
K = Shaft diameter, mm

Ka D < 300 (12 in.)
\{Ka + K0) 300 < D < 600

\{Ka + K0 + Kp) D> 600 (or any D for slump > 70 mm)

In cemented sands you should try to ascertain the cohesion intercept and use a perimeter X
cohesion X L term. If this is not practical you might consider using about 0.8 to 0.9Kp.

The data base for this table includes tension tests on cast-in-place concrete piles ranging
from 150 to 1066 mm (6 to 42 in.) in diameter. The rationale for these K values is that, with the
smaller-diameter piles, arching in the wet concrete does not develop much lateral pressure
against the shaft soil, whereas the larger-diameter shafts (greater than 600 mm) allow full
lateral pressure from the wet concrete to develop so that a relatively high interface pressure
is obtained.

16-15 LATERALLY LOADED PILES

Piles in groups are often subject to both axial and lateral loads. Designers into the mid-1960s
usually assumed piles could carry only axial loads; lateral loads were carried by batter piles,
where the lateral load was a component of the axial load in those piles. Graphical methods
were used to find the individual pile loads in a group, and the resulting force polygon could
close only if there were batter piles for the lateral loads.

Sign posts, power poles, and many marine pilings represented a large class of partially
embedded piles subject to lateral loads that tended to be designed as "laterally loaded poles."
Current practice (or at least in this textbook) considers the full range of slender vertical (or
battered) laterally loaded structural members, fully or partially embedded in the ground, as
laterally loaded piles.

A large number of load tests have fully validated that vertical piles can carry lateral loads
via shear, bending, and lateral soil resistance rather than as axially loaded members. It is also
common to use superposition to compute pile stresses when both axial and lateral loads are
present. Bowles (1974a) produced a computer program to analyze pile stresses when both
lateral and axial loads were present [including the P — A effect (see Fig. 16-21)] and for
the general case of a pile fully or partially embedded and battered. This analysis is beyond
the scope of this text, partly because it requires load-transfer curves of the type shown in
Fig. 16-18Z?, which are almost never available. Therefore, the conventional analysis for a
laterally loaded pile, fully or partly embedded, with no axial load is the type considered in
the following paragraphs.

Early attempts to analyze a laterally loaded pile used the finite-difference method (FDM),
as described by Howe (1955), Matlock and Reese (1960), and Bowles in the first edition of
this text (1968).

Matlock and Reese (ca. 1956) used the FDM to obtain a series of nondimensional curves
so that a user could enter the appropriate curve with the given lateral load and estimate the
ground-line deflection and maximum bending moment in the pile shaft. Later Matlock and
Reese (1960) extended the earlier curves to include selected variations of soil modulus with
depth.

Previous Page



Although the nondimensional curves of Matlock and Reese were widely used, the au-
thor has never recommended their use. A pile foundation is costly, and computers have been
available—together with computer programs—for this type of analysis since at least 1960.
That is, better tools are now available for these analyses.

THE p-y METHOD. The initial work on the FDM lateral pile solution [see McClelland and
Focht (1958)] involved using node springs p and lateral node displacements y, so that users
of this method began calling it the "p-y method." Work continued on this FDM computer
program to allow use of different soil node springs along the pile shaft—each node having its
own p-y curve [see Reese (1977)]. Since p-y curves were stated by their author to represent
a line loading q (in units of kip/ft, which is also the unit of a soil spring), user confusion and
uncertainty of what they represent has developed. This uncertainty has not been helped by
the practice of actually using the p part of the p-y curve as a node spring but with a 1-ft node
spacing so that it is difficult to identify exactly how/? is to be interpreted. The product of node
spring and node displacement y gives p • y = a node force similar to spring forces computed
in the more recognizable form of force = K • X.

The data to produce a/?-y curve are usually obtained from empirical equations developed
from lateral load tests in the southwestern United States along the Gulf Coast. In theory, one
obtains a p-y curve for each node along the pile shaft. In practice, where a lateral load test
is back-computed to obtain these curves, a single curve is about all that one can develop that
has any real validity since the only known deflections are at or above the ground line unless
a hollow-pipe pile is used with telltale devices installed. If the node deflection is not known,
a p-y curve can be developed with a computer, but it will only be an approximation.

The FDM is not easy to program since the end and interior difference equations are not
the same; however, by using 1-ft elements, interior equations can be used for the ends with
little error. The equations for the pile head will also depend on whether it is free or either
translation and/or rotation is restrained. Other difficulties are encountered if the pile section
is not constant, and soil stratification or other considerations suggest use of variable length
segments. Of course, one can account for all these factors. When using 1-ft segments, just
shift the critical point: The maximum shift (or error) would only be 0.5 ft.

The FDM matrix is of size NxN, where TV = number of nodes. This matrix size and
a large node spacing were advantages on early computers (of the late 1950s) with limited
memory; however, it was quickly found that closer node spacings (and increases in AO pro-
duced better pile design data. For example, it is often useful to have a close node spacing in
about the upper one-third of a pile.

The FDM would require all nodes to have equal spacing. For a 0.3-m spacing on a 36-m
pile, 121 nodes would be required for a matrix of size NXN = 14 641 words or 58.6 kbytes
(4 bytes/word in single precision). This size would probably require double precision, so the
matrix would then use 117 kbytes.

THE FEM LATERAL PILE/PIER ANALYSIS. The author initially used the FDM for lateral
piles (see first edition of this text for a program); however, it soon became apparent that
the FEM offered a significant improvement. Using the beam element requires 2 degrees of
freedom per node, but the matrix is always symmetrical and can be banded into an array of
size

2 X number of nodes X Bandwidth



This array is always 2 X NNODES X 4, thus, a pile with 100 nodes would have a stiffness
matrix of 2 X 100 X 4 = 800 words. This is 3200 bytes or 3.2k of memory and in double
precision only requires 6.4k bytes.

One advantage of the FEM over the FDM is the FEM has both node translation and ro-
tation, whereas the FDM only has translation. The elastic curve is somewhat better defined
using both translation and rotation.

Another advantage is that the element lengths, widths, and moments of inertia can vary
with only slightly extra input effort. One can even use composite piles. The pile modulus
of elasticity is usually input as a constant since most piles are of a single material, but it is
trivial to modify the moment of inertia for a composite section so that the program computes
the El/L value correctly. This value is determined by computing a modified moment of inertia
Im as in Eq. (13-4).

When using variable element lengths it is suggested that one should try to keep the ratio
of adjacent element lengths (longest/shortest) < 3 or 4.

A major advantage of the FEM is the way in which one can specify boundary cases (nodes
with either zero rotation or translation) and lateral loads. The FDM usually requires the load
and boundary points be pre-identified; the FEM allows any node to be used as a load point or
to have known translation or rotation—the known value is usually 0.0 but can be nonzero as
well.

A final advantage is that the FEM for a lateral pile program can be used for a lateral pier
(piles with a larger cross section) or beam-on-elastic-foundation design. It is only necessary
to input several additional control parameters so the program knows what type of problem is
to be solved. Thus, one only has to learn to use one fairly simple program in order to solve sev-
eral classes of problems. Your sheet-pile program FADSPABW (B-9) is a special case of this
method. It was separately written, although several subroutines are the same, because there
are special features involved in sheet-pile design. These additional considerations would in-
troduce unnecessary complexity into a program for lateral piles so that it would be a little
more difficult to use. Many consider it difficult in any case to use a program written by some-
one else, so the author's philosophy has been to limit what a program does so that it is easier
to use.

Refer to Sec. 9-8 for the derivation of the stiffness matrix and other matrices for the beam-
on-elastic foundation and also used for the lateral pile. The only difference is that the beam-
on-elastic foundation is rotated 90° clockwise for the lateral pile P-X coding and the end
springs are not doubled (see Fig. 16-19). You must know how the finite-element model is
coded and how the element force orientations (direction of arrowheads on force, moment,
and rotation vectors) are specified either to order the input loads or to interpret the output
element moments and node displacements.

USING THE FEM COMPUTER PROGRAM. The general approach to setting up an FEM
model for using your diskette program FADBEMLP (B-5) to analyze lateral piles is this:

1. Divide the pile into a convenient number of elements (or segments) as in Fig. 16-19. From
experience it has been found that the top third of the embedment depth is usually critical
for moments and displacements, so use shorter element lengths in this region. Avoid very
short elements adjacent to long elements; place nodes at pile cross-sectional changes, at
soil strata changes, and where forces or boundary conditions are being applied. Generally
10 to 15 elements are adequate, with 4 to 8 in the upper third of the embedded shaft length.



Figure 16-19 Laterally loaded pile using finite elements. Typical loadings shown in (a) and (b). Note that elements
do not have to be same size or length. Generally use short elements near ground surface and longer elements near
pile point where moments are less critical.

2. Partially embedded piles are readily analyzed by using JTSOIL equal to the node where
soil starts (same as for sheet-pile wall). Use JTSOIL = 1 if ground line is at first pile node.

3. Identify any nodes with zero translation and/or rotation. NZX = number of Xs of zero dis-
placement. Use element coding to identify those X values that are input using NXZERO(I).

4. Make some estimate of the modulus of subgrade reaction and its depth variation (AS, BS,
EXPO). Note that either AS or BS can be zero; EXPO = 0.5, 0.75, 1.0, or 1.5 may be
appropriate; EXPO is the exponent of Zn. You can also estimate a Z^-value [and XMAX(I)]
for each node to input similar to the sheet-pile program.

5. Back-compute lateral load test data, if they are available, for the best estimate of ks. One
should not try to back-compute an exact fit since site variability and changes in pile type
(pipe versus HP) preclude the existence of a unique value of ks. The large number of pile
tests reported by Alizadeh and Davisson (1970) clearly shows that great refinement in
back computations is not required. One should, however, use in a load test the lateral load
that is closest to the working load for best results.

WHAT TO USE FOR THE MODULUS OF SUBGRADE REACTION ks.
5 The modulus of

subgrade reaction is seldom measured in a lateral loaded pile test. Instead, loads and deflec-

5It should be understood that even though the term ks is used in the same way as for the beam-on-elastic foundation,
it is a vertical value here. The type (vertical or horizontal) is identified to the user by the context of usage.

Rotation—no translation Translation—no rotation

JTSOIL - 1

JTSOIL a 4

element -
numbers

Node

NM = 6
NNODES =NM+1=6+1=7
NP = 14 = 2 x NNODES NM = 8

NNODES = NM + 1 = 9

N P = 18

(a) Fully embedded (b) Partially embedded.

(c) General ith element
P-X coding and
element forces.



tions are usually obtained as well as, sometimes, bending moments in the top 1 to 3 m of
the embedded pile. From these one might work back using one's favorite equation for lateral
modulus (or whatever) and obtain values to substantiate the design for that site.

Node values (or an equation for node values) of ks are required in the FEM solution for
lateral piles. Equation (9-10), given in Chap. 9 and used in Chap. 13, can also be used here.
For convenience the equation is repeated here:

^ = A , + BsZ
n (9-10)

If there is concern that the ks profile does not increase without bound use Bs = 0 or use
Bs in one of the following forms:

Bs ( | j = ^ Z " = B'sZ
n (now input B's for B5)

or use B5(Z)" where n < 1 (but not < 0)

where Z = current depth from ground surface to any node

D = total pile length below ground

The form of Eq. (9-10) for ks just presented is preprogrammed into program FADBEMLP
(B-5) on your diskette together with the means to reduce the ground line node and next lower
node ks (FACl, FAC2 as for your sheet-pile program). You can also input values for the
individual nodes since the soil is often stratified and the only means of estimating ks is from
SPT or CPT data. In this latter case you would adjust the ground line ks before input, then
input FACl = FAC2 = 1.0.

The program then computes node springs based on the area Ac contributing to the node,
as in the following example:

Example 16-9. Compute the first four node springs for the pile shown in Fig. El 6-9. The soil
modulus is ks = 100 + 50Z05. From the ks profile and using the average end area formula:

Summary,

,etc.



Example 16-9 illustrates a basic difference between this and the sheet-pile program. The
sheet-pile section is of constant width whereas a pile can (and the pier or beam-on-elastic
foundation often does) have elements of different width.

This program does not allow as many forms of Eq. (9-10) as in FADSPABW; however,
clever adjustment of the BS term and being able to input node values are deemed sufficient
for any cases that are likely to be encountered.

In addition to the program computing soil springs, you can input ks = 0 so all the springs
are computed as Ki = 0 and then input a select few to model structures other than lateral piles.
Offshore drilling platforms and the like are often mounted on long piles embedded in the soil
below the water surface. The drilling platform attaches to the pile top and often at several
other points down the pile and above the water line. These attachments may be modeled as
springs of the AE/L type. Treating these as springs gives a partially embedded pile model—
with possibly a fixed top and with intermediate nonsoil springs and/or node loads—with the
base laterally supported by an elastic foundation (the soil).

Since the pile flexural stiffness EI is several orders of magnitude larger than that of the
soil, the specific value(s) of ks are not nearly so important as their being in the range of 50 to
about 200 percent of correct. You find this comparison by making trial executions using a Ic5,
then doubling it and halving it, and observing that the output moments (and shears) do not
vary much. The most troublesome piece of data you discover is that the ground line displace-
ment is heavily dependent on what is used for ks. What is necessary is to use a pile stiff enough

Figure E16-9

Projected pile width, m

ks = Profile



and keep the lateral load small enough that any computed (or actual) lateral displacement is
tolerable.

A number of persons do not like to use the modulus of subgrade reaction for anything—
beams, mats or lateral piles. Generally they have some mathematical model that purportedly
works for them and that they would like for others to adopt. In spite of this the ks concept
has remained popular—partly because of its simplicity; partly because (if properly used) it
gives answers at least as good as some of the more esoteric methods; and, most importantly,
because Â  is about as easy to estimate as it is to estimate the stress-strain modulus Es and
Poisson's ratio /JL.

WHAT PILE SECTION TO USE. It is usual to use the moment of inertia / of the actual pile
section for both HP and other piles such as timber and concrete. For reinforced concrete piles,
there is the possibility of the section cracking. The moment of inertia / of a cracked section
is less than that of the uncracked section, so the first step in cracked section analysis is to
recompute / based on a solid transformed section, as this may be adequate.

It is suggested that it is seldom necessary to allow for section cracking. First, one should
not design a pile for a lateral load so large that the tension stresses from the moment produce
cracking—instead, increase the pile cross section or the number of piles. Alternatively, use
steel or prestressed concrete piles.

The possibility of concrete pile cracking under lateral load is most likely to occur when par-
tially embedded piles are used. The unsupported length above the ground line may undergo
lateral displacements sufficiently large that the section cracks from the resulting mtfment-
induced tension stresses. The unsupported pile length must be treated similarly to an unsup-
ported column for the structural design, so a larger cross section may be required—at least in
the upper portion of the pile.

16-15.1 Empirical Equations for Estimating ks

Where pile-load tests are not available, some value of ks that is not totally unrealistic must
be estimated, one hopes in the range between ± 50 and ± 200 percent6 of the correct value.
The following equations can be used to make reasonable estimates for the lateral modulus of
subgrade reaction.

An approximation proposed by the author is to double Eq. (9-9) since the soil surrounds
the pile, producing a considerable side shear resistance. For input you obtain ASf Bs values
and multiply by two. Using the bearing-capacity components of Eq. (13-1) to give the needed
parts of Eq. (9-9), we have

As = AS = C(cNc + 0.5yBpNy)

BsZ
n = BS*(Z~N) = C(yNqZ

])

where C = 40 for SI, 12 for Fps. It was also suggested that the following values could be
used, depending on the actual lateral displacement:

6Two hundred percent is double the true value, and 50 percent is one-half the true value.



For AH, C

SI(m) Fps(in.) SI Fps IC

0.0254 1 40 (12) 80
0.006 \ 170 (48) 340
0.012 \ 80 (24) 160
0.020 \ 50 (36) 100

16-15.2 Size and Shape Factors

The idea of doubling the lateral modulus was to account for side shear developed as the
pile shaft moves laterally under load, both bearing against the soil in front and shearing the
soil on parts of the sides as qualitatively illustrated in Fig. 16-20. Clearly, for piles with a
small projected D or B, the side shear would probably be close to the face bearing (consisting
of 1.0 for face +2 X 0.5 for two sides = 2.0). This statement would not be true for larger
D or B values. The side shear has some limiting value after which the front provides the
load resistance. Without substantiating data, let us assume this ratio, two side shears to one
face, of 1:1 reaches its limit at B = D = 0.457 m (18 in.). If this is the case then the size
factor multiplier (or ratio) Cm should for single piles be about as follows (the 1.0 is the face
contribution):

For Ratio, Cm

Lateral loads of both Px and Py

(face 4- 1 side) 1.0 + 0.5
B = D < 0.457 m 1.0 + 2 X 0.5

( . _ - \0.75
> 1.5

D, mm J
use 1.0 + 0.25 for D > 1200mm

You should keep the foregoing contributing factors in mind, for they will be used later where
the face and side contributions may not be 1.0 and 0.5, respectively.

Now with Cw, rewrite Eq. (13-1) as used in Sec. 16-15.1 to read

As = AS = CmC(cNc + 0.5yBpNy)}

BsZ
n = BS * Z~N = CmC(yNqZ

n) J

It is also suggested that the BS term should use an exponent n that is on the order of 0.4
to 0.6 so that ks does not increase without bound with depth.

Research by the author by back-computing ks from piles in cohesionless soils at the same
site indicates that Eq. (9-10) should be further rewritten to read

A8 = AS = FwlCmC(cNc + 0.5y BpN7)] (\6-26a)
BsZ

n = BS * Z^N = Fw2CmC(yNqZ
n) J

where Fw\, Fw2 = 1-0 for square and HP piles (reference modulus)
Fw\ = 1.3 to 1.7; FW2 = 2.0 to 4.4 for round piles



One probably should apply the Ft factors only to the face term (not side shear) for round
piles. Whether these shape factors actually result from a different soil response for round
piles or are due to erroneous reported data from neglecting the distortion of the hollow pipe
(laterally into an oblate shape) under lateral load is not known at this time. Gleser (1983) and
others have observed that the response of a round pile is different from that of a square or
HP pile, in general agreement with the foregoing except in a case where a comparison of a
100-mm HP pile to a 180-mm diameter pipe pile was claimed not to produce any noticeable
difference.

side bearing

(b) Circular pile
Figure 16-20 Qualitative front and side resistances
for a lateral pile.
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Size and projection widths would make it very difficult to note any differences in this
case, particularly if the pipe wall thickness was such that the diameter did not tend to oblate
(flatten).

USING THE GIVEN BEARING CAPACITY. If we have only the allowable bearing pressure
qa, we can use Eq. (16-26) as follows (but may neglect the Nq term):

ks = FH,,i X SF X CmC Xqa + Fw>2 X CmCyZnNq (16-26/?)

where SF = safety factor used to obtain qa (usually 3 for clay; 2 for cohesionless soil)
Nq = value from Table 4-4 or from Eq. (16-7) or (16-7J)

n = exponent as previously defined; 1 is probably too large so use about 0.4 to 0.6
so ks does not increase too much with depth

If you use either Eq. (16-26) or (16-26a) you should plot ks for the pile depth using several
values of exponent n to make a best selection.

It has been found that the use of Eq. (16-26) produces values within the middle to upper
range of values obtained by other methods.

If we take qa = qu (unconfined compression test) and omit the Nq term in Eq. (\6-26a),
the value of ks in Fps units for a pile of unknown B is

ks = Cm X 12 X SF X qu = 2 X 3 X 12 X qu = 12qu

Davisson and Robinson (1965) suggested a value of ks ~ 67 su, which was about half of 12qu.
Later Robinson (1978) found that 61 su was about half the value of ks indicated by a series of
lateral load tests [that is, 12qu (or 24Oq u, kPa) was about the correct value].

The API (1984) suggests that the lateral bearing capacity for soft clay (c < 50 kPa) be
limited to 9c and for stiff clay from 8c to 12c [see Gazioglu and O'Neill (1985) for detailed
discussion]. In soft clay this bearing capacity would give, according to Eq. (16-26a), the value

ks = Cm(40)(9c) = 360Cmc (kN/m3)

which does not appear unreasonable.
You may indirectly obtain ks from the following type of in situ tests:

a. Borehole pressuremeter tests where Epm = pressuremeter modulus

*, = ^ 1 (16-27)
Bp

For cohesionless soils [see Chen (1978)]:

(16-27a)

(16-276)

And for cohesive soils:



where Ed = dilatometer modulus, kPa or ksf

Fp = pile shape factor: 1.5 to 4.0 for round piles; 1.0 for HP or square piles

For these values of ks you would compute values as close to your pile nodes as possible
and input the several node values, not just a single value for the full depth.

The stress-strain modulus Es can be used in Eq. (16-31) following [or Vesic's Eq. (9-6),
given earlier] to compute ks. Estimate Es from your equation or method or one of the follow-
ing:

a. Triaxial tests and using the secant modulus Es between 0 and 0.25 to 0.5 of the peak
deviator stress. The initial tangent modulus may also be used. Do not use a plane strain
Es.

b. The standard penetration test [see Yoshida and Yoshinaka (1972)] to obtain

Es = 650N kPa (16-29)

This equation has a maximum error of about 100 percent with an average error of close
to ± 20 percent. Assume that N in Eq. (16-29) is NJO (see under donut hammer of Table
3-3).

For CPT data convert to equivalent SPT TV and use Eq. (16-29).
c. Use consolidation test data to obtain mv to compute the stress-strain modulus by combining

Eqs. (2-43) and Eq. (J) of Sec. 2-14 and noting

A// _ 1

to obtain

Es = 3 { 1 - 2 ^ (16-30)
mv

Any of these three values of Es can be used to compute ks in clay using any of the following
three equations cited by Pyke and Beikae (1983):

0.48 to 0.90^,
ks = - (a)

where 0.48 is for HP piles; 0.9 for round piles (i.e., a shape factor Fw\ ~ 2);

K - ^ W

and for sands

(C)

b. Flat dilatometer tests:

(16-28)



where in Eq. (c) Es = triaxial test value at about 6—0.01. You may also use these stress-
strain moduli values in the following equation [Glick (1948)] to obtain a modified Â  that is
then used in Eq. (16-32):

" • ( u ^ - W M V U - u m i <u"itsofE') <1M1)

where Lp = pile length, m or ft
B = pile width, m or ft

After computing k's, convert it to the usual ks using the following:

ks = % (16-32)
D

Since this value of k's has the same meaning as the Vesic value given by Eq. (9-6), we can
use that equation with the following suggested modification:

k 7n

ks = - ^ - (l6-32a)

The zn term is suggested to allow some controlled increase in ks with depth.
The NAFAC Design Manual DM7.2 (1982) suggests the following:

k5 = ^ (16-33)

where / = factor from following table, kN/m3 or k/ft3

D = pile diameter or width, m or ft
z = depth; m or ft gives ks = O at ground surface and a large value for long piles at

the tips. A better result might be had using (z/D)n where n ranges from about
0.4 to 0.7.

Values for/ (use linear interpolation)

Fine-grained:

Coarse-grained:

20
40
60
80

110
150
190
230
270
310
370

Dr

0

15

30
40
50
60
70
80
90

/

200
350
550
800

800
1400
2000
2800
3400
4200
4900



TABLE 16-4

Representative range of values of lateral
modulus of subgrade reaction (value of As

in the equation ks = As + Bzn

Soil* ks, kef ks, MN/m3

Dense sandy gravel 1400-2500 220-400
Medium dense coarse sand 1000-2000 157-300
Medium sand 700-1800 110-280
Fine or silty, fine sand 500-1200 80-200
Stiff clay (wet) 350-1400 60-220
Stiff clay (saturated) 175-700 30-110
Medium clay (wet) 250-900 39-140
Medium clay (saturated) 75-500 10-80
Soft clay 10-250 2 ^ 0

"'Either wet or dry unless otherwise indicated.

Table 16-4 gives ranges of ks for several soils, which are intended as a guide for probable
values using more precise methods—or at least using the site soil for guidance. They should
be taken as reasonably representative of the As + Bs terms at a depth from about 3 to 6 m and
for pile diameters or widths under 500 mm.

16-15.3 Nonlinear Effects

It is well known that doubling the load on a lateral pile usually more than doubles the lateral
displacement and increases the bending moment. The moment increase results from both the
increase in Sh and the greater depth in which lateral displacements occur. Both of these effects
result from nonlinear soil behavior idealized by the curve shown in Fig. 2-43c, particularly at
higher stress levels a that result from larger lateral loads. Usually the lateral displacements
in the load range of interest are in that part of the a-8 curve that is approximately linear.

In the curve of Fig. 2-43c the modulus of subgrade reaction is taken as a "secant" line
from the origin through some convenient stress value a. Ideally one should have a curve
such as this for each node point (see Fig. E13-le) for a lateral pile. Then, as a displacement
is computed one would enter the curve, obtain a revised secant modulus ks, and recompute
the displacements until the 5^ value used = Ŝ  value obtained.

This approach is seldom practical since these curves are difficult to obtain—usually a pipe
pile must be used for the test so that lateral measurements can be taken at nodes below the
ground line. A pipe pile, however, has a shape factor, so the results are not directly usable for
other pile shapes.

Most lateral piles are designed on the basis of using penetration testing of some kind,
supplemented with unconfined compression data if the soil is cohesive. For these cases the
two-branch nonlinear model proposed by the author (see Fig. 9-9c) will generally be ade-
quate.

The program FADBEMLP on your diskette allows you to model the two-branch nonlinear
node displacement curve for the soil as you did in program FADSPABW. That is, you can
input the maximum linear displacement at each node as XMAX(I) and activate a nonlin-
ear check using the control parameter NONLIN > 0. Here a negative displacement is not a
soil separation, but rather the pile has deflected forward such that the elastic line has produced



a displacement at a lower node against the soil behind the pile. An extensive discussion
of XMAX(I) was given in Chap. 13 that will not be repeated here except to note that the
nonlinear check is |X(I)| < XMAX(I).

CYCLIC LOADING. The ks for cyclic loading should be reduced from 10 to 50 percent of
that for static loading. The amount of reduction depends heavily on the displacements during
the first and subsequent cycles.

Quasi-dynamic analysis of offshore piles subject to wave forces can be obtained by apply-
ing the instant wave force on the nodes in the water zone for several closely spaced discrete
time intervals.

DISPLACEMENTS FROM SOIL CREEP. Lateral displacement from long-term loading, pro-
ducing secondary consolidation or creep, has not been much addressed for lateral piles. Kup-
pusamy and Buslov (1987) gave some suggestions; however, the parameters needed for the
necessary equations are difficult to obtain. Although one could consult that reference, their
equations are little better than simply suggesting that, if the lateral load is kept under 50 per-
cent of the ultimate, the creep displacement for sand after several years is not likely to exceed
10 percent of the initial lateral displacement.

For clay, the creep will depend on whether it is organic or inorganic. The creep displace-
ment may be as much as the initial displacement for an organic clay but only about 15 to 20
percent for an inorganic one. One might compute a lateral influence depth of approximately
5 X projected width of pile/pier = Hf and use Eq. (2-49) for a numerical estimate if you
have a secondary compression coefficient Ca.

Laterally loaded piles in permafrost also undergo creep. Here the creep depends on the tem-
perature, quantity and type of ice, and the lateral pressure, generally expressed as a "creep"
parameter. Neukirchner (1987) claims to have a reasonable solution, but the creep parameter
is so elusive that there is substantial uncertainty in any permafrost creep estimate.

When lateral piles undergo creep, the effect is to increase the lateral displacement and
bending moment. The goal is an estimate of the final lateral displacement and bending mo-
ment. The bending moment might be obtained in any situation where creep is involved by
simply measuring the displacements and, using the current lateral displacement as the spec-
ified displacement in program FADBEMLP, computing the moment produced by that dis-
placement.

Alternatively since creep decreases approximately logarithmically it might be obtained
by plotting the displacement at several time intervals (long enough to be meaningful) and
numerically integrating the curve to find the anticipated total lateral displacement for input
so as to compute the lateral pile bending moments.

16-15.4 Including the P-A Effect

The P-A effect can be included for lateral piles (refer to Fig. 16-21) in a straightforward
manner as follows:

1. Draw the partially embedded pile to rough scale, code the nodes, and locate the node
JTSOIL. We will use JTSOIL as the reference node.

2. Make an execution of the data with the horizontal force Ph located at the correct node
above JTSOIL. This will generally be at the top of the pile where the vertical load Pv also



P - A moment at node JTSOIL
JTSOIL

•Nodes

JTSOIL

Figure 16-21 The geometric P-A effect for laterally loaded piles.

acts. Until you become familiar with program FADBEMLP you should use the pile and
load geometry which corresponds to Fig. 16-21.

3. Inspect the output, and at the top node where Pv acts there will be a lateral displacement
(let us use, say, A = 0.40 m and a vertical force Pv = 60 kN). From the lateral displace-
ment, which is with respect to the original position of node JTSOIL, a P - A moment can
be computed (see inset of Fig. 16-21) of 60 X 0.40 = 24 kN-m.

4. Make a copy of the original data and change NNZP from 1 (for the horizontal force only)
to 2 to include both the original horizontal force and the P - A moment just computed of 24
kN- m. If we assume JTSOIL = 11, the moment NP location is 2 X 11 - 1 = 21 .

5. In the data file you can see the horizontal load and its NP number. Just below, enter 21 and
the moment value of 24. Note from the inset, however, that the moment has a negative
sign. The two load matrix entries would now read

Node Load
2 Pf1 (this is the problem value)

21 - 2 4 . 0



Given: 0 = 32°; /5 = 0°; 8 = 20°

unfactored ks = 200 + 4OZ"; Coulomb / ^ = 6.89 (a = 90°)

a = 100° -> A^ = 11.35 (use prog. FFACTOR) a = 80°-> K^ = 4.89

Cm = 11.35/6.89 + 2(0.5) = 2.65 C1n = 4.89/6.89 + 2(0.5) =1.71

^ = 2.65(200 + 400Zn) ks= 1.71(200 + 400Z")

= 530 + 1060Z" = 342 + 684Z"

(a) Definition of batter angle a for adjustment of C1n for ks.

Figure 16-22 Adjusting ks factor Cm for pile batter and spacing and/or location in group.

6. Now execute this data set (if the sign is correct the top node displacement A will slightly
increase). Obtain the displacements, and if the previous Ap - Acurrent — some convergence
(not in program but decided by the user), say, 0.005 m or less, stop. Otherwise continue
to compute a new P-A moment and recycle.

Note that the second data set has two changes initially: (1) to increase NNZP by 1 and (2)
to input the P-A moment. After this, the only change to that second data set is to reinput the
new P-A moment until the problem converges.

The node JTSOIL will probably move laterally also, and the most critical P-A moment is
not the difference between the top node and node JTSOIL but between the top node and some
node farther down that does not move laterally. You could, of course, put the P-A moment
at this location, but the foregoing suggested solution is generally adequate. You can also use
the difference between the top translation and the computed translation at node JTSOIL, but
this is less conservative.

16-15.5 Lateral Piles on Slopes

Laterally loaded piles are frequently sited on slopes, for example, power poles and bridge
foundations. It is suggested that the same procedure be used to reduce the lateral ks val-
ues as was used for the sheet-pile wall case. That is, use program WEDGE or FFACTOR to



Rear Rear

Front Front

(b) Pile spacing s' and location for cm adjustments for ks.

compute the passive force (or coefficient Kp) case for the horizontal ground line and for the
actual ground slope and use the ratio RF as in Eq. (13-3). Because the side shear part from
factor Cm is not required to be reduced, you should apply the slope ratio RF only to the face
(or bearing) part of &s. For example, compute ks = 2000 based on using Cm = 2; RF = 0.6.
This calculation gives ks\ = 2000/Cm = 1000 = ks2. The revised ks = ks2 + RF X ^ 1 =
1000 + 0.6 x 1000 = 1600.

16-15.6 Battered Piles

The ks for battered piles has not been addressed much in the literature. In the absence of
substantiating data the author suggests (see Fig. 16-22^) the following:

1. Compute the Coulomb passive earth pressure coefficient Kp for a vertical wall (a = 90°),
including any slope angle /3. A lateral pile is a "passive" earth-pressure case but requires
including side shear effects since the Coulomb case is one of plane strain.

2. Next draw the battered pile and place a perpendicular load on the pile with the (+) di-
rection as shown on Fig. 16-22a. The perpendicular load direction should correspond to
that used to establish the batter direction [will be either (+) or (-)]. Draw a horizontal
component line as, say, Px as shown.

3. Now measure (or compute) the batter angle a. It is counterclockwise from a horizontal
line at the pile tip for the (+) load perpendicular; it is clockwise for a (-) load perpendic-
ular. For the (+) perpendicular shown on Fig. \6-22a we have a > 90° if the horizontal
component is below and a < 90° if the horizontal component is above the perpendicular.

4. Compute a Coulomb passive pressure coefficient Kpb for the applicable batter angle a.
Use program FFACTOR. You probably should include a pile-to-soil friction angle 8.

Side

Corner



5. Compute a revised ks as

ks = 11.0 x ^ U (2 x 0.5)

This calculation should give the expected result of a larger ks for a > 90° and a smaller
&5 for a < 90° for the (+) case shown on Fig. 16-22a.

Note: We only adjust the face or bearing part of ks because the side shear should be about
the same for either a vertical or a battered pile.

16-15.7 Adjusting ks for Spacing

It is generally accepted that there is a reduction in the lateral subgrade modulus ks when piles
are closely spaced. Poulos (1979) suggested using factors from curves developed using an
elastic analysis of pile-soil interaction (i.e., Es, /x,), which are then combined to give a group
factor. This method does not seem to be used much at present.

The following method (refer to Fig. 16-22&) is suggested as an easy-to-visualize alternative
to obtain the lateral modulus for individual piles in a group:

1. Referring to the Boussinesq pressure bulb (Fig. 5-4) beneath a rectangular footing, we
see that at a D/B > 6 the pressure increase on the soil is negligible. So, using a clear
pile spacing s' for depth D and pile projected width for B, we can say that if s'/B > 6 no
adjustment in ks is necessary.

2. For spacings of s'/B < 6 use Fig. 5-4 ("Continuous") and multiply the face bearing term
by (1.0 - interpolated pressure intensity factor). For example at s'/B = 2, we obtain 0.29,
and the face term is 1.0 X (1.0 - 0.29) = 0.71 (here 0.29, or 29 percent, of the pressure
is carried by the front pile). This is the face factor contribution to Cm (= 2 sides + face
= (2 X 0.5)+ 0.71 = 1.71).

3. For the side shear factor contribution to Cm we have two considerations:
a. Location (corner, front, side, interior, or rear)
b. What reduction factor (if any) to use

Clearly for side and corner piles one side is not affected by any adjacent pile so for those
we have some interior side interaction factor ^ + an exterior factor of 0.5. For front, interior,
and rear piles we have a side interaction factor of 2W.

One option is to consider that any pile insertion increases the lateral pressure so that the
use of ^ = 0.5 is adequate. Another option is to consider that enough remolding takes place
that the soil is in a residual stress state and to reduce the 0.5 side factor to

, _ Residual strength
Undisturbed strength

16-15.8 Estimating Required Length
of a Laterally Loaded Pile

The required length of a laterally loaded pile has not been directly addressed in the literature.
Obviously, it should be long enough to provide lateral stability, and if there is an axial load,
the pile must be long enough to develop the required axial capacity.



We can obtain the required pile embedment length for lateral stability (it was previously
noted that usually the upper one-third of the pile actively resists the lateral loads) as follows:

1. Compute the embedment length required for any axial load. If there is no axial load ini-
tially, try some reasonable length, say, L'.

2. Use computer program B-5 with your lateral load Py1 and obtain a set of output.

3. Inspect the horizontal displacement 8hp at the pile base (or point). If the absolute value
of Shp ~ 0.0, the pile length is adequate. If \Shp\ > 0.0, you have to decide whether the
length is adequate, since this amount of displacement may be indicative of a toe kickout
(lateral soil failure). Also check that the active (zone of significant bending moment) depth
is approximately L'/3. Now do two other checks:
a. Depending on how you initialized L\ you may want to increase it by 20 to 30 percent

to allow for a modest stability number (SF).
b. Make two additional program executions using 1/2 and 2 times the initial value of

lateral subgrade modulus ks. If both these executions give 8hP ~ 0.0, you have an
adequate pile embedment depth L'. If 8hp > 0.0 (particularly for the ks/2 case), you
probably should increase L'.

If you increase L' based on either (a) or (ft), you should recycle to step 2. When you find
an V value that satisfies the toe-movement criteria, you have a suitable pile embedment
depth. The total pile length is then Lp = V + pile length above soil line.

16-15.9 Pile Constants for Pile Group Analyses

The lateral pile program B-5 can be used to obtain the pile constants needed for the group
analysis of Chap. 18. Figure 16-19 illustrates how the node displacements are specified in
order to obtain the required computer output. Figure E16-13c illustrates how the output is
plotted to obtain curve slopes that are the desired constants. The units of these constants
produce either shear springs (translation for P/8) or rotational springs (M/0). The specific
procedure for a given pile is outlined in Example 16-13 following. The general procedure is
(for either partially or fully embedded piles) to select one of the two axes and do the following:

1. Fix the pile head against translation [NZX = 1 and NXZERO(I) = 2 since
NP = 2 is the translation NP at node I]. Apply a series of moments for NP = 1 (or
only one moment if a linear model is assumed). The computer output gives the corre-
sponding rotations at node 1, which are plotted versus M. Also plot the unbalanced force
(required to restrain translation) versus M as in Fig. E16-13c curve A. The slopes of these
two curves are two of the required pile constants.

2. Fix the pile head against rotation [NZX = 1,NXZERO(I) = I]. Apply a series of lateral
loads for NP = 2 (or a single load if a linear model is assumed). The computer outputs
translations at node 1, which are plotted versus input load P. Also plot the "near" end
moment in element 1 (the rotation-fixed node) versus P. These two plots are shown in
Fig. E16-13c curve B. The slopes of these two curves are also two of the required pile
constants.

3. If the pile is round, the preceding two items complete the necessary computer usage since
either axis gives the same output. If the pile is rectangular or an HP pile, one set of data



(for four constants) uses the moment of inertia about the x axis and a second set (the other
four constants) uses the moment of inertia about the y axis.

4. Strictly, there will be a set of constants for each of the corner, side, front, interior, and rear
piles (including batter effects) in a pile group, although some of the constants may be the
same for several piles depending on the group geometry. The reason is that the lateral soil
modulus ks will be different for the several piles (although many analyses have been done
using a single ks and set of pile constants for the group). A single ks is used for Example
16-13 and for the group examples in Chap. 18 to save text space and make the examples
easier to follow.

16-16 LATERALLY LOADED PILE EXAMPLES

The following several examples will illustrate computing ks for a laterally loaded pile and
using your program FADBEMLP to analyze lateral piles.

Example 16-10.

Given, A soft silty clay with average qu = Al.5 kPa and, from a consolidation test, mv = 5.32 X
10"5 m2AN. An HP 310 X 174 pile (d = 324; b = 327 mm; and Ix = 394 X 10"6 m4) is to be
used.

Required. What is the lateral ks by Vesic's Eq. (9-6) and Bowles' method?

Solution.

a. Use Vesic's Eq. (9-6) and take /x = 0.45. We find

Es « 200su = \00qu = 100 X 50 = 5000 kPa

Use Es = 5300 kPa

Using Eq. (9-6) with Es = 5300; Epilc = 200 000 MPa; B = 327 mm (0.307 m), we obtain

* S - 2 X O 6 5 1 2 / ^ X E* . 1 3 i 2 / 5 3 0 a 0 x a 3 2 7 ^ 5300.0
ksB- 2X0.65 ^ - X 1 - ^ 5 - 1 . 3 V 200X394 X 1 - 0.45*

= 1.3 x 0.550 X 5300/0.798 = 4749 kPa

ks = 4749/0.327 = 14520ZnkN/m3 (slight rounding)

b. Using Bowles' method and qa = qu with an SF = 3, a square pile gives Fw>i = 1.0, and doubling
for side shear, Cm = 2.0. Then

ks = FWtX X 2 X C X SF X qu = 1 X 2 X 40 X 3 X 50 = 12000Zn kN/m3

Note that C has units of 1/m.

Check the API method where qu\t = 9c = 4.5qu.

ks = FWtX x 2 x C x qult = 1 x 2 x 40 x 4.5 x 50 = 18000Z" kN/m3

If qu is the average for the range of the embedment depth of the pile, one would use the exponent



What would you recommend for ks for this pile(s)? The author would be reluctant to use much
over 10 000Zn kN/m based on the range of the three computed values shown.

////

Example 16-11. Given the soil profile of Fig. E16-6 containing average blow counts for each 2.4
m (8 ft) of depth as follows: 10, 15, 20, and 25. Compute a reasonable equation in the form of

ks = AS + BS * Zn

Solution. Using Eq. (16-29) and converting the Af values given to NJO, we obtain ks at these points:

-1.2 650 X N = 650 X 10(55/70) = 5100 (rounding)
-3.6 650 X 15 X 0.786 = 7600
-6.0 650 X 20 X 0.786 = 10200
-8.4 650 X 25 X 0.786 = 12700

These values are used to plot a curve of Z versus ks, which is approximately linear. If we extend it
to Z = 0, the intercept is AS = 4000. With this value and at Z = 8.4 we solve

AS + BS X Z1 = 12700 = 4000 + BS X 8.4

BS = 1036 (rounded)

The resulting equation is

ks = 4000 + 1036Z

In using this equation we would want to use FACl and FAC2 on the first two nodes since sand
would have little lateral capacity at Z = 0.

////

Example 16-12. This and Example 16-13 require that you use program FADBEMLP on your
diskette. The data set for this example is EX1612.DTA. Its use illustrates using several load cases
in a single execution—four in this example.

Given. The pile-soil geometry shown in Fig. E16-12a, which is from a series of lateral pile tests
for a lock and dam on the Arkansas River in the mid-1960s. The approximate data can be found in
Alizadeh and Davisson (1970) in Fps units, but the author had access to one of the original reports
provided to the U.S. Army Corps of Engineers (who built the lock and dam). The 406-mm (16-in.)
diameter pile test was selected for this example. The test used four loads as given in the table on
Fig. E16-12a.

Solution.

Step 1. Divide the pile into a number of segments. The pile was loaded 0.03 m (0.1 ft) above the
ground surface, but this will be neglected. We will take the top two elements as 0.335 m and 0.3
m and increase the lengths to 0.6 for four elements, etc. as shown on the output sheet Fig. E16-
\2b. The pile moment of inertia was given in the report as 0.3489 X 10~3 m4 (838.2 in.4). The pipe
being steel, £piie = 200 000 MPa. The length was given as 16.12 m (52.8 ft). The width is the pipe
diameter, or 0.406 m.

Step 2. Estimate ks. Use Eq. (16-26a) with Cm = 2.0; and the shape factors FWt\ = 1.5 and Fw>2 =
3.2. Obtain from Table 4-4 Nq = 23.2 and Ny = 20.8; use no depth or shape factors.



Node 5 =-1.835 m.
Computed moments rounded.
*Only 2 cases for Fig. E16-12b.

1 ^ Ph, kN Node M - ' k № m

L ( - Computed Measured

1 93.4 5 81 81
2 140.1 5 128 115
3 191.3 5 166 163
4 249.1 5 216 206

Soil = sand
7'=9.90kN/m3

0=32°

ks= 5000 + 58 800Oz1

GWT

406 mm (16 in.) diameter

/ = 0.3489 x 10"3m4

Ep = 200 000 MPa
Lp =16.12 in (52.8 ft.)

E
le

m
=

 1
1

Figure E16-12a

Making substitutions (y' = 9.8 kN/m3), we obtain

ks = 80 x 1.5 x 0.5 x 9.9 x 0.406 x 20.8 + 8Ox 3.2 x 9.9 x 23.2Z1

ks = 5000 + 58 800Z1 (using minor rounding)

These values are input to the program (and shown on Fig. E16-12b). The modulus reduction factors
FACl, FAC2 = 1.0. For node 1 the lateral displacement 8h = 0.00817 m = 8.17 mm versus about
6.6 mm measured for the 140.1 kN load.

This output compares quite well both in displacements and maximum moment (and its location),
and this aside from the fact the lateral modulus was computed only one time using the foregoing
input. The results might be somewhat improved using an exponent of 0.4 or 0.6 instead of 0.5, but
this supposition is left as a reader exercise. Certainly the output is well within the scatter one would
expect in testing several piles at a site.

The file EX1612.DTA was edited to use only two load cases for text output; all four load cases
are in the file for reader use.

You have a plot file option in this program by which you can save data to a disk file for later
plotting using a CAD plotting program. The file contents are output to paper (but only if the plot



ARKANSAS LOCK AND DAM TEST PILE NO. 2—406 NM (16-IN) PIPE

+++++++++++++++++ THIS OUTPUT FOR DATA FILE: EX1612.DTA

SOLUTION FOR LATERALLY LOADED PILE—ITYPE = 1 +++++++-I-++
NO OF NP = 26 NO OF ELEMENTS, NM = 12 NO OF NON-ZERO P, NNZP = 1
NO OF LOAD CASES, NLC = 2 NO OF CYCLES NCYC = 1

NODS SOIL STARTS JTSOIL = 1
NONLINEAR (IF > O) = O NO OF BOUNDARY CONDIT NZX = O

MODULUS KCODB = 2 LIST BAND IF > O = O
IMET (SI > O) = 1

INERTIA, M**4

.34890E-03

.34890E-03

.34890E-03

.34890E-03

.34890E-03

.34890E-03

.34890E-03

.34890E-03

.34690B-03

.34890E-03

.34890E-03

.34890E-03

WIDTH

.406

.406

.406

.406

.406

.406

.406

.406

.406

.406

.406

.406

LENGTH

.335

.300

.600

.600

.600

.600
1.000
1.200
1.500
3.000
3.000
3.385

NP4

4
6
8

10
12
14
16
18
20
22
24
26

NP3

3
5
7
9

11
13
15
17
19
21
23
25

NP 2

2
4
6
8

10
12
14
16
18
20
22
24

NPl

1
3
5
7
9

11
13
15
17
19
21
23

MEMNO

1
2
3
4
5
6
7
8
9
10
11
12

THE INITIAL INPUT P-MATRIX ENTRIES
NP LC P(NP,LC)
2 1 93.400
2 2 140.100

MOD OF ELASTICITY E = 200000. MPA
GROUND NODE REDUCTION FACTORS FOR PILES, FACl,FAC2 = 1.00 1.00

EQUATION FOR KS = 5000.0 + 58800.O*Z**1.00

THE NODE SOIL MODULUS, SPRINGS AND MAX DEFL:
MAX DEFL, M

.0250

.0250

.0250

.0250

.0250

.0250

.0250

.0250

.0250

.0250

.0250

.0250

.0000

SPRING,KN/M
786.5

3095.3
8809.4
18907.7
27502.0
36096.2
62133.6
109943.1
174678.4
393186.8
703295.1
986845.7
609169.8

SOIL MODULUS
5000.0
24698.0
42338.0
77618.0
112898.0
148178.0
183458.0
242258.0
312818.0
401018.0
577418.0
753818.0
952855.9

NODE
1
2
3
4
5
6
7
8
9

10
11
12
13

Figure E16-12&



BASE SUM OF NODB SPRINGS = 3134450.0 KN/M NO ADJUSTMENTS
* = NODE SPRINGS HAND COMPUTED AND INPUT

MBMBBR MOMENTS, NODE REACTIONS, DEFLECTIONS, SOIL PRESSURE, AND LAST USED P-MATRIX FOR LC = 1
P-, KN

93.40
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00

P-, KN-M
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00

SOIL Q, KPA
27.22
109.93
152.44
164.19
114.63
47.10
8.02
43.82
25.89

.43

.89

.18

.05

DBFL, M
.00544
.00445
.00360
.00212
.00102
.00032

-.00004
-.00018
-.00008
.00000
.00000
.00000
.00000

ROT, RADS
-.00299
-.00292
-.00274
-.00217
-.00149
-.00086
-.00038
.00003
.00009
.00003

-.00001
.00000
.00000

SPG FORCE, KN
4.28
13.78
31.72
40.00
27.92
11.47
-2.71
-19.89
-14.45

.42
1.08
-.24
.03

NODE
1
2
3
4
5
6
7
8
9

10
11
12
13

END 1ST, XN-M
29.855
52.463
78.643
80.827
66.255
44.799
11.754
-4.037
-2.094

.523
-.101
.000

MOMENTS—NEAR
-.001

-29.857
-52.462
-78.643
-80.827
-66.255
-44.799
-11.754
4.037
2.094
-.523
.101

MBMNO
1
2
3
4
5
6
7
8
9

10
11
12

SUM SPRING FORCES = 93.41 VS SUM APPLIED FORCES = 93.40 KN

(*) = SOIL DISPLACEMENT > XMAX SO SPRING FORCE AND Q = XMAX*VALUB ++++++++++++
NOTE THAT P-KATRIX ABOVE INCLUDES ANY EFFECTS FROM X > XMAX ON LAST CYCLE ++++++++++

MEMBER MOMENTS, NODE REACTIONS, DEFLECTIONS, SOIL PRESSURE, AND LAST USED P-MATRIX FOR LC = 2
P-, KN
140.10

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

P-, KN-M
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00

SOIL Q, KPA
40.83
164.90
228.66
246.29
171.95
70.65
12.02
65.73
38.83

.65
1.33
.27
.07

DEFL, M
.00817
.00668
.00540
.00317
.00152
.00048

-.00007
-.00027
-.00012
.00000
.00000
.00000
.00000

KN ROT, RADS
-.00448
-.00437
-.00411
-.00326
-.00223
-.00129
-.00057
.00004
.00014
.00004

-.00001
.00000
.00000

SPG FORCE,
6.42
20.67
47.58
60.00
41.89
17.21
-4.07
-29.83
-21.68

.63
1.62
-.36
.04

NODE
1
2
3
4
5
6
7
8
9

10
11
12
13

END 1ST, KN-M
44.782
78.696
117.965
121.240
99.383
67.199
17.631
-6.056
-3.141
.784

-.151
.000

MOMENTS—NEAR
.001

-44.783
-78.694
-117.965
-121.240
-99.383
-67.199
-17.631
6.056
3.141
-.784
.151

MEMNO
1
2
3
4
5
6
7
8
9

10
11
12

SUM SPRING FORCES = 140.12 VS SUM APPLIED FORCES = 140.10 KN

{*) s SOIL DISPLACEMENT > XMAX SO SPRING FORCE AND Q = XMAX*VALUE +•++++++++++
NOTE THAT P-MATRIX ABOVB INCLUDES ANY EFFECTS FROM X > XMAX ON LAST CYCLE ++++++++++

Figure E16-12£ (continued)



file is created) with headings so you can identify the contents of the plot file. You can use the paper
output to plot shear and moment diagrams by hand if you do not have a plotting program.

Example 16-13. This example illustrates how to obtain pile constants as required for the pile cap
analysis using computer program FAD3DPG (B-IO) or program B-28. For this analysis an HP360 X
174 is used with the required data of d = 361 mm; b = 378 mm; Ix = 0.5080 X 10"3 mA\Iy =
0.1840 X 10~3 m4. These and selected other data are shown in Fig. E16-13<2, including the element
lengths and number of nodes. The soil modulus is somewhat arbitrarily taken as

ks = 200 + 50Z0 5

partly to illustrate using an exponent less than 1.0. A spring taken as 0.9 X computed value is input
for the cases of translation but no rotation (the first node spring can be anything since it is not used
for the case of no translation but node rotation). The input of a spring here is to illustrate how it is
done.

To obtain four sets of pile constants we must make two executions with respect to each prin-
cipal axis of the pile. In one execution node 1 is fixed to allow rotation but no translation (data
set EX1613A.DTA); in the second execution the node is fixed to allow translation but no rotation
(EX1613B.DTA). You have this sample output set as Fig. E16-13Z?. Data sets EX1613C.DTA and
EX1613D.DTA are similar but with respect to the y axis.

From execution of all the data sets one can plot the Curves A and B of Fig. E16-13c. The loads
were somewhat arbitrarily chosen after making several trial runs using different values of ks so
that displacements and rotations would be large enough to produce easily identifiable data for the
textbook user.

Pile input data: HP360 X 174 Obtain Ix, bf\ Iy, d from Table A-I

E = 200000MPa

10 elements: 3 @ 1, 2 @ 1.5, 2 @ 2, and 3 @ 3 m

Kx = 200 + 50Z05

REDFAC = 0.9

Comments, (see figures on pages following)

1. Ph = 50.78 kN is plotted versus 8 = 0.06206 m for one curve with respect to the x axis.

2. The fixed-end moment (from no rotation) of 208.483 kN • m is plotted versus 8 = 0.06206 m
for a second curve, also with respect to the x axis.

3. The other two curves with respect to the x axis are obtained from executing data set
EX1613A.DTA.

16-17 BUCKLING OF FULLY AND PARTIALLY EMBEDDED
PILES AND POLES

The author, using a method presented by Wang (1967) for buckling of columns of variable
cross section, developed a procedure that can be used to obtain the buckling load for piles
either fully or partially embedded. The method is easier to use and considerably more ver-
satile, if a computer program such as B-26 is available, than either the methods of Davisson
and Robinson (1965) or those of Reddy and Valsangkar (1970). This method can be used to



My = P1= 50.78 kN • m (EX1613A • DTA)
= P2 = 50.78 kN (EX 1613B • DTA)

Ix = 0.5080 x 10-3IIi4

/y = 0.1840 xlO-3m4

18.44 kN(EX1613D- DTA)

18.44 kN • m (EX1613C DTA)

NM=IO
NNODES = Il
NP = 22
JTSOIL = 1
NCYC = 1
NRC =l(B&D only)

Figure E16-13a

Y axis



USING H360 X 174 TO OBTAIN PILE CONST FOR EXAH 18-7—TRANSL—NO ROTAT

+++++++++++++++++ THIS OUTPUT FOR DATA FILE: EX1613B.DTA

SOLUTION FOR LATERALLY LOADED PILE—-ITTPE = 1 ++++++++++

NO OF NON-ZERO P, NNZP = 1
NO OF CYCLES NCYC = 1

NO OF BOUNDARY CONDIT NZX = 1
LIST BAND IF > O • O

IMBT (SI > O) s 1

NO OF NP * 22 NO OF ELEMENTS, NM = 10
NO OF LOAD CASES, NLC = 1

NODE SOIL STARTS JTSOIL = 1
NONLINEAR (IF > O) * O

MODULUS KCODS = 2

INERTIA, M**4

.50800E-03

.50800E-03

.50800E-03

.50800E-03

.50800B-03

.50800B-03

.50800K-03

.50800B-03

.50800E-03

.50800E-03

WIDTH

.378

.378

.378

.378

.378

.378

.378

.378

.378

.378

LENGTH

1.000
1.000
1.000
1.500
1.500
2.000
2.000
3.000
3.000
3.000

NP4

4

8
10
12
14
16
18
20
22

NP3

3
5
7
9

11
13
15
17
19
21

NP2

2
4
6
8

10
12
14
16
18
20

NPl

1
3
5
7
9

11
13
15
17
19

MBMNO

1
2
3
4
5
6
7
8
9
10

NX BOUNDARY CONDITIONS = 1

BOUNDARY VALUES XSPBC = .0000

THE INITIAL INPUT P-MATRIX ENTRIES
NP LC P(NP,LC)
2 1 50.780

MOD OF ELASTICITY E = 200000. MPA

GROUND NODE REDUCTION FACTORS FOR PILES, FACl,FAC2 = 1.00 1.00

EQUATION FOR KS = 200.0 + 50.0*Z** .50

+++++NUMBER OF NODE SPRINGS INPUT = 1

Figure E16-13fc



THE NODE SOIL MODULUS, SPRINGS AND MAX DEFL:
MAX DEFL, M

.0250

.0250

.0250

.0250

.0250

.0250

.0250

.0250

.0250

.0250

.0250

SPRING,KN/M
36.8*
92.7
102.0
136.3
173.3
214.2
257.8
340.5
430.8
453.3
233.6

SOIL MODULUS
200.0
250.0
270.7
286.6
306.1
322.5
341.4
358.1
380.3
400.0
417.9

NODE
1
2
3
4
5
6
7
8
9
10
11

BASE SUM OF NODE SPRINGS = 2475.2 KN/M NO ADJUSTMENTS
* s NODE SPRINGS HAND COMPUTED AND INPUT

MEMBER MOMENTS, NODE REACTIONS, DEFLECTIONS, SOIL PRESSURE, AND LAST USED P-MATRIX FOR LC = 1
P-, KN

50.78
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00

P-, KN-M
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00

SOIL Q, KPA
12.41
15.28
15.86
15.73
14.67
12.94
10.10
7.07
2.65
1.51
5.69

DEFL, M
.06206
.06112
.05859
.05489
.04794
.04014
.02959
.01973
.00697

-.00378
-.01361

ROT, RADS
.00000

-.00181
-.00318
-.00415
-.00501
-.00531
-.00516
-.00467
-.00387
-.00337
-.00323

SPG FORCE, KN
2.29
5.66
5.98
7.48
8.31
8.60
7.63
6.72
3.00

-1.71
-3.18

NODE
1
2
3
4
5
6
7
8
9
10
11

END 1ST, KN-M
-159.990
-117.168
-80.323
-36.280
-4.697
20.219
29.876
24.209
9.535
.000

MOMENTS—NEAR
208.483
159.988
117.161
80.320
36.281
4.698

-20.218
-29.876
-24.209
-9.535

MEMNO
1
2
3
4
5
6
7
8
9
10

SUM SPRING FORCES = 50.77 VS SUM APPLIED FORCES = 50.78 KN

(*) = SOIL DISPLACEMENT > XMAX SO SPRING FORCE AND Q = XMAX*VALUE ++++++++++++
NOTE THAT P-MATRIX ABOVE INCLUDES ANY EFFECTS FROM X > XMAX ON LAST CYCLE ++++++++++



Curve A: translation but no rotation. Curve B: rotation but no translation.

Figure E16-13c

analyze the buckling load of other pole structures such as steel power-transmission poles [see
ASCE (1974) and Dewey and Kempner (1975)] or even columns of varying end conditions.

The method used in program B-26 consists in the following steps:

1. Build the ASAT matrix and obtain the ASAT inverse of the pile system for whatever the
embedment geometry. It is necessary in this inverse, however, to develop the matrix such
as shown in Fig. 16-23«. All the rotation P-X are coded first, then the translation P-X
values. The resultant matrix can be partitioned as

In = ^i ^l *R
Ps A2 A3 Xs

2. From the lower right corner of the ASAT inverse (Fig. 16-236) take a new matrix called
the D matrix (of size NXS X NX5), identifying the translation or sidesway X's as

Xs = DP5 (a)

3. Develop a "second-order string matrix" considering one node deflection at a time as Fig.
16-246:

Pf
s = GXsPcr (b)

4. Since Pr
s must be equal to Ps, substitute (b) into (a), noting that Pcr is a critical load column

matrix for which the placing order is not critical, to obtain

y axis
y axis

(16-34)



Figure 16-23 (a) General coding and notation used in the pile-buckling problem. The ground line can be spec-
ified at any node. Develop the ASAT, invert it, and obtain the D matrix from the location shown in (b).

This is an eigenvalue problem, which can be solved to some predetermined degree of
exactness (say, AX = 0.000000 1) by an iteration process proposed by Wang as follows:

1. Calculate the matrix product of DG (size NXS X NXS) and hold.

2. As a first approximation set the column matrix Xs(i) = 1.00.

3. Calculate a matrix X's = DGX5 using the value 1.00.

4. Normalize the X's matrix just computed by dividing all the values by the largest value.

5. Compare the differences of Xs -X's< AX and repeat steps 2 through 5 until the difference
criterion is satisfied. On the second and later cycles the current matrix values of Xs are
computed from the values of Xs from one cycle back.

6. When the convergence criterion has been satisfied, compute the buckling load using the
largest current values in the X's and Xs matrix as

y
p _ ^ s , max

c r ~~ Y
^ s, max

This step is simply solving Eq. (16-34) for PCY with the left side being the current compu-
tation of Xy using the preceding cycle X's on the right side.

If higher buckling modes are desired, and one should always compute at least the first two
since this method does not always give the lowest buckling load on the first mode (especially

№)

W



Part of P9

(a) Use one node deflection at a
time to develop the G matrix.

(b) The G matrix for the number of
elements given in (a).

Figure 16-24 The G matrix. For partially embedded piles m will be 1 until the soil line is encountered.

if the values are close together), one may continue steps 1 through 6 using a revised DG
matrix for step 1 obtained from the following matrix operation:

{DG}/+, = {DG}/ - YLYAXs{GXs}
T)i (16-35)

where / identifies the current mode and / + 1 is the next higher mode. For proof of the validity



Figure 16-25 Variation of PCT with depth of embed-
ment of the pile or pole. PER = computer program
variable used by the author relating the assumed amount
of Pcr at the point. KPER = computer variable to spec-
ify type of skin resistance reduction as shown.

of Eq. (16-35) see Wang (1967). The values of PCT and X are obtained as the values of the ith
buckling mode.

Any variation of skin resistance to reduce Pcr, as illustrated in Fig. 16-25 to develop the
string matrix, can be used. Note that no skin resistance is used in developing the ASA and
corresponding D matrix since the assumption of small values of rotation and translation for
vertical piles does not produce any skin-resistance effect. Note also that the lateral soil resis-
tance effect is included only in the ASAT matrix and not in the G matrix.

This solution can be readily compared with the theoretical solutions by applying one large
soil spring at the top and bottom of the pile and no intermediate values (i.e., the pile becomes
a beam column). It is possible to use a method (similar to that in your included computer
program B-5) of zeroing boundary conditions, except that this will not work for the case of a
fully embedded pile with top and bottom both specified zero. Satisfactory results can usually
be obtained with 8 to 15 finite elements.

Example 16-14. To illustrate pile buckling and the effect of soil on buckling of piles, the following
example will be presented. Its solution requires use of program FADPILB
(B-26), but you can see how buckling loads are affected by the soil from careful study of the
example.

Given. A 254-mm diam X 6.35-mm wall (10 X 0.25 in.) pipe pile that is 12 m in length. It is
embedded 5 m in an extremely soft soil (average qu for full depth is only 10 kPa) with the point
on rock as shown in Fig. E16-14a. We would like to estimate the buckling load. Assume the point
carries 50 percent of the buckling load (side friction carries a significant amount of the load of any
pile in any soil—even though this is a point-bearing design). Assume further that the side friction
distribution is parabolic (KPER = 2) as shown in Fig. 16-23. The first soil spring is reduced 25
percent for driving damage.

Solution. First draw a sketch and locate the pile nodes. Note the P-X coding here is automatically
done as in Fig. 16-23. That is, the rotation P-X values are numbered first, then the translation P-X
values. The program will also compute the moment of inertia of round solid, round pipe, tapered,
and square piles so all you have to input (in this case) is the diameter and wall thickness.

We will have to input ks, and we will use Eq. (16-26&) and not use the Nq-term, giving

(rounded)



Node number

Pipe pile
D= 10" or 254 mm
tw = 0.25"or 6.35 mm

6.35 mm

JTSOIL

NM =14
NP = 30

Soft clay: qu = 10 kPa
Average for full 5 m of embedment

KPER = 2

Rock

Figure E16-14a

The resulting computer output is shown on Fig. E16-14&. The Euler load shown is for a column
fixed at the ground line (making the effective column length 14 m). The Euler equation used is

p _ "'El
cr " kU

where k = 1 for members pinned on each end; = 2 for members fixed on one end; = 0.5 for
members fixed on both ends

L = length of column or member

Other terms have been previously defined.
The program uses JTSOIL; when it is 1 (fully embedded pile) the Euler critical load is computed

for a column pinned at each end. Of course, if ks = 0 the program inputs lateral node springs AT, = 0
so it is actually a column pinned at each end.

The program allows the user to specify boundary cases of fixing one or more nodes, however, in
the case of columns one of the nodes should be fixed by inputting a very large spring.

An alternate Euler load for this example would be for a column that is fixed on one end but 12 m
in length (effective length = 24 m). Inspection of the Euler load of 381.7 kN versus the computed
buckling (or critical) load of 198.0 kN (first mode) seems reasonable. We would expect a partially



254 MM X 6.35 MM TW 12 M L X 5 M EMBEDDED IN SOFT CLAY

NAMB OF DATA FILE USED FOR THIS EXECUTION: EX1614.DTA

DIAMETER OF ROUND SECTION « .25400 M WALL THICK « .006350 M

NO OF PILE ELEMENTS = 14
NODS SOIL STARTS = 8 NO OF BUCKLING MODES REQD = 2

PERCENT POINT LOAD * 50.00 % NO OF NODES W/SPRINGS INPUT = 0
GROUND LINE RBDUCT FAC = .750
MODULUS OF ELASTICITY = 200000. MPA TOTAL PILE LENGTH = 12.00 M

PARABOLIC SKIN RESISTANCE REDUCTION—KPER = 2

PILE EMBEDMENT DEPTH, DBMB = 5.00 M
BMBBD DEPTH SOIL MOD, KS = 3120.000 + .000Z**1.000 KN/M**3

BULBR BUCKLING LOAD = 381.7 KN
BASBD ON AVERAGE I = .000038 M**4

LENGTH (OR L ABOVE GROUND) USED = 7.00 M

MBMNO NPl NP2 NP3 NP4 BLBM L WIDTH I, M**4 NODE SOIL MOD SOIL SPRNG ELEM FRIC
1 1 2 16 17 1.000 .000 .37900E-04 1 .0 .0 1.000
2 2 3 17 18 1.000 .000 .37900B-04 2 .0 .0 1.000
3 3 4 18 19 1.000 .000 .37900E-04 3 .0 .0 1.000
4 4 5 19 20 1.000 .000 .37900B-04 4 .0 .0 1.000
5 5 6 20 21 1.000 .000 .37900E-04 5 .0 .0 1.000
6 6 7 21 22 1.000 .000 .37900B-04 6 .0 .0 1.000
7 7 8 22 23 1.000 .000 .37900E-04 7 .0 .0 1.000
8 8 9 23 24 .500 .254 .379008-04 8 3120.0 148.6$ 1.000
9 9 10 24 25 .500 .254 .37900B-04 9 3120.0 396.2 .995

10 10 11 25 26 .500 .254 .37900B-04 10 3120.0 396.2 .980
11 11 12 26 27 .500 .254 .37900E-04 11 3120.0 396.2 .955
12 12 13 27 28 1.000 .254 .37900E-04 12 3120.0 594.4 .920
13 13 14 28 29 1.000 .254 .37900E-04 13 3120.0 792.5 .820
14 14 15 29 30 1.000 .254 .37900B-04 14 3120.0 792.5 .680

15 3120.0 396.2 .500
$ = NODE SPRING RBDUCED BY FAC = .750

THE BUCKLING MODE SHOWN ON OUTPUT IS USED AS A COUNTER—INSPECTION
OF THE UNIT DEFLECTIONS WILL GIVE THE CURRENT BUCKLING MODE

THB BUCKLING LOAD 18 198.0 KN FOR MODE 1 AFTER 8 ITERATIONS

TKB BUCKLING LOAD IS 1712.1 KN FOR MODE 2 AFTBR 19 ITERATIONS

NODE DISPLACEMENTS—MAXIMUM OF 3 OUTPUT
MODE NO * 1 2
NODB ACTUAL NORMALIZED ACTUAL NORMALIZED

1 .00505 1.00000 .00043 .51830
2 .00424 .83892 .00054 .74109
3 .00344 .68203 .00062 .91452
4 .00269 .53341 .00065 1.00000
5 .00200 .39693 .00062 .97812
6 .00139 .27613 .00053 .85291
7 .00088 .17416 .00040 .65099
8 .00047 .09366 .00025 .41577
9 .00031 .06211 .00018 .30146
10 .00018 .03639 .00012 .19675
11 .00008 .01605 .00006 .10472
12 .00000 .00038 .00002 .02638
13 -.00010 -.02046 -.00006 -.09345
14 -.00017 -.03315 -.00011 -.17971
15 -.00022 -.04303 -.00015 -.25211

Figure EU-Ub



embedded pile in a very soft soil not to have a buckling load as large as the Euler load of the free-
standing part fixed on one end. The computed buckling load of 198 kN should be larger than that
of a 12-m column fixed on only one end. This idea is left for the reader to check.

The critical buckling load of 1712.1 kN for the second mode is larger than the first mode. This
increase is generally the case, but if the second mode is smaller than the first, then the second
buckling mode governs. You should always obtain two buckling modes using a program such as
this.

////

PROBLEMS

Few answers are provided since a major part of pile design is selection of parameters. When param-
eters are provided all one does is solve a given equation.

16-1. A 460-mm diameter pipe pile is driven closed-end 15 m into a cohesionless soil with an esti-
mated <f> angle of 34°. The soil has a yWet = 16.50 kN/m3 and y' = 8.60 kN/m3. The GWT is
6 m below the ground surface. Estimate the ultimate pile capacity P11 using the /3 method and
friction angle 8 = 22°.

Answer: P14 « 510 kN (using K = 1.5KO)

16-2. A H P 3 6 0 X 152 pile is driven into a cohesionless soil with a </> angle = 34°. The soil has
Twet = 17.3 kN/m 3 ; y' = 10.1 kN/m 3 and the G W T is 3 m below the ground surface. Estimate
the pile capacity P11 using a pile length of 16 m, the /3 method, and 8 = 22° soil-to-steel and
26° soil-to-soil (in web zone). Use K = 1.0.

16-3. A pile is driven through a soft cohesive deposit overlying a stiff clay. The G W T is 5 m below
the ground surface and the stiff clay is at the 8-m depth. Other data:

Soft clay Stiff clay

ywet 17.5 19.3 kN/m3

y' 9.5 10.6 kN/m3

su 50 165 kPa

Estimate the length of a 550-mm diam pile to carry an allowable load Pa = 420 kN using an
SF = 4 and the A method.

Answer: L ~ 13 m
16-4. Redo Problem 16-3 using an HP360 X 109 pile.

Answer: L ~ 16 to 16.5 m

16-5. A J taper Union Mono tube pile with a top diam of 457 mm and a taper of 1 : 48 and a length
of 12.2 m is driven into a medium stiff clay deposit with an average su = 67 kPa. The pile will
later be filled with concrete. Estimate the ultimate capacity Pu using the a method and the API
value.

16-6. A Union Monotube F taper shell is driven into a cohesionless deposit with an average </> = 34°.
The ywet = 17.8 and y' = 9.8 kN/m3, and the GWT is 5 m below the ground surface. The pile
top diam = 460 mm and the taper is 1 : 48. For a length of 20 m what is the ultimate pile
capacity using Eq. (16-19)?



Figure P16-7

16-7. For the assigned boring log and pile (A, B, C, or D) of Fig. P16-7 estimate the pile capacity
using Meyerhof s or Vesic's equations for skin resistance and point capacity. These are actual
boring logs that have been converted to SI.

16-8. What is the approximate ultimate pullout resistance T14 for a tension pile in a medium dense sand
with (/> ~ 36°, y = 18.2 kN/m3, and using an 800-mm diameter concrete pile with a length of
5 m (and no bell)?

16-9. For the same data of Prob. 16-8 what is Tu if the diameter is only 300 mm, both without and

with a 1-m diameter bell?

16-10. Verify the skin resistance of the sand layers given on Fig. E16-7&.

16-11. Verify the skin resistance of the clay layers given on Fig. E16-7&. Recompute the a values.
Also, what is the effect if you use a single 27-m layer with a = 1 instead of the three layers of
the example?

16-12. See if you can reproduce the settlement computed and shown on the output sheets of Fig.

E16-76.

16-13. Redo Example 16-8 for Pa = 170 kN and with cs = 0.22 g-cal.

Bedrock at approx. 98'
Rock
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Figure P16-18
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16-14. Check the side resistance of Example 16-8 and estimate if creep will be a problem. If creep is
a problem, how can you reduce its effect?

16-15. What is P11 for Fig. 16-18 if the pile perimeter = 1 . 3 m ; A £ = 2600 MN; L1 = 2 m (for all
three elements); and Ayp = 3 mm? Assume the point load Pp = 40 kN.

Answer: Pu ~ 657 kN

16-16. Do Example 16-12 for the other two load cases and, together with those given on Fig. E16-12&,
make a plot of Ph versus displacement 8. Also plot the shear and moment diagrams for the
assigned load case. If the Ph versus 8 plot is linear, what can be done to make it somewhat
nonlinear since real plots of this type are seldom linear except near the origin?

16-17. Make a copy of data set EX1612.DTA as EX1612A.DTA and apply a lateral load of Ph = 40
kN at node 1. Then make a second copy and fix node 4 against translation; make a third copy
and input a zero spring at node 4. Compare the results and answer the following:

a. What external cause could produce a fixed node 4?
b. What would reduce the spring at node 4 to 0?

16-18. Referring to Fig. P16-18 (see previous page), code and make an estimate of the P-A effect
[i.e., solve with the horizontal load, then resolve where you input a moment (need a 2nd NZX)
produced by the vertical load Pv X Atop with respect to the dredge line, continue doing this until
5tOp converges within about 0.01 m]. The two initial data sets are included as HP1619.DTA and
HP1619A.DTA on your program diskette.

16-19. Redo Example 16-13 using loads as follows:

jc-axis y-axis
Ph = My = 40 Ph = Mx = 20 kN or kN • m

Plot the results and see if there is any difference in the computed curve slopes. Explain why
there is or is not a difference.

16-20. Compute the Euler load for the pile of Example 16-14, assuming it is 14 m long and fixed at the

end bearing on rock, and compare your result with the buckling load shown on Fig. El6-142?.

16-21. Verify that the moment of inertia for the concrete base of Problem 16-22 would be input as

1.744 ft4 so that Est = 30000 ksi applies to all the pile elements. The Ec = 4000 ksi.

16-22. If you have the pile buckling program FADPILB (B-26) compute the buckling load for the
tapered power transmission pole shown in Fig. P16-22. All element lengths are equal.

L= 10 ft (element lengths—use average diameter for /)

£steei = 30000 ksi Ec = 4 000 ksi

Element / in order from top down:

0.07, 0.095, 0.125, 0.155, 0.190, 0.240
0.295, 0.350, 0.410, 0.475, 0.550, 0.640
0.735, 0.825, 1.744, 1.744

Use ks = 100 + 100Z1

Answer: PCT = 216.5 kips (requires program B-26)
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