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ii
LATERAL EARTH PRESSURE

11-1 THE LATERAL EARTH PRESSURE PROBLEM

Lateral earth pressure is a significant design element in a number of foundation engineering
problems. Retaining and sheet-pile walls, both braced and unbraced excavations, grain in silo
walls and bins, and earth or rock contacting tunnel walls and other underground structures
require a quantitative estimate of the lateral pressure on a structural member for either a
design or stability analysis.

The method of plastic equilibrium as defined by the Mohr rupture envelope of Figs. 2-24
and 11-Ia is most generally used for estimating the lateral pressure from earth and other ma-
terials such as grain, coal, and ore. On occasion one may use the finite-element (of the elastic
continuum) method but this has several distinct disadvantages for most routine design. The
FEM has more application for estimating pressure on tunnel liners and large buried conduits
than for most lateral pressure analyses.

Earth pressures are developed during soil displacements (or strains) but until the soil is on
the verge of failure, as defined by the Mohr's rupture envelope (see Fig. 11-la), the stresses
are indeterminate. They are also somewhat indeterminate at rupture since it is difficult to
produce a plastic equilibrium state in a soil mass everywhere simultaneously—most times
it is a progressive event. Nevertheless, it is common practice to analyze rupture as an ideal
state occurrence, both for convenience and from limitations on obtaining the necessary soil
parameters with a high degree of reliability.

Referring to Fig. 11-la, we see two circles that are common to point A and tangent to the
rupture line. Both these circles represent a state of plastic equilibrium in plane strain. One of
the other circles such as EA or AF would be a steady-state K0 condition depending on the
overconsolidation ratio (OCR) defined by Eq. (2-13) (with discussion in Sec. 2-8).

11-2 ACTIVE EARTH PRESSURE

Active earth pressure refers to the plastic equilibrium state defined by rupture circle AC of
Fig. 11-la. This equilibrium state is obtained from Fig. W-Ib and c as follows. First apply



{a) Mohr's circles for the K0 and at plastic equilibrium (or rupture).
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[b) Initial K0 state. (c) Active pressure. (d) Passive pressure.

Figure 11-1 Illustration of the concept of elastic and plastic equilibrium. Note in both (c) and (d) the slip lines
are highly idealized. The stresses in (b), (c), and (d) such as OA, OE, EC are identified on the Mohr's circles of
(a).

stresses OA and OE such that the initial K0 condition is obtained. Next gradually decrease
OE to failure at OC. Stresses OA (maximum) and OC (minimum) can be used to plot a
Mohr's circle. The difference between OA and OC is the circle diameter and is also the
deviator stress as might be obtained in a laboratory GK0UE triaxial test (see Fig. 2-40, case
2). The slip lines form as shown, since the horizontal and vertical planes defining the soil
element in Fig. 1 \-\b are principal planes when the K0 state is developed. The latter is based
on mechanics of materials and is independent of material; however, observations of model
walls in sand indicates the slip-line angle of 45° + </>/2 shown is approximately developed.

The minimum principal stress OC = a^ is termed the active earth pressure and can be
computed using Eq. (2-55), repeated here for convenience:

o-3 = (T1 tan2 (45° - | J - 2ctan(45° - | J (2-55)

This equation was developed by Coulomb about 1776 in a considerably different form;
Bell (1915) appears to be the first published source of the equation in the above form. This
equation is often written in European literature with the following trigonometric relationships
for the tangent function:
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(a) (6) Active case. (c) Passive case.

Figure 11-2 Idealization of active and passive earth pressure from a K0 developed by inserting a wall of zero
thickness (and volume) into a soil mass as in (a).

It is also usual to use Ka for the tan2 term as shown previously in Fig. 4-2 and regularly
used in this chapter. For the tan(45° + 0/2) (passive) values of the next section, reverse the
signs of the sine ratio terms.

Let us investigate the practical implications of Fig. 11-1 by using Fig. 11-2. In Fig. 11-2
we have inserted a wall of zero thickness into a normally consolidated; isotropic, cohesionless
soil mass (we could use any soil but this simplifies the discussion). At this point we have a
K0 stress state on the wall; and the lateral (soil-to-wall or wall-to-soil) pressure is, from the
definition of K0,

(73 = KOCT\

and is triangular since at any depth z the vertical pressure a\ = yz. If we assume the soil is
normally consolidated, K0 can be defined by one of the qualitative stress ratios of Fig. 11 -Ia
as

K - °E

Now let us excavate the soil on the left side of the wall of Fig. 1 \-2a to the depth H in Fig.
W-Ib and c. If the wall does not shear off at point B (termed the dredge line) the wall will do
one of the following:

1. Deflect laterally under the cantilever beam loading causing slip planes to form in the soil as
in Fig. 11 -1 c. The lateral pressure cr̂  = 0-3 on the Mohr's circle plot moves from E toward
O. The Fig. 11-Ic case develops since the K0 pressure exerted on the wall decreases as it
deflects away from (but is followed by) the soil behind the wall.

If the wall displacement is sufficient, the lateral pressure reaches plastic equilibrium at
OC and the wall pressure is a minimum (termed active pressure case) defined from Eq.
(2-55) as

ah = (T\Ka (since c = 0)

This minimum pressure case can be explained from observing that the slip wedge is a
minimum volume at 45° + 4>/2 from the horizontal. That is, the slope of the line from C
to the point of tangency of Fig. H-Ia is also the slope of line BC of Fig. 11-2Z?. The shear
resistance developed on line BC of Fig. \\-2b also reduces the tendency of the wedge
ABC to push against the wall.

If the lateral displacement (8^fl) is limited (by a brace, prop, or wall stiffness), the wall
pressure becomes indeterminate but is intermediate between the K0 and Ka pressures



(pressures OE and OC of Fig. W-Xa). The reason is that soil requires some limiting strain
to mobilize the maximum shear resistance on the slip planes. This active pressure case is
approximately illustrated as case 2 of Fig. 2-40 since Fig. 11 -2b shows the wall rotating
about the base B, whereas Fig. 2-40 shows a wall translation. Wall pressures depend on
both wall movement and mode of movement.

2. Not deflect at all if the wall is sufficiently rigid and in this case the lateral pressure remains
at

ah = yzKo

Since a lateral displacement of the wall produces a state of active earth pressure at the
point where the wall pressure reduces to a minimum, we might ask what happens if there
is no wall. In this case we have cr3 = o^ = 0, and it is evident that if the soil resistance
mobilized on the slip plane (as BC of Fig. ll-2b) is not sufficient to satisfy statics of the
wedge ABC the soil will slip into the excavation. This action can be readily observed in a
small excavation in dry sand where the sides form slopes at some angle with the horizontal.

It should also be evident that as a hole is opened the surrounding soil will immediately
displace laterally along similar slip planes into the cavity. When this shift happens, any device
inserted into the hole must first "push" this displaced soil back to its original location before
the in situ state is reproduced. It turns out that pushing the soil back to its original location is
nearly impossible and, additionally, we introduce changes in the soil structure. This makes it
very difficult to measure K0 in any excavated hole—including boreholes.

Since the wall must displace/rotate laterally away from the soil being retained to produce
active (or Ka) earth pressure conditions, the question is, how much rotation is necessary? This
has been modestly investigated and the following may be used as a guide:

Soil and condition Amount of translation, 8h>a

Cohesionless, dense 0.001 to 0.002//
Cohesionless, loose 0.002 to 0.004//
Cohesive, firm 0.01 to 0.02//
Cohesive, soft 0.02 to 0.05//

As previously stated, if there is not sufficient lateral displacement, the wall pressure is
indeterminate between K0 and Ka. Most walls are designed for resisting active earth pressure
since any rotation that tends to produce failure is usually large enough to allow the active (or
minimum) pressure to develop. If the wall is rigid or if top rotation may be undesirable for
aesthetic reasons, the wall is designed for higher (usually for K0) wall pressures. Even in this
case if the wall starts into failure mode some rotation/translation will take place and the lateral
pressure will start a reduction toward the Ka state. Failures of structural walls are most likely
to occur during backfilling where compaction of the backfill with heavy rollers may induce
a lateral pressure too large for the wall to support. Only in excavations do the conditions
approximate Fig. 11-2«, b. In these cases the wall is usually installed then excavated to some
depth. Lateral bracing is then installed and the excavation continued to another depth, bracing
installed, etc. The lateral pressure retained by the wall should be at least K0 or somewhat
larger; otherwise the ground around the excavation sinks and if structures are in the settling
zone they crack and lawsuits result.
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11-3 PASSIVEEARTHPRESSURE

The passive earth pressure state is given by the larger Mohr's circle of Fig. 11-la. This
state is developed by obtaining K0 conditions of Fig. 11-lfc and holding OA constant while
increasing the lateral pressure from OE to the plastic equilibrium failure at OD (and the case
4 situation of Fig. 2-40). The slip planes in the soil now make angles that are 45° — $/2 with
the horizontal and are cf> from the active state. This slip angle orientation is shown by the line
from D to the point of tangency of the large Mohr's circle of Fig. 1 l-la.

The major principal stress OD = a\ can be computed from the geometry of Mohr's circle
similarly as for the active pressure case to obtain Eq. (2-54) of Sec. 2-11:

ax = CJ3 tan2 J45° + | J 4- 2c tan J45° + | J (2-54)

Passive earth pressure developed by increasing the lateral pressure from OE to OD of Fig.
HAb and d is analogous to pushing the wall of Fig. 11-2c into the soil. Again the soil under-
goes deformation and with sufficient deformation the maximum shear resistance is mobilized;
however, note these points:

1. The resisting passive wedge volume is substantially larger.
2. The mobilized shear resistance s reverses direction to increase the wall force. The shear

direction of the active case assists in reducing the wall force.

The change in the resisting wedge ABC of Figs. ll-2b, c is the principal reason why a wall
that moves forward to the minimum active pressure case cannot be pushed back to its original
position.

Figure 11-3 illustrates the relative movements and order of magnitude of the lateral earth
pressure coefficients defined by the trigonometric ratios of Eqs. (2-54) and (2-55). Typically,
passive earth pressure is developed by anchor plates or blocks embedded in the soil with a
tension rod or cable oriented so that the cable pulls the block against the soil. Another case
of passive pressure is the soil below the dredge line of Fig. 11-2, which must resist the wall

Figure 11-3 Illustration of active and passive pressures with usual range of values for cohesionless and cohesive
soil.
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moving forward from point B down so that active pressure can develop behind the wall from
the soil wedge defined by line BC.

This discussion has been theoretical to this point. We must now develop a means to apply
these principles in a general way to evaluate what the earth pressure will be for specific appli-
cations. There are currently two general procedures for soil masses and a theory of elasticity
method for loads on the soil mass that is to be resisted by the wall. These methods will be
considered in the following several sections.

11-4 COULOMB EARTH PRESSURE THEORY

One of the earliest methods for estimating earth pressures against walls, credited to C. A.
Coulomb (ca. 1776), made a number of assumptions as follows:

1. Soil is isotropic and homogeneous and has both internal friction and cohesion.

2. The rupture surface is a plane surface (as BC of Fig. 11 -2b) and the backfill surface is
planar (it may slope but is not irregularly shaped).

3. The friction resistance is distributed uniformly along the rupture surface and the soil-to-
soil friction coefficient / = tan 4>.

4. The failure wedge is a rigid body undergoing translation.
5. There is wall friction, i.e., as the failure wedge moves with respect to the back face of the

wall a friction force develops between soil and wall. This friction angle is usually termed 8.
6. Failure is a plane strain problem—that is, consider a unit interior slice from an infinitely

long wall.

The principal deficiencies in the Coulomb theory are the assumptions that the soil is ideal
and that the rupture zone is a plane (although for clean sand in the active pressure case,
photographs of model walls indicate the rupture zone is very nearly a plane as BC of Fig.
11-26).

The equations based on the Coulomb theory for a cohesionless soil can be derived from
Figs. 11-4 and 11-5, using a large number of trigonometric relationships. The weight of the
soil wedge ABE, for a unit thickness perpendicular to the drawing, of Fig. 11-4 is

(a)

Area

Figure 11-4 Failure wedge used in deriving the Coulomb equation for active pressure. Note /3 may be ± (— in inset)
and 0 < a < 180° (> 90° in inset).



Figure 11-5 Coulomb active pressure wedge.

The active force Pa is a component of the weight vector as illustrated in Fig. 1 l-5c. Applying
the law of sines, we obtain

Pg = W

sin(p - 0 ) sin(180° - a - p + 0 + S)

Pa = Wsin(P-ct>)
sin(180° - a - p + ^ + S)

From Eq. (b) we see that the value of Pa depends on angle p; that is, all other terms for a
given problem are constant, and the value of Pa of primary interest is the largest possible
value. Combining Eqs. (a) and (b), we obtain

yH2 F sin(a+j3)l sin(p - cf>)
a " 2 ^ [Sm(a + P)sin(p-/3)J s in(180°-a-p + e/> + S) (C )

The maximum active wall force Pa is found from setting dPjdp = 0 to give

Pa = y]P_ sin2(q + ft ( n i )

2 . 2 . , C8J1 ^ /sin(c/) + S)sin((/>-i8)l2

sm a sm(a - S ) I + / -T-T2- ^ . , — ^ ~ -v ;L V s in(a-S)s in(a +/3) J

If ]3 = S = 0 and a = 90° (a smooth vertical wall with horizontal backfill), Eq. (11-1)
simplifies to

which is also the Rankine equation for the active earth pressure considered in the next section.
Equation (11-2) takes the general form

where

(H-3)

(a) Assumed conditions for failure (b) Indication that all force vectors may
not pass through point O; hence static
equilibrium is not satisfied

(c) Force triangle to establish Pa

Assumed

Probable



Figure 11-6 Coulomb passive pressure wedge.

and Ka is a coefficient that considers a, /3, 5, and 0, but is independent of y and H. Table
11-1 gives values of Ka for selected angular values, and computer program FFACTOR on
your diskette can be used to obtain values of Ka for other angle combinations.

Passive earth pressure is derived similarly except that the inclination at the wall and the
force triangle will be as shown in Fig. 11-6.

From Fig. 11-6 the weight of the assumed failure mass is

W = — S m ( a + P ) i h ^ 8 ) {d)

and from the force triangle, using the law of sines,

= sin(p + <f>)
p sin(180° -p-Q-S-a) W

Setting the derivative dPp/dp = O gives the minimum value of Pp as

_ yjP ^ L ^ i ) (1I.4)
2 - 2 . , ^ c J 1 /sin((/> + S)sin(0 + j3)]

sm a sin(a + S ) I - / -r-r- ox . , —^r-
I V s in(a+ 8)sin(a + j8)J

For a smooth vertical wall with horizontal backfill (8 = j3 = O and a = 90°), Eq. (11-4)
simplifies to

yjfii + ™±y# JU + ^ (11.5)
F 2 1 - s i n 9 2 y 2y

Equation (11-4) can also be written

P - jHlK

where

v sin2(a - (J))
Kp = 2 (H-O)

• 2 . / ^ c J 1 /sin(0 + S)sin(0 +j8)l
sin a: sin(a + S ) M - / - — ox . . — ^ p -

[ V s in(a+ §)sin(a + j8)J
Table 11-2 gives values for Kp for selected angular values of 4>, a, 8, and (3. Use program

FFACTOR for other values and a ¥> 90°.

{b) Force polygon for graphical
computation of passive earth
force, note p = pa of Fig. 11-5

(a) Failure wedge and forces acting
on it for passive earth pressure



TABLE 11-1
Coulomb active earth pressure coefficients Ka using Eq. (11-3)

ALPHA = 90 BETA = -10

8 <$> = 26 28 30 32 34 36 38 40 42
0 0.354 0.328 0.304 0.281 0.259 0.239 0.220 0.201 0.184

16 0.311 0.290 0.270 0.252 0.234 0.216 0.200 0.184 0.170
17 0.309 0.289 0.269 0.251 0.233 0.216 0.200 0.184 0.169
20 0.306 0.286 0.267 0.249 0.231 0.214 0.198 0.183 0.169
22 0.304 0.285 0.266 0.248 0.230 0.214 0.198 0.183 0.168

ALPHA = 90 BETA = - 5

8 $ = 26 28 30 32 34 36 38 40 42
0 0.371 0.343 0.318 0.293 0.270 0.249 0.228 0.209 0.191

16 0.328 0.306 0.284 0.264 0.245 0.226 0.209 0.192 0.176
17 0.327 0.305 0.283 0.263 0.244 0.226 0.208 0.192 0.176
20 0.324 0.302 0.281 0.261 0.242 0.224 0.207 0.191 0.175
22 0.322 0.301 0.280 0.260 0.242 0.224 0.207 0.191 0.175

ALPHA = 90 BETA = 0

8 4> = 26 28 30 32 34 36 38 40 42
0 0.390 0.361 0.333 0.307 0.283 0.260 0.238 0.217 0.198

16 0.349 0.324 0.300 0.278 0.257 0.237 0.218 0.201 0.184
17 0.348 0.323 0.299 0.277 0.256 0.237 0.218 0.200 0.183
20 0.345 0.320 0.297 0.276 0.255 0.235 0.217 0.199 0.183
22 0.343 0.319 0.296 0.275 0.254 0.235 0.217 0.199 0.183

ALPHA = 90 BETA = 5

8 4> = 26 28 30 32 34 36 38 40 42
0 0.414 0.382 0.352 0.323 0.297 0.272 0.249 0.227 0.206

16 0.373 0.345 0.319 0.295 0.272 0.250 0.229 0.210 0.192
17 0.372 0.344 0.318 0.294 0.271 0.249 0.229 0.210 0.192
20 0.370 0.342 0.316 0.292 0.270 0.248 0.228 0.209 0.191
22 0.369 0.341 0.316 0.292 0.269 0.248 0.228 0.209 0.191

ALPHA = 90 BETA = 10

8 4> = 26 28 30 32 34 36 38 40 42
0 0.443 0.407 0.374 0.343 0.314 0.286 0.261 0.238 0.216

16 0.404 0.372 0.342 0.315 0.289 0.265 0.242 0.221 0.201
17 0.404 0.371 0.342 0.314 0.288 0.264 0.242 0.221 0.201
20 0.402 0.370 0.340 0.313 0.287 0.263 0.241 0.220 0.201
22 0.401 0.369 0.340 0.312 0.287 0.263 0.241 0.220 0.201

ALPHA = 90 BETA = 15

8 $ = 26 28 30 32 34 36 38 40 42
0 0.482 0.440 0.402 0.367 0.334 0.304 0.276 0.251 0.227

16 0.447 0.408 0.372 0.340 0.310 0.283 0.258 0.234 0.213
17 0.447 0.407 0.372 0.339 0.310 0.282 0.257 0.234 0.212
20 0.446 0.406 0.371 0.338 0.309 0.282 0.257 0.234 0.212
22 0.446 0.406 0.371 0.338 0.309 0.282 0.257 0.234 0.212



TABLE 11-2
Coulomb passive earth pressure coefficients Kp using Eq. (11-6)

ALPHA = 90 BETA = -10

8 <t> = 26 28 30 32 34 36 38 40 42
0 1.914 2.053 2.204 2.369 2.547 2.743 2.957 3.193 3.452

16 2.693 2.956 3.247 3.571 3.934 4.344 4.807 5.335 5.940
17 2.760 3.034 3.339 3.679 4.062 4.493 4.983 5.543 6.187
20 2.980 3.294 3.645 4.041 4.488 4.997 5.581 6.255 7.039
22 3.145 3.490 3.878 4.317 4.816 5.389 6.050 6.819 7.720

ALPHA = 90 BETA = - 5

8 </> = 26 28 30 32 34 36 38 40 42
0 2.223 2.392 2.577 2.781 3.004 3.250 3.523 3.826 4.163

16 3.367 3.709 4.094 4.529 5.024 5.591 6.243 7.000 7.883
17 3.469 3.828 4.234 4.694 5.218 5.820 6.516 7.326 8.277
20 3.806 4.226 4.704 5.250 5.879 6.609 7.462 8.468 9.665
22 4.064 4.532 5.067 5.684 6.399 7.236 8.222 9.397 10.809

ALPHA = 90 BETA = 0

8 <f> = 26 28 30 32 34 36 38 40 42
0 2.561 2.770 3.000 3.255 3.537 3.852 4.204 4.599 5.045

16 4.195 4.652 5.174 5.775 6.469 7.279 8.229 9.356 10.704
17 4.346 4.830 5.385 6.025 6.767 7.636 8.661 9.882 11.351
20 4.857 5.436 6.105 6.886 7.804 8.892 10.194 11.771 13.705
22 5.253 5.910 6.675 7.574 8.641 9.919 11.466 13.364 15.726

ALPHA = 90 BETA = 5

8 4> = 26 28 30 32 34 36 38 40 42
0 2.943 3.203 3.492 3.815 4.177 4.585 5.046 5.572 6.173

16 5.250 5.878 6.609 7.464 8.474 9.678 11.128 12.894 15.076
17 5.475 6.146 6.929 7.850 8.942 10.251 11.836 13.781 16.201
20 6.249 7.074 8.049 9.212 10.613 12.321 14.433 17.083 20.468
22 6.864 7.820 8.960 10.334 12.011 14.083 16.685 20.011 24.352

ALPHA = 90 BETA = 10

8 <f> = 26 28 30 32 34 36 38 40 42
0 3.385 3.712 4.080 4.496 4.968 5.507 6.125 6.840 7.673

16 6.652 7.545 8.605 9.876 11.417 13.309 15.665 18.647 22.497
17 6.992 7.956 9.105 10.492 12.183 14.274 16.899 20.254 24.633
20 8.186 9.414 10.903 12.733 15.014 17.903 21.636 26.569 33.270
22 9.164 10.625 12.421 14.659 17.497 21.164 26.012 32.601 41.863

ALPHA = 90 BETA = 15

8 <f> = 26 28 30 32 34 36 38 40 42
0 3.913 4.331 4.807 5.352 5.980 6.710 7.563 8.570 9.768

16 8.611 9.936 11.555 13.557 16.073 19.291 23.494 29.123 36.894
17 9.139 10.590 12.373 14.595 17.413 21.054 25.867 32.409 41.603
20 11.049 12.986 15.422 18.541 22.617 28.080 35.629 46.458 62.759
22 12.676 15.067 18.130 22.136 27.506 34.930 45.584 61.626 87.354



Figure 11-1 displays that earth pressure is dependent on the effective stresses in the soil
and not total stresses. It necessarily follows that the wall pressure below the water table is the
sum of the hydrostatic pressure and the effective lateral earth pressure from using the effective
unit weight y' of the soil.

Example 11-1. What is the total active force per meter of wall for the soil-wall system, shown in
Fig. El 1-1, using the Coulomb equations? Where does Pa act?

Figure E lM

Solution. Take the wall friction 8 = 2<£/3 = 20° (a common estimate). For <p = 30° obtain Ka =
0.34 from Table 11-1:

pa = yzKa

Pa = f yzKadz= \yH2Ka

Pa = i(17.52)(5)2(0.34) = 74.5 kN/m

Summing moments about the top, we have

(H yH3

Pay' = yzKazdz = J-^-Ka
Jo 3

Using the symbolic Pa and equating, we obtain

y = 3 ^ № = 3H f r O m t O p ° r

ryir TJ

y = H — — = — from bottom (value usually used)

For 8 = 20° a force polygon would show that Pa will act on the wall as shown in Fig. El 1-1.

Example 11-2. What is the total active force/unit width of wall and what is the location of the
resultant for the system shown in Fig. Ell-la? Use the Coulomb equations and take a smooth wall
so 8 = 0°.



Solution. We have a surcharge, which is seen by the wall at z = O as a pressure q (which could be
caused by a fictitious soil depth of yzo)> There will be Ka values for each soil of

KaX = 0.307 Ka2 = 0.333 (Table 11-1 and a = 90°)

At z = 0 (top of wall where surcharge acts) we have

P\ = yzoKa = qKa = 100(0.307) = 30.7 kPa

At the interface (interpreted as z - dz) of top stratum z\ = 3.5 m and noting the surcharge q carries
through to give the effect of qz = yzo + JZ\, we have

p2 = (q + yZl)Ka = [100+ 16.5(3.5)]0.307

= 30.7+ 17.7 = 48.4 kPa

It is often convenient to retain the several effects separately. Here we see that q gives a rectangular
(constant) wall pressure whereas the increasing depth of soil gives a triangular pressure diagram
with 17.7 kPa at the base.

Continuing for soil 2, at depth z + dz = 3.5 m we are into soil 2 and since that is the location of
the water table we will have to use y' = 19 .25-9 .81 = 9.44 kN/m3.

Just at the interface we have

p'2 = [q + 16.5(3.5) + 9.44 dz]Ka2

= [100 + 16.5(3.5) + 0]0.333 = 52.5 kPa

Note we have an abrupt discontinuity in the pressure diagram of 48.4 kPa and at 3.5 + dx a pressure
of 52.5 kPa. At the bottom of the wall we have

p3 = [100 + 16.5(3.5) + 9 .44(3 .5 ) ]^

which is the same as

p3 = 52.5 + 9.44(3.5)0.333

= 52.5 + 11.0 = 63.5 kPa (again the 11.0 is a triangle)

Figure Ell-2



The water also contributes lateral pressure and has Ka = Kp = 1 since <f)w = 0°. Thus,

Pw = ywzw = 9.807(3.5) = 34.3 kPa

These pressure values are plotted on Fig. El\-2b so the several pressure areas can be numerically
integrated to obtain the total wall force. By using triangles and rectangles as shown, the total wall
force is the sum from the several areas and the forces act through the centroids of the areas as shown
so that we can easily sum moments about the base to obtain

Include water with P4 since both areas are triangles:

Now sum the moments for y:

11-5 RANKINE EARTH PRESSURES

Rankine (ca. 1857) considered soil in a state of plastic equilibrium and used essentially the
same assumptions as Coulomb, except that he assumed no wall friction or soil cohesion. The
Rankine case is illustrated in Fig. 11-7 with a Mohr's construction for the general case shown
in Fig. 11-8. From Fig. 11-8 we can develop the Rankine active and passive pressure cases
by making substitution of the equation for r (shown on the figure) into the equations for EF
(and FG) (also shown on the figure). Then substitution into the expression for K'a (with OB
canceling and using sin2 /3 = 1— cos2 /3) gives the pressure ratio acting parallel to backfill
slope /3 as

R, = cos 8̂ - JcOS2P -cos2<ft~

COSJS + Vcos2 /3 - cos2 4>

We note that the horizontal component of active earth pressure is obtained as

(above wall base)



(a) Soil-structure system for the Rankine
solution for a = 90°

Figure 11-7 Rankine active earth pressure wedge.

(b) Force triangle in the Rankine solution

Area

(a) General case: only for
+J3 as shown.

(b) Mohrs circle.

Since BF bisects EO,

Figure 11-8 General conditions and Mohr's circle to derive the Rankine earth pressure equations.

By analogy (and referring again to Fig. 11-8) we obtain the pressure ratio for K'p in a similar
manner:

K, = cos /3 + Vcos2 /3 - cos2 4>

cos/3 - Vcos2 /3 - cos2 </>

Noting that the ratio of K'a = aa/(yzcos /3) is for an earth pressure parallel to /3 and that the
vertical pressure on a horizontal plane at depth z is yzcos /3, we have



TABLE 11-3
Rankine active earth pressure coefficients Ka using Eq. (ll-7a)

p <t> = 26 28 30 32 34 36 38 40 42
0 0.3905 0.3610 0.3333 0.3073 0.2827 0.2596 0.2379 0.2174 0.1982
5 0.3959 0.3656 0.3372 0.3105 0.2855 0.2620 0.2399 0.2192 0.1997
10 0.4134 0.3802 0.3495 0.3210 0.2944 0.2696 0.2464 0.2247 0.2044
15 0.4480 0.4086 0.3729 0.3405 0.3108 0.2834 0.2581 0.2346 0.2129
20 0.5152 0.4605 0.4142 0.3739 0.3381 0.3060 0.2769 0.2504 0.2262
25 0.6999 0.5727 0.4936 0.4336 0.3847 0.3431 0.3070 0.2750 0.2465
30 — — 0.8660 0.5741 0.4776 0.4105 0.3582 0.3151 0.2784
35 — — — — — 0.5971 0.4677 0.3906 0.3340
40 — — — — — — — 0.7660 0.4668

Since cos /3 is a permanent entry it is convenient to include it with K'a of Eq. (11-7) or K'p of
Eq. (11-8), giving, e.g.,

Ka = C Q S ^ - V c g g - C Q S ^ (n.7fl)

cos /3 + V c o s 2 /3 ~~ cos2 cf)

and similarly for Kp. These latter values are given in Tables 11-3 and 11-4 to use in active
and passive pressure computations (use program FFACTOR for intermediate values). Using
these pressure ratios, one obtains the lateral pressure and force as follows:

(H i

Pa = JZKa Pa = yiKadZ = ^jH2 Ka

Jo * ( 1 1 _ 9 )

[H 1
pp = yzKp Pp = yzKpdz = -^yH2Kp

Jo l

which is applicable for cohesionless soils. Again note that the yz term represents effective
stresses. The horizontal and vertical components of Pa and Pp are usually required for design,
giving

Pa,h = Pacos P Pa>v = Pasin/3

PP,h = P P cos/3 PPtV = P p sin/3

Figure 11-9 gives typical lateral pressure profiles for backfill conditions shown.

TABLE 11-4
Rankine passive earth pressure coefficients Kp

P 4> = 26 28 30 32 34 36 38 40 42
0 2.5611 2.7698 3.0000 3.2546 3.5371 3.8518 4.2037 4.5989 5.0447
5 2.5070 2.7145 2.9431 3.1957 3.4757 3.7875 4.1360 4.5272 4.9684
10 2.3463 2.5507 2.7748 3.0216 3.2946 3.5980 3.9365 4.3161 4.7437
15 2.0826 2.2836 2.5017 2.7401 3.0024 3.2926 3.6154 3.9766 4.3827
20 1.7141 1.9176 2.1318 2.3618 2.6116 2.8857 3.1888 3.5262 3.9044
25 1.1736 1.4343 1.6641 1.8942 2.1352 2.3938 2.6758 2.9867 3.3328
30 — — 0.8660 1.3064 1.5705 1.8269 2.0937 2.3802 2.6940
35 _ _ _ _ _ 1.1239 1.4347 1.7177 2.0088
40 — — — — — — — 0.7660 1.2570



Figure 11-9 Rankine active earth pressure diagrams in a cohesionless soil.

Example 11-3. What is the total active earth force per meter of wall for the wall system shown in
Example 11-1 using the Rankine equation?

Solution. For/3 = 10° and <̂  = 30° we obtain Ka = 0.3495 from Table 11-3. Directly substituting
into Eq. (11-9), we may write

Pa = \yH
2Ka = |(17.52)(5)20.350 = 76.6 kN/m

This value compares with 74.5 kN/m by the Coulomb equation, for a difference of about 2 percent,
but acts here at a wall angle of /3 = 8 = 10° as shown on Fig. El 1-3 instead of 3 = 20° of Fig.
El 1-1. The horizontal and vertical force components are

11-6 GENERAL COMMENTS ABOUT BOTH METHODS

One should not use the Rankine method for Kp when /3 > 0, since an inspection of Table
11-4 shows that it decreases with increasing /3. This is clearly not correct—Ka does properly
increase. Note also that one can use a (-) /3 in the Rankine equations, but the computed
coefficients are those of (+) /3.

Figure Ell-3

Backfill

(c) p > 0 with a surcharge.(a) P - 0. №) P > 0.



The Coulomb equations are valid for both (+) and (—) /3. That is, Kp increases with
increasing /3 and decreases with (—) )3 values.

SOIL WITH COHESION. Neither the Coulomb nor Rankine method explicitly incorporated
cohesion as an equation parameter in lateral earth pressure computations. Bell (1915) seems
to be the first person to publish a solution to this problem. Bell's equations are actually Eqs.
(2-54) and (2-55) and were directly obtained from Mohr's circle. With these equations for the
pressure the wall force is obtained as in Eqs. (11-9) for the cohesionless case by integrating
between limits over the depth increment dz. Modifications to these equations might include
using the Coulomb or Rankine K factors in lieu of the tangent factors.

Example 11-4. Draw the active earth pressure diagram for a unit width of wall for the conditions
shown in Fig. El 1-4«. Compare the several possible alternatives that are produced from this problem
(tension crack, how the diagram might be modified, and water in tension crack).

At top: z = 0

Pa = yzKa - 2c JYa = -2(10.5)(0.84) = -17.64 kPa

At p = 0:

yzKa - 2c JWa = 0 [Set Eq. (2-55) = 0]

and

_ 2cjK~a _ 2c _ 2(10.5) _
Z ~ ~ y * T " VjKa " 17.52(0.84) " 1Mm

Note: This value of z is the depth of a potential tension crack, since (-) p = tension stresses
that the soil cannot carry. At base, the lateral pressure [from Eq. (2-55)] is

pa = 17.52(6.5)(0.704)-2(10.5)(0.84) = 62.53 kPa

The resultant force is found as 2 Fh = R- The location of the resultant may be found by summing
moments at the base or by inspection, depending on the complexity of the pressure diagram. The
tension zone ab is usually neglected for finding the magnitude and location of the resultant.

Tension crack

Alternative

(a) Oiven.

Figure Ell-4

(b) Computed.



Neglecting the tension zone Using alternative pressure diagram acd

R = 62.53 P y H = 158.5 kN/m R = 62.53 h y ) = 203.2 kN/m

_ 5.07 ^_ _ 6.5 .

y = —r— = 1.69 m above c y = — = 2.17 m (by inspection)

With water in the tension crack,

^ 1 5 8 . 5 +
9 - 8 0 7 ^ 1 4 3 ) 2 = 1 6 8 . 5 k N / m

and the overturning moment including water in the tension crack is

M0 = 158.5(1.69) + 10.0(5.07 + ^ j = 323.3 kN • m/m
323.3 . M uv = -TTTTT = 1*92 m above c
168.5

In this case the water-in-crack solution is between the two previous solutions, from which it appears
that the alternative pressure diagram acd provides a conservative solution.

Example 11-5. Plot the active earth pressure diagram and compute the resultant R and its location
y for the wall system shown in Fig. El 1-5. This type of problem is often encountered in excavations
for large structures where there may be two or more basement levels. The soil parameters 4>, c may
be estimated or else be obtained from performing consolidated isotropically undrained (CIU) tests
on good-quality tube samples. The major approximation is defining the several strata by abrupt
discontinuities (using lines as shown to delineate layers). In most real situations the soil type grades
through a finite length from one to the next.

Solution. We should plot the soil and pressure profiles adjacent to each other as in Fig. El 1-5. The
Rankine equations for active earth pressure coefficients Ka will be used [use program FFACTOR
since these small (/> angles are not in Table 11-3, or use Eq. (H-Ia)].

For instance, for </> = 32°, use Table 11-3, obtain Ka = 0.307 and 70.307 = 0.554, etc.

Typical computations for Ap^ are as follows:

Depth, m Ap0, kPa
0 100 kPa (surcharge)

1.80 100+ 1.80(17.30) = 131.4 kPa
2.40 131.4 + 0.6(19.60 - 9.807) = 131.4 + 0.6(9.79)

= 137.02 kPa
5.15 137.02 + 2.75(9.89) = 164.22 etc.

It will be convenient to tabularize the computations as in Table El 1-5 following.
Notice that at the interface between two soils we use the interface pressure two times: first with

—dz and the upper K coefficients, and second with +dz and the K coefficients of the lower soil.
Note also that the 2c JWa term can be simplified for the second use.

To find the resultant we must divide the pressure profile into rectangles and triangles as shown
on Fig. El 1-5/?. The water pressure is included (Ka = Kp = Kw = 1) if the water cannot drain



(b) Pressure profile.(a) Soil profile.

Figure Ell-5

Tension



TABLE Ell-5

Soil Depth, m Ka jK~a AP0, kPa Wall pressure, qh9 kPa

1 0 0.307 0.554 100. 100(0.307) = 30.7
l.SO-dz 131.14 (131.14)(0.307) =40.3

2 1.80+dz 1.000 1.000 131.14 (131.14)(1.00) - 2(7O)(LOO) = - 8 . 9
2.40-Jz 137.02 (137.02)(1.00) - 2(7O)(LOO) = -3.0

3 2.40+dz 0.704 0.839 137.02 (137.02)(0.704)-2(3O)(0.839) = 46.1
5A5-dz 164.22 (164.22)(0.704) - 60(0.839) =65.3

4 5.15+dz 1.000 1.000 164.22 (164.22)(LOOO) - 2(4O)(LOO) = 84.2
1.60-dz 186.73 (186.73)(1.000) - 80(1.00) =106.7

5 IM+dz 0.490 0.700 186.73 (186.73)(0.490)-2(2O)(0.700) = 63.5
9.1 199.02 (199.02)(0.490) - 40(0.700) = 69.5

through the wall or away by other means. Since the water contribution is significant, it is obvious
that drainage should be allowed if possible.

The tension zone ( - ) qh is a problem. Should it be included to reduce the wall force or neglected,
as it may pull away from the wall? A more conservative case is made if the tension zone is neglected,
which we will do here—so neglect tension zone.

There is much busywork with this type of problem—particularly to get the pressure profile—so
that a computer program such as B-25 should be used if possible.

Computations for finding the resultant are as follows:

1. Compute the force P1 for each geometric area (rectangle or triangle) and locate its resultant y
from the base as partially shown on Fig. E11-5&:

2. Sum the horizontal forces X Fy1
 = R

The water Pw = 7.3(9.807)(7.3/2) = 261.3 kN.
Compute yt for each P:

Compute y:

(above base of wall)



The soil pressure resultant and corresponding _y are shown on Fig. E11-5& (and this calculation
does not include water).

IHI

11-7 ACTIVE AND PASSIVE EARTH PRESSURE USING
THEORY OF PLASTICITY

The Coulomb and Rankine passive earth pressure methods consistently overestimate the
passive pressure developed in field and model tests for $ much over 35°. This estimate may
or may not be conservative, depending on the need for the passive pressure value. Because
of the problem of overestimation, Caquot and Kerisel (1948) produced tables of earth pres-
sure based on nonplane-failure surfaces; later Janbu (1957) and then Shields and Toluany
(1973) proposed an approach to the earth pressure problem similar to the method of slices
used in slope-stability analyses. Sokolovski (1960) presented a finite-difference solution
using a highly mathematical method. All these methods give smaller values for the passive
earth pressure coefficient. None of these methods significantly improves on the Coulomb or
Rankine active earth pressure coefficients.

Rosenfarb and Chen (1972) developed a closed-form earth pressure solution using plas-
ticity theory that can be used for both active and passive earth pressure computations. The
closed-form solution requires a computer program with an iteration routine, which is not
particularly difficult. This method is included here because of the greater clarity over the
alternative methods.

Rosenfarb and Chen considered several failure surfaces, and the combination of a so-called
log-sandwich mechanism gave results that compared most favorably with the Sokolovski
solution, which has been accepted as correct by many persons. Figure 11-10 illustrates the
passive log-sandwich mechanism. From this mechanism and appropriate consideration of its
velocity components the following equations are obtained.

Cohesionless Soil

For a smooth wall (S < </>);

(11-10)



Figure 11-10 Plastic stress fields for earth pressure using the theory of plasticity. [Rosenfarb and Chen (1972).]

For a rough wall (S = <fi):

(11-11)

(11-12)

Cohesive Soil

For a smooth wall (S < </>):

(£) Velocity diagram for a
smooth wall 5 < ({).

(c) Velocity diagram for a
rough wall 8 = <j).

(a) Passive log-sandwich mechanism with V3 = V1 exp (ytan0).

Log-spiral
zone



In solving Eqs. (11-10) through (11-13), it is necessary to solve for the maximum value
of Kp or Ka. The maximizing of these equations depends on the two variables p and ifj.
This requires a search routine in computer program B-23. The values of the two dependent
variables are initialized to approximately

p = 0.5(a + j8)

(// = 0.2(a + /3)

With these initial values, the search routine is used to revise the values until convergence is
obtained. In most cases values from which Kp is computed are found after not more than 20
iterations. A computer program should shut off after 46 to 50 iterations. In a few cases the
program may not find a solution using the above initial values because of the programming
search routine. For these cases, one must change the initial values and retry as necessary to
obtain the solution. Table 11-5 gives selected values of Kp for cohesionless soils. Note that
these equations correctly give Kp increasing with /3. Values of /3 = 8 = 0 are not shown,
as they are identical to the Coulomb or Rankine solution.

The "smooth" wall solution is used for wall friction S < </>; when S = cf> the "rough"
wall equation is used. Equations (11-12) and (11-13) can readily be programmed, using the
same routines to solve an equation for minimum or maximum with two dependent variables,
to obtain passive pressure coefficients for cohesive soil. This solution does not give greatly
different values from the Coulomb passive pressure theory until the cf> angle becomes larger
than 35° and with 8 on the order of <f>/2 or more and /3 ^ 0° (since the back slope can have
±/3).

11-8 EARTH PRESSURE ON WALLS, SOIL-TENSION
EFFECTS, RUPTURE ZONE

The Rankine or Coulomb earth pressure equations can be used to obtain the force and its
approximate point of application acting on the wall for design. Soil-tension concepts can also
be investigated. These will be taken up in the following discussion.

11-8.1 Earth Forces on Walls

From Eq. (2-55) and temporarily considering a soil with c = 0, y constant with depth z and
referring to Fig. 11-9«, we can compute the wall force as

(H rH <V72K <vH2

Pa = *3Ka dz = yzKa = ^ p £ = ^-Ka (a)
Jo Jo 2 z

from which it is evident that the soil pressure diagram is hydrostatic (linearly increases with
depth) as shown in the figure. If there is a surcharge q on the backfill as shown in Fig. 11 -9c
(other surcharges will be considered in Sec. 11-13), the wall force can be computed as

(11-13)

For a rough wall (8 = (f>):



TABLE 11-5

Selected values of Kp using limit analysis for a = 90°
(vertical wall) for a granular soil. Values same as in Table
11-2 for P = 0°. Intermediate values may be obtained by
plotting Kp

p <j> = 30° 35° 40° 45°

5 = 0

-10 2.21 2.65 2.68 3.90

10 4.01 5.20 6.68 8.93
20 5.25 7.03 9.68 13.8
30 6.74 9.50 14.0 21.5

8 = 10

-10 2.77 3.44 4.3 5.5
10 5.70 7.61 10.4 14.9
20 7.79 10.9 15.9 24.4
30 10.3 14.7 23.6 39.6

8 = 20

-10 3.56 4.61 6.1 8.2
10 7.94 11.2 16.3 24.9
20 11.2 16.5 25.6 42.4
30 15.1 23.2 41.0 70.2

6 - 3 0

-10 4.5 6.2 8.6 12.4
10 10.6 15.8 24.6 40.7
20 15.2 23.2 39.5 70.3
30 20.8 34.8 62.0 0*

*No solution after 46 iterations.

The point of application requires taking moments about a convenient point, and for the
case with surcharge and from the top of the wall we have

Pay = J* (yz + q)KaZ dz = №f + ^Va (C)

and, inserting the value of Pa from Eq. (fo), the distance from the top of the wall is

1 IyH2 + 3qH
y t " 3 yH + 2q

and from the bottom of the wall y = H — yt

(11-14)(for c = 0)

(b)



Figure 11-11 Tension crack and critical depth of an unbraced excavation. Tension cracks are often readily visible adja-
cent to excavations.

When the surcharge q = 0, we obtain y = H/3; for c > 0 locate y using Example 11-4 or
Fig. 11-llc as a guide. It is not correct to convert the surcharge to an equivalent additional
wall height and use y to the centroid of a triangle, because the surcharge effect is rectang-
ular against the wall.

A number of researchers using both models and fairly large retaining walls have found that
the wall force resultant seldom acts at the distance y = H/3 from the wall base. This implies
that the wall pressure diagram is not triangular. Williams (1989, with a number of references)
derived equations that tend to produce a somewhat parabolic pressure distribution, which may
or may not coincide with the Coulomb pressure profile near the top.

In any case, the resultant of the lateral pressure is commonly taken as H/3 and the pressure
diagram is assumed to be triangular (if there is no surcharge), including cases where the
backfill slope angle /3 # 0. Some evidence exists that, because the wall rotates about its
base, the pressure diagram is not triangular and that the resultant is somewhere in the middle
one-third of the wall height—about the OAH point above the base.

Most walls are constructed with a void on the backfill side, which is then stage-filled
and compacted (that is, add a layer, compact it, add another layer, compact it, etc.) until the
surface is reached. This method also tends to increase the wall pressure—particularly near the
bottom—and more particularly for clay backfills (which may be necessary if granular backfill
is not available). The lower compacted soil produces lateral displacements in the upper wall
zone, so soil later compacted in this area may not produce enough additional deflection to
reduce the lower wall pressure to an active state.

Clayton et al. (1991) measured compaction pressures against a wall from a clay backfill.
They found that compaction pressures did not become significant until the air-void content
(difference between the zero-air-voids curve and the maximum dry density) was less than 15
percent and that the pressures could be expressed as a percentage of su, ranging from about
20 to 40 percent. Also they found that the lateral pressure, partially produced by compaction,
tended to reduce with time. The question is, what to do?

CHOOSE A K VALUE. Overdesign the wall by using a K intermediate between Ka and K0.

MAKE ASSUMPTIONS. Assume the computed soil pressure resultant is above the usual
point of application (the one-third point for no surcharge). If the pressure resultant (no

(c) Suggested pressure diagrams (solid) in
cohesive soil

(b) Open cuts.(a) Behind walls.

Active
zone

Tension zone
Tension zone

Summed

Most
conservative



surcharge) is assumed to be at a point above the one-third point, the only way this can be
achieved is to force a trapezoidal pressure diagram into the model. This can substantially
increase the bending moments for structural walls, but the shear (and soil pressure resultant
R) remains the same, unless R is increased by some uncertainty factor, such as 1.1, 1.4, 1.5,
and so forth.

We can derive a general equation for locating the pressure resultant and the pressure at
the top of the wall necessary to define a trapezoidal pressure diagram. We already know
that the bottom pressure qb = ysH. From a trapezoid pressure diagram with qt and qb and
height H and the pressure resultant located at kH we can obtain two equations. The resultant
R = area of a trapezoid, giving

TJ JD

R = Hqt + (qb - qt)— -» qt + qb = — (a)
L Ll

Use Eq. (9-2) (the location of the center of a trapezoid) as the second equation and substituting
qt and qb for a and b, obtain

3 \qt + qb )

Now substitute Eq. {a) into Eq. (b) and simplify to obtain

q, = —Qk-I)I i 2
H \ valid from - < k <- (11-15)

qb = —(2 - 3*)J
For qbMt = 40 kPa, H = 10, compute R = 40 X 10/2 - 200. For k = \ we have
qt = 0; qb = qb,imt = 40. For k = 0.5 we have qt = qb = 20 {and the new R = [(20 +
20)/2](10) = 200 as before} but now y = 5 instead of y . Before computing the new top and
base pressures we may increase (or decrease) R as deemed necessary for the given wall.

One should adjust R with care—probably it is best to increase the earth pressure coeffi-
cient—since available evidence indicates the initial resultant Rinn is about that from the
Coulomb/Rankine equation but the location is not. Make the reduction as follows.

Although it is not unreasonable to put the location of the resultant above the one-third
point, one must decide what the minimum pressure will be that the wall must resist before
failure. A high pressure above the minimum active value may reduce to the minimum active
value as the wall starts to rotate forward under the higher pressure. This movement decreases
the pressure, but the wall may rotate further still under the reduced lateral pressure. The
wall either breaks or shears off or reaches some equilibrium resisting lateral pressure, and
movement stops.

11-8.2 Soil-Tension Effects on Backfill
and Open Trenches

Visible tension cracks usually develop where

1. Cohesive soil is used for backfill.

2. A trench or basement excavation is made in cohesive soil.



In the excavation case the cracks form parallel to the excavation and if under pavements
and structures can produce damage. We may use Eq. (2-55), slightly modified and repeated
here as

0-3 = (q + yz)Ka-2c/K~a (c)

where the quantity (q + yz) = <T\. Tension exists in a cohesive soil to some depth z = ht

until the stress <73 = 0 (after that the stress is compression). This depth is estimated from Eq.
(c) by rearranging, replacing z with ht9 and solving to obtain

^ = 2cjK-a-gKa ( 1 M 6 )

yKa

Note the inclusion of the surcharge q makes this equation general. The equation is most often
seen without the surcharge term as follows:

ht = 2Cr— (ll-16a)
yjKa

The tension crack can form at the wall-soil interface and/or at some distance back from the
wall (see Figs. 11-lltf, b). It is not unusual for several approximately parallel tension cracks
to form.

Another value of interest is the theoretical depth an excavation can stand without lateral
bracing. The key words here are the theoretical depth. Building codes and governmental
safety divisions (OSHA in the United States) usually give limitations on unbraced excavation
depths. In any case the theoretical value is computed by integrating Eq. (d) and using z =
Hc = theoretical or critical depth to obtain:

P = J CVq + yz)Ka-2cjKa\dz

Integrating (constant = O), inserting the limits, setting the horizontal force P = O, and sim-
plifying, we obtain

tic = J= ~ — (11-17)

There may be some question of what to use for Ka in Eqs. (11-16) and (11-17) when
/3 > O, since Eq. (2-55) as developed was for a horizontal ground surface. In the absence of
any better information use the Coulomb values from Table 11-3 with S = O .

One should not rely on the tension zone (see Fig. 11-1 Ic) to reduce lateral pressures. In-
stead one should assume that it can form and will possibly fill with water.1 The depth of water
(not the quantity) can increase the overturning pressure against the wall considerably owing
to both the hydrostatic force of ywht and the larger moment arm caused by combining the
hydrostatic force with the already existing lateral pressure.

1If the crack fills with water it will usually close with time as the soil swells. The soil-excavation system must,
however, survive during this time, so it is conservative to consider a crack filled with water as a worst case.



It is suggested that when there is a wall tension zone you use either of the two alternatives
of Fig. 11-1 Ic, together with the water pressure profile shown, if the tension crack can fill
with water. Treating the tension block as a surcharge is probably more nearly correct and
gives a more conservative (larger) wall force and overturning moment.

One cannot rely on Eq. (11-17) to predict the critical embankment height accurately for
several reasons:

1. Once the tension crack forms, Eq. (2-55) is not valid for the full depth of the excavation.

2. Cohesive soils tend to lose cohesion when exposed in excavations as a result of moisture
adsorption and/or shrinkage cracks.

3. A surcharge effect results from equipment and materials piled on the ground adjacent to
the excavation.

Because of these several factors, Eq. (11-17) should include a safety factor for design to obtain
a design depth H'c, as

Of course, if local authorities require a lesser value of H'c, that should be used.

11-8.3 Rupture Zone

The solution of the Rankine equations as shown by the Mohr's circle of Fig. 11-1« gives the
rupture slope p in the backfill as

<t>
p = 45 ± Tj- (+) = active pressure case

for horizontal (j8 = 0) ground. For the general case of sloping ground and/or wall friction
the p angle is not that given above. For these cases it is recommended to use the trial wedge
computer program B-7 on your diskette to obtain the critical p angle (so as to locate the
potential slip zone) since it is given as part of the output for hand checking. There are closed-
form solutions as in Jumikis (1962); however, they are complicated and subject to error in
either derivation or typesetting so that they should be used very cautiously if at all.

11-9 RELIABILITY OF LATERAL EARTH PRESSURES

Several sets of wall tests have been performed to check the validity of the Coulomb and Rank-
ine active and passive earth pressure methods. These include the tests of Terzaghi (1934),
Peck and Ireland (1961), Rowe and Peaker (1965), Mackey and Kirk (1967), James and
Bransby (1970), Rehnman and Broms (1972), and Coyle et al. (1972). Field and model tests
[as by Fang and Ishibashi (1986)] tend to confirm the active earth pressure concept reason-
ably well if the backfill is carefully placed so that compaction effects do not create excessive
stresses and if the wall rotates and/or translates sufficiently to mobilize the maximum shear-
ing resistance in the soil. Often the top of the wall translates/rotates adequately while near the
stem base it does not so that the pressure near the base is larger than predicted by theory—
particularly if some compaction of the backfill has been done. Regardless, the total wall force
from numerically integrating the pressure profile is usually close to the theoretical "active"



value and the resultant is usually at or above the lower one-third point (often closer to 0.4 or
0.45/f).

The active zone rupture surface is also fairly close to that predicted by theory and close
to being a plane. The passive zone, however, often is not in close agreement and the rupture
surface is closer to being a spiral. This latter gives additional cause for suggesting the use of
Sec. 11-7 with computer program B-23 (or similar) for the passive earth pressure case.

11-10 SOIL PROPERTIES FOR LATERAL EARTH
PRESSURE COMPUTATIONS

It is evident from the use of the Mohr's circle as a starting point for earth pressure coefficients
that effective stresses together with any hydrostatic water pressure are used to compute the
wall force. The usual condition of soil behind walls is as shown in Fig. 11-12. We have
excavated a vertical or sloping space for the wall, poured the wall footing and wall and then
backfilled the zone previously excavated, usually with some compaction. We then have to
idealize the model somewhat to compute the earth force that the wall must resist.

11-10.1 Soil Parameters

These soil parameters are used in computing lateral earth pressure:

1. Drained values for sand are used for reasons cited in Chap. 2. Ideally, plane strain <j>
values as obtained from direct shear, direct simple shear, or from triaxial values that have
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backfill

(b) Backfill-limited zone. Use geotextile
for poor-quality backfill.

GfrailularCohesive
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spacing Drain
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Figure 11-12 Various backfill conditions. The longitudinal collector (or drain) pipe is optional.
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been adjusted to plane strain values are employed. However, very commonly a cf> value
is estimated from visual examination of the sand and using a conservative value from 30
to 34°.

2. For cohesive soils su values are commonly used and are generally adequate for normally
and lightly overconsolidated soil.

3. For overconsolidated soil we may use these:
a. A drained strength parameter with <f>' obtained from a drained shear test, using Fig.

2-25 as a test guide (not often), or estimated from one of the correlations given on Figs.
2-35 or 2-36.

b. The undrained shear strength at the creep threshold.
c. A drained <f> angle between peak and residual strength.

In cohesive soil a wall designed using almost any set of reasonable design strength param-
eters is likely to have an adequate risk factor if the following conditions are met:

1. Wall excavation did not cave during wall construction.

2. Excavated zone is backfilled and compacted using a freely draining soil.

3. If backfill is cohesive, increase the k-iactor of Eq. (11-15) to 0.40 to 0.50.

The risk factor is likely adequate even if the excavation/backfill zone is fairly limited since
a cave-in would have occurred if the retained soil were inherently unstable.

11-10.2 Water in Backfill

Water in the backfill soil is particularly undesirable since it increases the unit weight and
lateral pressure. If a water table can form (or stabilize), the effect is considerably worse since
the <f) angle of water is zero, giving Ka = Kp = 1 as used earlier. A further undesirable
side effect in cold climates is that the backfill water may freeze and greatly increase the
lateral pressure, causing the wall to displace forward. This displacement is usually not fully
recovered when thawing occurs.

Most of the water problem can be avoided by constructing drain (or weep) holes
through the wall base or using lateral drain pipes. The major problem here is to ensure
that the backfill does not erode through the weep holes or clog the lateral drain pipes. If
sand is used it should be properly graded, with coarse material adjacent to the drainage
device and finer material over the coarse. Currently a more reliable method is to face the
backfill side of the wall with a geotextile especially fabricated to allow vertical drainage.
The backfill adjacent to the geotextile does not have to be carefully graded for the geotex-
tile prevents soil erosion. It can be placed vertically and draped over the lateral drains to
avoid clogging. This material will allow the use of either granular (always preferable) or
cohesive backfill.

Although a geotextile material is ideal for allowing backfill drainage it is initially more
costly and requires care in placing and backfilling. Offsetting the higher initial cost is the
savings accrued from reduced maintenance, i.e., regular inspections and recovering eroded
material (refer to Fig 12-18Z?) from the weep hole exits and putting it back behind the wall
(often in vertical "pipes" formed by erosion down to the weep holes).



11-10.3 Angle of Wall Friction S

Wall friction apparently depends not only on the soil properties but also on the amount and
direction of wall movement [see Sherif et al. (1982)]. Indications are that maximum wall
friction may not occur simultaneously with maximum shearing resistance along the rupture
surface and that wall friction is not a constant along the wall—probably because the relative
soil-wall movement is not constant.

Considerable engineering judgment must be applied to obtain realistic values of wall fric-
tion since they are pressure-dependent. Values of S = 0.6 to 0.8$ are reasonable for concrete
walls where forms are used giving a relatively smooth backface. Table 11-6 gives several val-
ues of S for other wall-to-soil materials. For steel, concrete, and wood the values shown are
for a normal pressure an of about 100 kPa. Decrease the values about 2 degrees for each 100
kPa increase in sand [see Acar et al. (1982) and Fig. 2-31].

Rankine earth pressure is commonly used for the structural design of low- and medium-
height walls, since a larger wall pressure is obtained from not including any wall friction
angle 5. For high walls (say more than about 6 m) one should consider using the Coulomb

TABLE 11-6
Friction angles S between various foundation materials and soil or rock*

Friction angle ,
Interface materials S, degreesf

Mass concrete or masonry on the following:
Clean sound rock 35°
Clean gravel, gravel-sand mixtures, coarse sand <f>
Clean fine to med ium sand, silty med ium to coarse sand, silty or clayey gravel <f)
Clean fine sand, silty or clayey fine to med ium sand <£
Fine sandy silt, nonplastic silt 4>
Very stiff and hard residual or preconsolidated clay <f>
Medium stiff and stiff clay and silty clay 4>

Steel sheet piles against the following:
Clean gravel, gravel-sand mixture, well-graded rock fill with spalls 22°
Clean sand, silty sand-gravel mixture, single-size hard rock fill 17
Silty sand, gravel, or sand mixed with silt or clay 14
Fine sandy silt, nonplastic silt 11

Formed concrete or concrete sheetpiling against the following:
Clean gravel, gravel-sand mixtures, well-graded rock fill with spalls 22-26
Clean sand, silty sand-gravel mixture, single-size hard rock fill 17-22
Silty sand, gravel, or sand mixed with silt or clay 17
Fine sandy silt, nonplastic silt 14

Various structural materials
Masonry on masonry, igneous and metamorphic rocks:

Dressed soft rock on dressed soft rock 35°
Dressed hard rock on dressed soft rock 33
Dressed hard rock on dressed hard rock 29

Masonry on wood (cross grain) 26
Steel on steel at sheet-pile interlocks 17
Wood on soil 14—16$

*May be stress-dependent (see text) for sand.

!Single values ±2°. Alternate for concrete poured on soil is 8 — <f>.

tMay be higher in dense sand or if sand penetrates wood.



earth pressure (with some estimated wall friction angle 5), as the Rankine pressure is likely
to produce too much wall overdesign.

11-10.4 Wall Adhesion

Wall adhesion develops from any cohesion in the soil. In the upper region it is expected a
tension crack may form (or form during dry periods as the ground naturally shrinks). The
value of adhesion ca below the tension crack is usually taken at from 0.5 to OJs11 with a
maximum value not much over 50 kPa. There is some opinion to neglect the tension zones
along a wall (see Examples 11-4 and 11-5). One may need to investigate both the total stress
case [with cohesion (su)] and the drained (effective) stress case using only </>', depending on
the particular problem parameters.

11-11 EARTH-PRESSURE THEORIES IN RETAINING
WALL PROBLEMS

Both the Rankine and Coulomb methods are widely used to compute the lateral earth pressure
on retaining walls. The Rankine solution is often used because the equations are simple and
are somewhat more conservative than the Coulomb equations, that is, they compute a larger
lateral pressure.

The Rankine (and Coulomb) equation for cohesionless soil and no surcharge has the same
form as for hydrostatic problems, that is,

Pa = ycr* = j(yHKa)

where the yKa term is the equivalent unit weight of some fluid. Values in the range of 5 to
8 kN/m3 are given in some handbooks, and when these values are used, the resulting design
is termed the equivalent fluid method. This procedure is not generally recommended, partly
because one can simply select some value and not really analyze the problem.

In using either the Rankine or Coulomb solutions, no part of the wall should interfere
with the formation of the approximate rupture surface (line BC of Fig. 11-2). Generally for
cantilever retaining walls (walls with a heel projection as in Fig. 11-13Z?) one must make two
solutions:

1. At the back face of the wall using H = AB of Fig. 11-136 so the stem can be designed to
resist shear and moment.

2. At the heel point C using H = A1C for overall wall sliding and overturning stability.

11-11.1 Walls with Limited Backfill Zones

A major consideration in wall design is whether the idealized rupture zone can form as il-
lustrated in Fig. 11-12. In Fig. 11-12« the backfill zone is large enough that the "Rankine"
zone can develop in soil of known properties. In Fig. 11-12Z? the backfill zone is limited and
the Rankine zone (if one develops) will be in the original ground—the granular backfill only
provides free drainage so hydrostatic water pressure does not form. Obviously, if the existing
ground has been standing for some time it will contribute little—if any—lateral pressure to
the wall and the principal wall pressure will be from compacting the backfill in the limited
zone; however, lateral pressure from compaction may be substantial and even exceed any
computed active pressure.
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Figure 11-13 Rankine wedge locations for valid solutions. In (Jb) and (c) include weight W in stability compu-
tations.

The actual wall pressure in this case depends on wall rigidity (in terms of displacement)
and compaction effort. Usually compaction-induced wall pressures produce a resultant wall
force close to midheight versus the one-third height for the active pressure case. This problem
was discussed in Sec. 11-8.1, where it was given that one may use a lateral earth pressure
coefficient

Ka < K < K0

and either locate the resultant at the one-third point or use Eq. (11-15) to locate the resultant
higher along the wall.

Figure W-YIb represents a common field situation where considerable engineering judg-
ment is required to estimate the wall pressures. Considerable opinion holds that, when the b
dimension shown on the figure is so narrow that the Rankine wedge does not form, some kind
of arching action occurs. Handy (1985) considered arching in some detail and later Frydman
and Keissar (1987) suggested that one might estimate the lateral pressure using a modification
ofEq. (11-24) of Sec. 11-16 to read

^ = 2^[ 1 - e X p ( " 2 ^ t a n S ] (1M8)

where y = unit weight of backfill

b = backfill zone width



tan S = coefficient of friction

z = depth from top to where the lateral pressure ah is computed
K = lateral pressure coefficient

The value of K is critical—some use K = Ka, others use K = K0, and still others use some
intermediate value. It would appear reasonable to use Ka if the wall can rotate and K0 if the
wall is rigid. Frydman and Keissar (1987) also give an equation for estimating K that depends
on 4> and S as follows:

(sin2 (f> + 1) - V(sin2 </> + I)2 - (1 - sin2 </>)(4tan2 S - sin2 </> + 1)
/£ = - (11-19)

(4 tan2 S -sin2</>+ 1)

For c/> = 32° and S = 18° one obtains K = 0.329. The Rankine Ka = 0.307 but it has no
provision for including the wall friction angle S. This equation is somewhat sensitive to 5, so
one should exercise care to try to estimate a "best" value. Equation (11-19) is programmed
into program FFACTOR as option 8 on your program diskette.

Figure W-YId presents a method where granular backfill is limited in availability, so some
is placed to locate the "Rankine" zone adequately and then poor material is used in the region
where it is not critical. The limited back face zone is for drainage and could be eliminated by
using a vertical drainage geotextile against the wall. Here one would use the $ angle of the
granular soil but a unit weight that is an average for the backfill. Since this backfill geometry
requires careful field control, its use is a last resort.

11-11.2 Sloping and Irregular Backfill Surface

When the backfill is smooth or even, it may either be horizontal or have a ±/3 angle as
illustrated in Fig. 11-13. The Rankine equations see only a (+) /3 angle, but the Coulomb
equations recognize the /3 angle and its sign.

Additionally we may have a sloping dredge line (of Fig. 11-2). We would intuitively expect
a (+) slope to increase the wall pressure and a ( - ) to decrease the pressure. This expectation
is reflected in the Coulomb and Theory of Elasticity methods for both (+) and ( - ) /3 values
and in the Rankine method for (+) values. The ( - ) values have particular value for walls
using passive pressure in the soil below the dredge line. Occasionally walls supporting coal
piles and the like may have a negative slope as the stored material is depleted.

Where the ground is irregular, we may estimate the exit of the Rankine zone (line AC of
Fig. 11-7) and in region BC treat the irregular surface as either a best-fit slope or as a uniform
surcharge and use the equations for the case; for example in Fig. ll-14a we might smooth
out the irregular slope B'FE, measure the resulting /3 angle, and use either the Rankine or
Coulomb equation to obtain a lateral pressure coefficient.

Alternatively, we may also use the trial wedge method in Sec. 11-11.3, particularly if we
want a better estimate of the location of the rupture line.

11-11.3 Surcharges on Backfill

Surcharges such as point, line, strip, or finite area loads may be on the backfill and increase
the lateral pressure. Neither the Coulomb nor the Rankine equations have provision for these
types of surcharges. The graphical and computer methods of the next section and the Theory
of Elasticity method of Sec. 11-13 are often used to obtain lateral earth pressures for backfill
loads.



Figure 11-14 The trial wedge active force solution. For passive force slope of Pp is shown; slope R changes, Cs, Cw

reverse directions.

From the several solutions by these methods shown in Table 11-7 (Sec. 11-13), it is sug-
gested that the Rankine or Coulomb solution may be better than the graphical methods for
surcharges located within the Rankine wedge defined by the angle p (Slope of AC shown on
Fig. U-Ia).

If the surcharge is located within this zone, simply convert the surcharge to a vertical
load, divide by the distance BC (see also the figure on Table 11-7), and treat the result as a
surcharge q.

If the surcharge lies outside the distance BC the best solution is generally the Coulomb or
Rankine method plus the contribution from using the Theory of Elasticity of Sec. 11-13.

A special case of backfill surcharge is one located a distance d from the back face of the
wall. Motta (1994) has produced a closed-form solution but the equations are difficult. They
have been programmed in subroutine MOTTAKA in program FFACTOR as option 9; data
are input using screen prompts. All the values in MOTTAKA have been previously used (i.e.,
consistent notation).

11-12 GRAPHICAL AND COMPUTER SOLUTIONS
FOR LATERAL EARTH PRESSURE

There are graphical solutions for estimating lateral forces when the backfill is irregular-
shaped or loads are concentrated. Neither of these cases is consistent with the Rankine or
Coulomb theories. Among the several solutions are Culmann's (ca. 1886), the trial wedge
method (ca. 1877), and the logarithmic spiral.

An analytical solution based on the Theory of Elasticity can also be used. This is particu-
larly suited for computer use.

The Culmann and trial wedge methods are very similar except for the general orienta-
tion of the force polygons. Both methods rely on computing the known forces on a trial
wedge, which include any external load on the backfill, the weight of the trial wedge, and the
shear force on the tentative (or trial) rupture surface, and, from known slopes of the unknown
wall force vector Pa (or Pp) and the unknown resultant force R on the rupture surface, plotting

Cw = AB- cohesion (direction and magnitude known)
C4. = AD- cohesion (direction and magnitude known)
W = weight of trial wedge (direction and magnitude known)

(c) Rapid method of establishing
the slope of R

R = known in direction
Ptt = known in direction

(b) Forces acting on AB 'ED formed
into the force polygon

(a) Forces acting on a trial
wedge AB'ED

Slope AB

Slope AD

Slope/4J
of(c)

Slope of Pa

in (a)

Same as

GH in (a)
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