,
if we draw the dashed line 0 to c through the origin and parallel to the point capacity region
from a to b, the load-carrying components of the pile are as shown on Fig. 17-7a. In this
figure we have at settlement S = 25 mm the load carried as follows:

Point - 25OkN

Skin resistance = 1350 kN = 1600 - 250 kN

Total = 160OkN shown on figure

Local building codes usually stipulate how the load test is to be run and interpreted and
pile design loads above which a load test is required (usually Pd > 200 kN). For example,
the Chicago building code stipulates the test as follows:

1. Apply load increments of 25 percent of the proposed working load.
2. Carry the loading to two times the proposed working load. This requires seven or eight

load increments.
3. Apply the loads after a specified time lapse or after the settlement rate is some small value.

4. The allowable pile load is taken as one-half that load that causes a net settlement of not
more than 1 mm/35 kN. For example, in referring to Fig. Yl-Ib, the allowable pile load is
about 1100 kN (so 2 X 1100/35 = 63 mm versus about 70 mm measured).

5. The building codes limit the minimum value of hammer energy E^

6. The codes require a minimum number of test piles per project.



Figure 17-7(c) Typical pile load test setup using adjacent piles in group for reaction.

Piles in granular soils are often tested 24 to 48 hr after driving when load test arrangements
have been made. This time lapse is usually sufficient for excess pore pressures to dissipate;
however, Samson and Authier (1986) show that up to a 70 percent capacity gain may occur
if load tests are made two to three weeks after driving.

Piles in cohesive soils should be tested after sufficient lapse for excess pore pressures
to dissipate. This time lapse is commonly on the order of 30 to 90 days giving also some
additional strength gain from thixotropic effects.

In any soil sufficient time should elapse before testing to allow partial dissipation of resid-
ual compression stresses in the lower shaft and point load from negative skin resistance on
the upper shaft caused by shaft expansion upward as the hammer energy is released. Resid-
ual stresses and/or forces have been observed in a number of reports and summarized by
Vesic (1977). It appears that pile load testing of the load-unload-reload type is more likely to
produce residual stresses than driving.

ASTM Dl 143 gives the "standard" pile load test procedure and outlines in considerable
detail the data to be collected in addition to load versus butt displacement. It would, of course,
be most worthwhile for the various organizations that publish technical papers (such as ASCE
and CGJ) to establish a similar checklist of information that would be the minimum to be
included for the paper to be accepted for publication. This would give readers sufficient in-
formation to verify or provide alternative conclusions as well as to create a useful data base
for future correlations that are more reliable. This is particularly important for piles since, as
noted in Chap. 16, such a large amount of conflicting test data have been published.

17-8 PILE-DRIVINGSTRESSES

A pile must be adequately sized to satisfy both the static and dynamic (or driving) stresses.
The driving stresses are difficult to determine except as approximations. Stresses are com-
puted as PdM, and the limitations inherent in the dynamic equations exist for computing the
driving force Pd so that a stress can be computed.

(c) Typical pile load test setup using adjacent piles in group for reaction.
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The wave equation seems to provide the best means to estimate the driving force Pj, both
for compression in all piles and tension in concrete piles, and to find compressive and tension
loads in the pile elements.

Figure 17-6, which is a printout of a wave equation trial, shows that the maximum force
Pd = 1341.6 kN; this occurred in element 4 at DT = 13. Because this was a metal pile
we do not need tension forces, but the pile had some (with the proper option activated, the
program would also collect the largest negative forces in the elements as well). The option
should always be activated for concrete piles.

The pile element forces depend on two factors in a wave equation analysis:

1. The estimated ultimate load P11 = Ru (used as RU in program)
2. The amount of load estimated to be carried by the point

For the pile of Fig. 17-5 we have 100 percent point load and 0.0 point load—the two
extremes. In this case the maximum loads are these:

Point load Pile element Prf,kN AtDT
100% 10 (bottom) 1808.2 34 (of 59)

0% (Fig. 17-6) 4 (near top) 1341.6 13 (of 62)

Also DT = 1/4000 = 0.00025 sec. These data are for an estimated Pu = 900 kN, so it
appears that the driving stresses can be from 50 to 100 percent larger than the estimated
ultimate load.

The dynamic equations (such as the ENR and Hiley types) can also be used to estimate
driving stresses and set. The use of the Hiley equation is illustrated in Example 17-4 follow-
ing.

Since the pile driving supervisor can only obtain blow counts in the field, it is useful to
present the data as illustrated in Fig. 17-4 or in E17-4. It should be evident, however, that
the curves in these two figures represent particular pile-hammer combinations. A change in
either invalidates the curves.

It should also be evident that a measurement of "set" is not straightforward, rather it must
be done indirectly. The reason is that there is both "set" and axial compression (PL/AE)
during driving. This makes it necessary to attach some type of scribing device to the pile head
(for measurements when the approximate design depth is reached) so that the scribe moves
down at impact and back up but not to the original starting point. The difference between the
starting point and the final point (below the initial) is assumed as the "set" for that blow.

There is a question of what the limit should be on driving stresses. Since they are temporary
and always higher than the design load stresses, some leeway must be allowed. Driving on
the order of 0.85/c' has resulted in fracture of concrete piles, so it would appear that their
stresses should be limited to about 0.5 to 0.6/c'.

Driving stresses for wood piles should also be limited to about 0.5 to 0.6/ujt because of
knots and other interior flaws.

Steel piles can probably be limited to stresses on the order of 0.8 to 0.9 fy. If steel piles are
stressed into the yield zone the principal result is increased possibility of corrosion from flak-
ing off of mill scale as Luder (or slip) lines form. There is also opinion that driving stresses
for steel piles can be from fy to as much as 1.15 fy because of strain-hardening. The author



suggests not over 0.9 fy as a reasonable compromise, knowing that we are being optimistic if
the driving stresses are not over ±20 percent of the estimate.

Example 17-4. Make a set versus driving resistance curve using the Hiley equation [Eq. (17-2)]
with the following data:

DE-30 hammer (get data from Table A-2, in Appendix)
Wr = 12.45 kN Eh = Wrh = 22 700 to 30 400 -> 27000kN-m
Efficiency ^ = 0.85 (not 1.0); n = 0.40 (Table 17-3)

Pile and other data: 406-mm (16-in.) OD with tw — 4.8 mm
Ap = 0.006 02 m2 Ep = 200 000 MPa; Pile length = 18.3 m
Driven open-end but later cleaned and filled with concrete
Design load - 90OkN y's = 9.0kN/m3 yst = 77kN/m3

Take SF = 1 for driving stresses fy = 250 MPa

Solution. The Hiley equation [Eq. (17-2)] is as follows:

= [ ehEh ~\\wr + n2Wp
1\ _ PUL

u [s+\(kx + k2 + k3)\[ Wr+ Wp J 2 AE

AE = 0.00602 X 200000 = 1204 MN

(Where 103 values cancel they will not be shown.) Obtain k\ = 2 . 5 mm (given). Estimate k^ = 2.0
mm (in range of 0 to 5 mm given earlier). Compute pile weight including plug as

ID area = 0.7854(0.406 - 2 X 0.0048)2 = 0.123 m2

Wp = Weight of steel + cap + soil plug

Wp = 0.00602 X 77 X 18.3 + 2.67 + 0.123 X 9.0 X 18.3

= 8.5 + 2.7 + 20.3 = 31.5 kN

Making substitutions into the Hiley equation, we obtain

_ r 0 .85x27 000 !["12.45 + 0.16x31.51
u ~ [s + 0.5(2.5 + 2.0 + PuLlAE) J [ 12.45 + 31.5 J

Collecting terms, we obtain

_ T 22950 II" 17.491 _ 9123
u ~ [s + 2.25 + PM(18.3/2408) J [ 44.0 J " s + 2.25 + Pu( 18.3/2408)

In this form the equation was programmed (since Pu is on both sides of the equation) for selected
values of "set" in millimeters with the following output (Table E17-4) for plotting curves of set
versus P11 and number of blows N/cm versus fs as in Fig. E17-4. Note again that it is necessary to
use the set in centimeters (cm) to obtain meaningful values—that is, divide by mm but multiply by
10. Since this step is equivalent to using centimeters we should call it that.

Notes.

1. We must initialize Pu to start computations. I used Pu = 900 kN.

2. We must use the pile area as the area of steel (0.00602 m2), since the pipe must be filled with
concrete after it is driven.

3. Adequate convergence is taken as 10 kN. That is, the difference between computed and used P11

is not over 10 kN.

4. You can use program FFACTOR (Hiley option 12) for these computations.



TABLE E17-4
k = |(2.5 + 2.0) = 2.25 mm

Set C, mm Current Previous Blows/cm Driving stress
s,mm (cm) k + Ic3 Pu Pu, kN N fs = Pu/Ap, MPa

.0 9.522 958.1 (956.9) .0 159.1
1.0 9.120 901.4 (904.0) 10.0 149.7
2.0 8.735 849.8 (853.4) 5.0 141.2
4.0 8.032 758.2 (760.8) 2.5 125.9
6.0 7.436 679.0 (682.4) 1.7 112.8
8.0 6.925 611.3 (615.1) 1.3 101.5

10.0(1.0) 6.486 553.4 (557.4) 1.0 91.9
25.0(2.5) 4.632 307.9 (313.5) .4 51.1
50.0(5.0) 3.607 170.2 (178.5) .2 28.3
60.0(6.0) 3.403 143.9 _ .
100.0(10.0) 2.973 88.6 To plot s, cm vs./>M

at s = 1.0 mm: C = 2.25 + 904(18.3)/2408 = 9.120 mm (904 - 901.4 = 2.6 < 10)
fs = 901.4/(0.00602 x 1000) = 149.7 MPa
Blows/cm = IA x 10 = 1/1.0 X 10 = 10.0... etc.

Figure E17-4
N, blows/cm

s, cm/blow = I/N

f s,
 M

Pa
P

v
,k

N



Question.
Would a better estimate of k\ be 4 mm instead of the 2.5 used?

17-9 GENERAL COMMENTS ON PILE DRIVING

Alignment of piles can be difficult to get exactly correct, and often the driven piles are not
exactly located in plan. A tolerance of 50 to 100 mm is usually considered allowable. Larger
deviations may require additional substructure design to account for eccentricities, or more
piles may have to be driven. Alignment of pipe piles may be checked by lowering a light into
the tube. If the light source disappears, the alignment is not true. Pile groups should be driven
from the interior outward because the lateral displacement of soil may cause excessively hard
driving and heaving of already driven piles.

Damage to piles may be avoided or reduced by squaring the driving head with the energy
source. Appropriate pile-driving caps and/or cushions should be used. When the required
driving resistance is encountered, driving should be stopped. These driving resistances may
be arbitrarily taken as

Timber piles 4-5 blows/25 mm
Concrete piles 6-8 blows/25 mm
Steel piles 12-15 blows/25 mm

Driving may require corrective action if the head of a timber pile becomes damaged; e.g.,
use a cap or metal band or cut the head of the pile more carefully. If during driving any pile
changes direction, or the penetration becomes irregular or suddenly increases, the pile may
already be broken or bent. Damaged piles will have to be pulled; pulling a broken timber pile
is not a trivial task—particularly the lower broken part.

Pile driving may induce heave in saturated, fine-grained, non-quick-draining soils, where
the displaced soil increases the pore water pressure so that the void ratio cannot rapidly
change. As the pore pressure dissipates, the amount of heave may be reduced. Piles already
driven in this material may be uplifted, the problem being especially aggravated if the piles
are closely spaced [Klohn (1961)]. The problem may or may not be serious, depending on
how the heave takes place [Nordlund (1962)], and may be more serious for point-bearing
piles if they are driven to refusal and then heave takes place, since excessive settlements
may result after the structure is built as the piles reseat themselves under load. If heave is
anticipated, survey benchmarks should be established, and elevations taken on the piles after
they are driven and as other piles are driven in the vicinity.

Since heave is caused by volume displacement, it can be somewhat controlled by us-
ing small-volume displacement piles (HP or open-end pipes). Heave can be controlled by
predrilling an undersized hole for timber and closed-end pipe piles to reduce the volume
displacement.

In granular soils a rearrangement of the soil structure from the driving vibrations may result
in a subsidence of the adjacent area. Already driven piles may be preloaded to some extent
by this phenomenon. A pile driven in a zone within about three pile diameters of an already
driven pile will be more difficult to drive because the soil in this zone will be densified.



Continuity of cast-in-place piles is verified by computing the volume of concrete used to
fill the pile cavity and comparing this with the theoretical cavity volume.

PROBLEMS

Pile hammer data are obtainable in Table A-2 of the Appendix.

17-1. A pile-load test provides the following data:

Pile = 406-mm diameter pipe Lp = 16.8m

A = 0.015 39 m2 Est = 200000MPa wt = 1.2kN/m

Weight includes attachments for instrumentation.

Hammer = Vulcan 140C eh = 0.75

Set = 8 mm/blow for last 300 mm

Pile cap = 7.61 kN (driven open-end)

Find Pu and Pa by Hiley, ENR, and Gates equations.
Answer: P14 = 1735 kN (load test); by ENR Pu = 3485; Gates Pa = 340 kN

17-2. A pile-load test provides the following data:

Pile = 406 mm square concrete Lp = 13.7 m

A = O. 1648 m2 Ec = 43 430 MPa

Weight/m = 3.89 kN/m

Hammer = Vulcan 140C eh = 0.78

Set =13 .8 mm/blow

Pile cap (uses cushion) = 7.604 kN

Find P11 and Pa by Hiley, ENR, and Janbu equations.
Answer: Pu = 1512 kN (load test); by Janbu Pu = 1400 kN

17-3. A pile-load test provides the following data:

Pile = 400 mm square concrete Lp = 16.0m

Ec = 27 800 MPa ( / ; = 35)

Hammer = Vulcan 140C eh = 0.85

Set = 6 mm/blow for last 300 mm

Weight of pile cap = 7.61 kN

Required: Compute ultimate and allowable pile capacity using the ENR equation [Eq. (17-5)].
Answer: P11 = 2130 kN (load test), ENR P11 = 3950 kN, Pa = 660 kN

17-4. A pile-load test provides the following data:

Pile = timber 0.116 m2 butt, 0.058 m2 tip Lp = 12.2 m

Ew = 11000 MPa wood = 20.6 kN/m3

Hammer = Vulcan 65C eh = 0.76

Set =13 .3 mm/blow

Weight of pile cap = 4.23 kN



Required: Compute the ultimate and allowable pile capacity using the Gates and CNBC equa-
tions from Table 17-1.

Answer: P14 = 712 kN (load test); by Gates Pu = 627, by CNBC Pu = All kN

17-5. Plot a curve of Pu versus l/s and stress versus l/s for the pile of Prob. 17-3 using the equation
from Table 17-1 as assigned by the instructor.

17-6. Plot a curve of Pu versus l/s and stress versus l/s for the pile of Prob. 17-4 using the Hiley
equation.

17-7. What is the allowable load on the pile of Prob. 17-3 using the PCUBC equation?

17-8. What is the allowable load on the pile of Prob. 17-4 using the PCUBC equation?

17-9. Plot the assigned load-test data from the following two actual load tests, and select the allowable
design load based on pile and load-test data.

Test No. 1 Test No. 2
HP 360 x 109, L = 15.2 m 324 x 8 mm pipe*, L = 16.8 m

P, kN Load, mm Unload, mm P9 kN Load, mm Unload, mm

0 0.6 25.4
445 5.0 20.3 445 03.0 29.2
890 9.0 25 890 05.6 31.8

1335 12.5 29 1330 10.2 34.3
1780 20.3 32 1780 16.5 37.8
2220 30.5 2000 31.8

33.0 (24 hr) 38.1 (24 hr)

*Filled with concrete of /c ' = 28 MPa.

Use the building code in your area or the Chicago code method given in Sec. 17-7.

17-10. Compute P11 for the piles shown in Fig. P16-7 using a dynamic equation assigned by the in-
structor, and compare the solution to the load-test values of Pu shown. The driving hammer in
all cases was a Vulcan No. 0 single-acting hammer.

17-11. Refer to Fig. 17-6 (wave equation output). Why is there no set at DT = 31 and how is the
value of 0.40762 obtained for the "set" at DT = 32? What is the difference between total
point displacement D and "set" at DT = 42? Can you draw any conclusions about the point
displacement and set?

17-12. From the DT data of Fig. 17-6, make a plot of DT versus set and point displacement from
DT = 10 to DT = 62.

17-13. What is the maximum stress (in MPa) in element 8 of the pile model of Fig. 17-6?

17-14. Verify that the first pile "spring" = 666666.6 kN/m as shown on the output sheet (Fig. 17-6).

17-15. If the first pile element (element 4) were assumed also to carry an equal part of the 900 kN
load, what would the side resistances be (they are 112.5 kN excluding the first pile element of
Fig. 17-6)?

17-16. If you have access to a wave equation program, verify the output given in Fig. 17-6.
Also verify that using 100 percent point load gives approximately the maximum load given
in the textbook. Note that different programs may give slightly different answers. Also vary
the point percent using 0.0, 0.25, 0.50, and 0.75 of P11 = 900 kN. The base data is on files
FIG 175.DTA and FIG175A.DTA on your diskette for using the Bowles program B-27.
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