
CHAPTER

10
MAT FOUNDATIONS

10-1 INTRODUCTION

A mat foundation is a large concrete slab used to interface one column, or more than one col-
umn in several lines, with the base soil. It may encompass the entire foundation area or only
a portion. A mat may be used to support on-grade storage tanks or several pieces of indus-
trial equipment. Mats are commonly used beneath silo clusters, chimneys, and various tower
structures. It becomes a matter of definition as to when the dimensions of a spread footing
make the transition into being called a mat. Figure 10-1 illustrates several mat configurations
as might be used for buildings. Those shown encompass the entire building plan, but this is
not a requirement.

A mat foundation may be used where the base soil has a low bearing capacity and/or the
column loads are so large that more than 50 percent of the area is covered by conventional
spread footings. It is common to use mat foundations for deep basements both to spread the
column loads to a more uniform pressure distribution and to provide the floor slab for the
basement. A particular advantage for basements at or below the GWT is to provide a water
barrier. Depending on local costs, and noting that a mat foundation requires both positive and
negative reinforcing steel, one may find it more economical to use spread footings—even if
the entire area is covered. Spread footings avoid the use of negative reinforcing steel and can
be accomplished as in Fig. 10-2 by pouring alternate footings, to avoid formwork, and using
fiber spacer boards to separate the footings poured later.

Mat foundations may be supported by piles in situations such as high groundwater (to
control buoyancy) or where the base soil is susceptible to large settlements. We should note
that the mat contact stresses will penetrate the ground to a greater depth or have greater
relative intensity at a shallower depth (refer to Figs. 5-4 and 5-9). Both factors tend to increase
settlements unless there is a stress compensation from excavated soil so that the net increase
in pressure is controlled.



Figure 10-1 Common types of mat foundations, (a) Flat plate; (b) plate thickened under columns; (c) waffle-
slab; (d) plate with pedestals; (e) basement walls as part of mat.
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Figure 10-2 Mat versus possible use of spread footings to save
labor, forming costs, and negative reinforcing steel.

10-2 TYPES OF MAT FOUNDATIONS

Figure 10-1 illustrates several possible mat-foundation configurations. Probably the most
common mat design consists of a flat concrete slab 0.75 to 2 m thick and with continuous
two-way reinforcing top and bottom. This type of foundation tends to be heavily overde-
signed for three major reasons:

1. Additional cost of analysis methods, which are, however, not exact.

2. The extra cost of a reasonable overdesign of this element of the structure will generally
be quite small relative to total project cost.

3. The extra margin of safety provided for the modest additional cost.



Figure 10-3 Increase in bearing capacity by using a mat foundation.

10-3 BEARING CAPACITY OF MAT FOUNDATIONS

The mat foundation must be designed to limit settlements to a tolerable amount. These set-
tlements may include the following:

1. Consolidation—including any secondary effects

2. Immediate or elastic

3. A combination of consolidation and immediate amounts

A mat must be stable against a deep shear failure, which may result in either a rotational
failure (see Fig. 4-la), typified by the Transcona elevator failure (White, 1953), or a vertical
(or punching) failure. A uniform vertical punching failure would not be particularly serious,
as the effect would simply be a large settlement that could probably be landscaped; however,
as the settlement is not likely to be uniform or predicted as such, this mode should be treated
with concern equal to that for the deep-seated shear failure.

The bearing-capacity equations of Table 4-1 may be used to compute the soil capacity,
e.g.,

<7uit = cNcscicdc + yDNqsqiqdq + -XBNySyiydy

or

tfuit - 5.14ywQ +s'c+d'c- O + q

Use B = least mat dimension and D = depth of mat (Fig. 10-3). The allowable soil pressure
is obtained by applying a suitable factor of safety (see Table 4-9) and any applicable reduction
for mat width B as suggested in Sec. 4-4.

When the bearing capacity is based on penetration tests (e.g., SPT, CPT) in sands and
sandy gravel one may use Eq. (4-13) rewritten [see Meyerhof (1965)] as follows:

where Kd = 1 + 033D/B < 1.33

AHa = allowable settlement such as 25, 40, 50, 60 mm, etc.

The factor 0.08 converts Meyerhof's original equation to allow a 50 percent increase in bear-
ing capacity and to produce kPa. The bracket ratio of (AHa/25.0) allows the reader to use
any specified settlement, since the original equation was based on a settlement of 25 mm (1
inch). For a mat the ratio ((B + F>$)/B)2 — 1.0 and is neglected.

Floor slab

Spread footings Mat



With qc (in kPa) from a CPT we can use Fig. 3-23 or Eq. (4-20) to estimate an N$$ value
for use in Eq. (10-1). A typical computation for A/55, which you can use as a guide, is given
in Fig. 3-23. For CPT in cohesive soil one can use Eq. (3-11) to obtain the undrained shear
strength (0 = 0° case) su and use the bearing capacity equations (Meyerhof, Hansen, or
Vesic) from Table 4-1 simplified to

quh = 5.14sM(l + s'c + d'c - ic) + yD

Alternatively, use Eqs. (4-19) directly with qc. In most cases the mat will be placed on
cohesive soil, where qu (or qc) from standard penetration tests is the principal strength data
available. In these cases SPT sampling is usually supplemented with several pushed thin-
walled tube samples so that laboratory unconfined (or confined triaxial) compression tests
can be performed to obtain what are generally considered more reliable strength parameters.
Any triaxial laboratory tests may be CK0XX, as indicated in Sec. 2-11, and either (or both)
compression (case 1) and extension (case 3) type of Fig. 2-40. Alternatively, in situ tests may
be performed, such as the pressuremeter or borehole shear, to obtain the design strength data.

10-4 MAT SETTLEMENTS

Mat foundations are commonly used where settlements may be a problem, for example, where
a site contains erratic deposits or lenses of compressible materials, suspended boulders, etc.
The settlement tends to be controlled via the following:

1. Use of a larger foundation to produce lower soil contact pressures.
2. Displaced volume of soil (flotation effect); theoretically if the weight of excavation equals

the combined weight of the structure and mat, the system "floats" in the soil mass and no
settlement occurs.

3. Bridging effects attributable to
a. Mat rigidity.
b. Contribution of superstructure rigidity to the mat.

4. Allowing somewhat larger settlements, say, 50 instead of 25 mm.

The flotation effect should enable most mat settlements, even where consolidation is a
problem or piles are used, to be limited to 50 to 80 mm. A problem of more considerable
concern is differential settlement. Again the mat tends to reduce this value. We can see in
Fig. 10-4 that bending moments (6£/A/L2) and shear forces (12£7A/L3) induced in the su-
perstructure depend on relative movement A between beam ends. Mat continuity results in
a somewhat lower assumed amount of differential settlement relative to the total expected
settlement versus a spread footing as follows:

Expected maximum Expected differential
Foundation type settlement, mm settlement, mm

Spread 25 20
Mat 50 20

Computer methods that incorporate frame-foundation interaction can allow one to estimate
both total and differential settlements. The total settlements will be only as good as the soil



Figure 10-4 Reduction of bending moments in superstructure by using mat foundation. Bending moment M is
based on differential settlement between columns and not on total settlement.

data, however, and if other than a strip from the mat is used as a beam-on-elastic foundation
type of analysis, the computational effort is substantial.

The differential settlement may be arbitrarily taken as 20 mm (0.75 in.) if the total expected
settlement A// is not more than 50 mm or may be approximated using a rigidity factor Kr

[see ACI Committee 336 (1988)] defined as

FTi.

*- = E& (10"2)

EIb may be taken as

Elb = EIf + X EIbl + X ^ (10-3)

where EIt, = flexural rigidity of the superstructure and mat
E = composite modulus of elasticity of superstructure frame

EIf = footing or mat flexural rigidity
E5 = modulus of elasticity of soil

^ T = effective rigidity of shear walls perpendicular to B; h = height; a =

wall thickness

X EIhi = rigidity of the several members making up the frame resistance per-
pendicular to B

B = base width of foundation perpendicular to direction of interest

ACI Committee 336 suggests that mat differential settlements are related to both the total
estimated foundation settlement AH and the structure rigidity factor Kr about as follows:

differential settlements

Total
settlement



For Kr Differential settlement expected

0 0.5 X AH for long base
0.35 X AH for square base

0.5 0.1 x AH
> 0.5 Rigid mat; no differential settlement

Analyses of settlements will have to be performed where the net increase in pressure ex-
ceeds the existing in situ pressure p'o. These may be immediate and/or consolidation settle-
ments adjusted for OCR and depending on the underlying soil stratification.

A major problem—particularly for deep excavations in clay—is expansion and/or lateral
flow into the excavation base so that the base elevation rises. This phenomenon is termed
heave, and values of 25 to 50 mm are very common. Values up to 200 mm (about 8 in.)
are reported in the literature. It is difficult to compute settlements when heave has occurred.
Theoretically, all the heave should be recovered if we reapply a mat pressure q0 equal to
that previously existing. In practice this recovery does not occur, or at least it does not occur
with the same rapidity as the heave. It should be expected that if part of the heave occurs
from a deep-seated lateral flow (refer to Fig. 4-1 elements 1 and 2) it will be very difficult
to predict either the total amount of heave or how much of this will be recovered by elastic
recompression. In general, where heave is involved, considerable experience and engineering
judgment are necessary in estimating probable soil response, for there are currently no reliable
theories for the problem. There is some claim that a finite element of the elastic continuum
computation can resolve the dilemma; however, this is a speculative procedure aided by hope
of a happy outcome of computations and measurements. The reason is that a finite-element
computation is only as good as the input parameters of E5 and /JL . Even were we to be able to
obtain a reliable initial Es it will reduce during, and after excavation, as the loss of confining
pressure p'o and expansion produces heave.

Heave can also occur in deep excavations in sand but the amount is usually very small.
Heave is usually not a consideration where the excavations are on the order of 2 to 3 m in
depth in most soils, but it becomes a major problem for excavations of 10 to 20 m in clay.

Example 10-1. For the soil profile of Fig. E10-1 (a composite of the several site borings to save
text space) estimate the allowable bearing capacity for a mat foundation to be located at D =
1.5 m.

Solution. We will estimate an allowable bearing capacity based on qu and adjust it so the settlement
is approximately adequate.

These data are basically the type a geotechnical consultant would have on which to make an
allowable pressure recommendation.

Step 1. Find a qa based on strength alone with SF = 3 for clay. As in Example 4-4,

qa- s p - 1.3(5./) 2 3

= 1.3(5.14)^? = 334.IkPa

Tentatively, qa = 300 kPa = qu (see Ex 4-4)
Step 2. Find qa so mat settlement is on the order of about 50 mm.



a. Find the average Es.
The depth H from base of mat to rock is

H = (4.90 - 1.5) + 3.3 + 7 + 13.8 = 27.5 m

The average Es in this depth (and using Table 5-5) is

EsX = 1 0 ( y ^ = 15000OkPa (average range of stiff clay and su = ^ )

Es2 = 500(N55 + 15) (the most conservative equation in Table 5-5)

Es2 = 500 18 (— J + 15 = 18 950 kPa (converting N70 to TV55 and rounding)

Es3 = 500122 (^ j + 151 = 22 000 kPa (for 7 m stratum)

Es4 = 500 j 4 0 ( ^ U 15] = 3290OkPa

The weighted average Es is

_ 3.4(150000) + 3.3(18950) + 7.0(22000) + 13.8(32900)
^s(av) — 27~5

= 1180555 = 4 2 9 3 Q k p a

b. Estimate the mat will be on the order of 14 m, giving

Estimate /UL = 0.3 for all the layers.

Figure E10-1

Very dense sand with gravel

Medium dense gravelly sand

Medium dense sand

Base Very stiff silty clay (glacial till)

Rock



From Table 5-2 obtain /, factors to compute Is for use in Eq. (5-16a); thus,

/, = 0.408 + 1 " " 2 ^ ; 3 ) (0.037) = 0.429
1 ~~ 0.3

Estimating D/B = 0.1, we obtain IF = 0.95 from your program FFACTOR. Using Eq. (5-16«),
we write

AH = qoB' {^J^-\mIsIF [Eq. (5-16«)]

— =1 \l~®'l 1 (4 X 0.429)(0.9) = 0.00024 m3/kN (at center)
qo \ 42 930/

For a settlement Ai/ = 50 mm (0.050 m) we solve for the required qa{ = qo) to obtain

This qa should limit the mat settlement to about 50 mm, which is a common allowable value for
mat foundations.

Note: A qualifying statement should be included with this recommendation that if, as the design
proceeds and B is found to be substantially different from 14 m, it may be necessary to revise qa.
Recommend qa = 250 kPa.

////

10-5 MODULUS OF SUBGRADE REACTION ks
FOR MATS AND PLATES

All three discrete element methods given in this chapter for mats/plates use the modulus of
subgrade reaction ks to support the plate. The modulus ks is used to compute node springs
based on the contributing plan area of an element to any node as in Fig. 10-5. From the figure
we see the following:

Node Contributing area

1 (corner) \ of rectangle abde
2 (side) \ of abde + \ of beef
3 (interior) \ of each rectangle framing

to a common node (as node 3)

For a triangle one should arbitrarily use one-third of the triangle area to any corner node.
For these area contributions the fraction of ks node resistance from any element is

Kt = ks, kN/m3, X Area, m2 = units of kN/m (or kips/ft in Fps)

Since this computation gives units of a "spring" it is common to call the effect a node spring.
In this form the springs are independent of each other, the system of springs supporting the

plate is termed a "Winkler" foundation, and the springs are uncoupled. Uncoupling means
that the deflection of any spring is not influenced by adjacent springs.



Figure 10-5 Method of prorating ks to build node springs for rectangles and triangles.

Because the springs are uncoupled, some designers do not like to use the concept of ks,
preferring instead to use a FEM of the elastic continuum with Es and /x as elastic parameters.
This choice does somewhat couple the effects; however, the computations are extensive and
only as good as one's estimate ofEs and /JL. It has already been shown in Sec. 9-6 that there is
a direct relationship between these parameters and ks. In any case the use of ks in analyzing
mats is rather widespread because of the greater convenience of this parameter. There is
actually little computational evidence that the FEM of the elastic continuum provides better
solutions than using a "Winkler" foundation.

The author [Bowles (1986)], and as given in previous editions of this textbook, has ap-
proximately coupled the springs. In general, coupling can be done as follows:

1. Simply double the edge springs of a mat (we doubled the end springs of the beam-on-
elastic foundation in Chap. 9). This should only be done under these conditions:
a. The plate or mat is uniformly loaded except for edge moments as one would obtain

from a tank base.
b. The plate or mat has only one or at most two column loads.
c. The computed node soil pressures q are in the range of mat load 2 P/Am, where Am =

area of the mat. If there are large differences do not double the edge springs. How does



one ascertain this? Use computer program B-6 (FADMAT on your diskette), double the
edge springs, and inspect the output. If the contact pressures q are questionable, copy
the data file, edit the copy to remove the edge spring doubling controls, and rerun. Use
the most reasonable output.

2, We can zone the mat area using softer springs in the innermost zone and transitioning
to the outer edge. Zoning is computed as in Example 10-2 and usually the three zones
computed there are sufficient. Refer to Example 10-6 and data file EXAM106B.DTA for
the method.

The simplest zoning (which effectively doubles the edge springs) is to use two zones—
an interior one, which includes all of the nodes except the edge ones, and all the perimeter
nodes for the second "zone." Use 1.5 to 2 X ^interior for these edge (or perimeter) nodes.
But be aware this will result in large computed edge pressures. Element data generator
program B-18 (on your README.DOC file) is particularly well-suited to do these com-
putations.

3. You should not both double the edge springs and zone the mat area for the same program
execution. Use either one or the other, or simply use a constant ks beneath the entire foun-
dation. This latter may be the most nearly correct when there are a number of column
loads. There has been some attempt at coupling by using the Boussinesq equation [Eq.
(5-3) or (5-4)] in this fashion:
a. Make a trial run and obtain the node pressures.
b. Use these node pressures and compute the pressure increase profiles at adjacent nodes.
c. Use these pressure increase profiles to modify the ks around these several nodes. This

approach requires a very massive amount of computing and is not recommended by the
author. It does not make much sense to use an approximation to refine an "estimate."

Example 10-2. For the soil data of Example 10-1 recommend ks for the 14 X 14 m mat foundation.

Solution. For many cases a single value of ks is recommended that may be an average for the base.
We will do this but also give the three zone values since very little additional effort is required.

Figure E10-2



Step 1. The center ks (point C of Fig. E10-2) is readily computed from the same data used to obtain
qa in Example 10-1. From Example 10-1 obtain

1 _ Aff - 0 0 0 0 2 4 - * £ - * - l

ks ~ A^ " a u u u 2 4 " > AH ~ ks~ O00024

and center ks = 4166.7 -* 4200 kN/m3.

Step 2. The edge (points of Fig. E10-2) value is obtained by dividing the 14 m mat into two parts
of BXL = 1 X 14 with a common corner H/B' = 4 (as before) but L/B = 2, D/B = 0.1, /x = 0.3,
so

I5 = 0.476 + ^ (0 .069) = 0.515 IF = 0.95 (using FFACTOR)

F> - X~^ - ° 9 1 - 9 19x10-5E'~ 42930 " 4 2 9 3 0 ~ 2 A 2 x l °

Rearranging Eq. (5-16«) into Eq. (9-7), we have

*" = IFEku} - 7(2.12 X 1 0 - 4 X 0.515X0.95) = 6887-> 6900 kN/rn̂

t
(We used m = 2 since there are two common corners.)

Step 3. For the | point (point B) we have midpoints of two sets of rectangles:

Set 1: B' = 1 L' = 10.5m L/B = 1.5 IF = 0.95 H/B' = 4

/, = 0.483 (program FFACTOR direct)

Set 2: B' = 3.5 L = 7.0 m L/B = 2 H/B = 27.5/3.5 = 7.86

/5 = 0.630

^ (1 /4) = 7(2.12 X 10-5)(2 x 0.483)(0.95) + 35(2.12 X 10-5)(2 X 0.63O)(0.95)

t t
for 2 rectangles

= 2 . 2 5 0 x 1 0 - 4 = 4 ^ 4 9 - 4 5 0 0 k N / m 3

The value of &5(i/4) is not the sum of set 1 and set 2 but is actually the reciprocal of the sum of the
displacements as given by placing the sum under a single common numerator of 1 as here.

Step 4. If a single value of ks is to be provided, one might use either

4200 + 4500 + 6900 - o n A 1 X T / 3
ks = = 5200 kN/m

or (weighting the center ks)

. 4(4200)+ 6900 . _ . . ^A A 1 1 V T / 3
ks = — = 4740 -* 4700 kN/m

Comments. This set of computations for ks is theoretically exact since the displacements are theo-
retical and the definition of ks has been strictly followed. The only approximations are in whether
Es and /JL are correct.



MODULUS OF SUBGRADE REACTION AND CONSOLIDATION SETTLEMENTS. It is
not uncommon that a mat is placed on a soil that is analyzed by using ks, but there are, in
addition, consolidation settlements that will occur later.

It is a relatively simple exercise in using the definition of ks to include the effect of con-
solidation settlements. This can be done as follows:

*• - Is <">
Although the base contact pressure qo remains constant the total settlement is

Mi' = A// + AHC

giving

< - AflTA* <*>
Dividing Eq. (b) by Eq. (a), we obtain

_ ksAH
s ~ AH + AHC

 (C)

We can see that including the consolidation settlement reduces ks to the lesser k's value of
Eq. (c).

Example 10-3. What is the recommended k's (constant value) if the consolidation settlement is
estimated to be 50 mm in Example 10-2? Use ks = 5200 kN/m3.

Solution, From Example 10-1 a contact pressure of q0 = 205 kPa produces A// = 50 mm =
0.050 m. From Example 10-2 we see the elastic ks was independent of qa\ thus, using Eq. (c) we
write

5200(50) ^ ™ 1 X T / 3

^ = l o T W = 2 6 O O k N / m

Comments. It is presumed that the consolidation pressure is based on qo = qa = 200 kPa. One
would probably have to inspect the computer output to find out if the contact pressure in the zone
of interest was much different from 200 kPa. If so, a new value of A//c would have to be computed
and the problem recycled.

10-6 DESIGN OF MAT FOUNDATIONS

There are several methods to design a mat (or plate) foundation.

1. An approximate method. The mat is divided into strips loaded by a line of columns and re-
sisted by soil pressure. This strip is then analyzed as a combined footing. This method can
be used where the mat is very rigid and the column pattern is fairly uniform in both spacing
and loads. This method is not recommended at present because of the substantial amount
of approximations and the wide availability of computer programs that are relatively easy
to use—the finite grid method (program B 6 on your program diskette) in particular. A mat



is generally too expensive and important not to use the most refined analytical methods
available.

2. Approximate flexible method. This method was suggested by ACI Committee 336 (1988)
and is briefly described here, and the essential design aids are provided. If this method is
used it should be programmed as for the AIRPAVE computer program noted in subsection
10-6.2 following.

3. Discrete element methods. In these the mat is divided into elements by gridding. These
methods include the following:
a. Finite-difference method (FDM)
b. Finite-element method (FEM)
c. Finite-grid method (FGM)

10-6.1 Approximate Flexible Method

The approximate flexible method of ACI Committee 336 requires the following steps:

2. Compute the plate rigidity D (unfortunately, same symbol as footing depth).

3. Compute the radius of effective stiffness L (Note: the approximate zone of any column
influence is ~ 4L).

4. Compute the radial and tangential moments, the shear, and deflection using the following
equations (the Z1 factors, from Hetenyi (1946), are not easy to compute) where load P acts:

Mr = -^[z"-l-zrLz^\ (1(M)

Mt = - j \jxcZA + ]~Y^^ (10-5)

PL2

AH = —— (vertical displacement) (10-6)
oD

PL2

A// = ——ZT, (at distance r from load) (10-6«)

V = -^jA (shear) (10-7)

where P — column load, kN or kips

D = plate stiffness, as

Ect
3

D = TTZTT^ ^r (units of moment)
12(1 - fx2)

/ULC = Poisson's ratio for mat or plate (for concrete use 0.15)

x = distance ratio r/L shown on Fig. 10-6



V rrr fit

Figure 10-6 Z1 factors for computing deflections, moments, and shears in a flexible plate. [After Hetenyi (1946).]

Zt = factors from Fig. 10-6 based on x (or from a computer program such as
AIRPAVE)

L = influence radius defined as 4/ —
V ks

Mn Mt = radial and tangential moments at the load point of Fig. 10-6, per unit of
width in units of P, L

V = shear per unit of width of mat or plate in units of P

The radial (Mr) and tangential (Mt) moments in polar coordinates at the load point are
converted to rectangular coordinates Mx, My, referenced to the origin, using the transfer
equations shown in Fig. 10-6. For the several loads in the influence region L these Mx, My

moment values are summed with attention to sign for design of the plate.

Load point



When the edge of the mat is within the radius of influence L, calculate the edge moment
and shear. The parallel edge moment and shear are then applied as edge loads with opposite
sign. When several columns overlap in the zone L, apply superposition to obtain the net effect.

An illustration of computations for a mat are given by Shukla (1984) using this procedure.
The D calculated in this reference is in error, so that the resulting computations are not quite
correct; but the general procedure gives an illustration of the method.

10-6.2 Mats or Slabs for Industrial Warehouses
and Concrete Airstrips

Industrial floor slabs and concrete airport pavements are somewhat similar and can be de-
signed using the procedure outlined here. One additional step is required. From Westergaard
(1948) we can obtain an equation for the bending stresses in the bottom of a slab under a
wheel load. This equation is

{l;} - & <•+"<>'"-f^> *2(1 - * • > £ ! <>°-8>
Here terms not defined previously are t = plate thickness; a,b = axis dimensions of an
ellipsoid used to model the tire footprint. Approximately [given by PCA (1955)] we have

Area = tire load/tire pressure

/ A r e a n • x
a = V^6655) (1°ngaX1S)

b = 0.6655 X a (short axis)
Use consistent units for t, a, b of meters or inches. If tire load is in kN use tire pressure in kPa;
if load is in pounds use tire pressure in psi. As you can see, there is a sign convention involved
with the several equations given here. To understand the significance of the signs you should
solve a simple slab where you know there is tension (or compression) in the bottom and
compare the result to the signs for stress or moment values given by the equations. Convert
the moments of Eqs. (10-4) and (10-5) to stresses by using the conventional

fc = —j- = —Y (since M/ = per unit of width)

In usage one would program Eq. (10-8) together with the Z,- factors and Eqs. (10-4) through
Eq. (10-7). If the point where the stresses are wanted is under a wheel, include Eq. (10-8) in
the analysis. If the point is not under a wheel, use only the equations containing the Z,- factors.
You need to program the Z1- factors so that interpolation is not necessary (it is also difficult to
obtain reliable values from Fig. 10-6). Figure 10-7 illustrates a set of wheels (these are one
landing gear of an airplane) but could be from a wheeled loader in a warehouse. In using this
procedure it may be worthwhile to provide suitable load transfer dowels into perimeter wall
footings for jointed slabs. For airport runways the common procedure is to use continuously
reinforced concrete (CRC) so joints are not used. The pavement edges are usually thickened
such that edge formulas do not have to be considered. Floor slab edges in warehouses probably
should be thickened as well, partly because of the difficulty in obtaining good compaction
adjacent to the perimeter wall footings.



Dual-tandem landing gear
Total load = 667.2 kN (166.8 kN/wheel)

For P = 166.8 kN Tire pressure = 690 kPa

Area= ^ ? =o.2417m2

690

'^3.14159(0.665S) = 0340 m = 340 mm

b = 0.340(0.6655) = 226.3 mm

Figure 10-7 One part of a landing gear set (nose wheel and other side gear not shown). Also shown are compu-
tations for tire load and the approximate ellipse dimensions for use in Eq. (10-8).

10-7 FINITE-DIFFERENCE METHOD FOR MATS

The finite-difference method uses the fourth-order differential equation found in any text on
the theory of plates and shells [Timoshenko and Woinowsky-Krieger (1959)]:

dAw 2dAw dAw _ q P

J7 + dx1 dy2 + Jy* " D + D(dx dy) ( }

which can be transposed into a finite-difference equation when r = 1 (Fig. 10-8):

20wo — 8(W^ + WB + WR + Wi) + 2(WTL + WTR + WBL + WBR)

qh4 Ph2

+ (WJT + WBB + WLL + WRR) = -jy + -jy (10-10)

When r ^ l , this becomes (as in program B-19, but with much algebra and many steps not
shown)

( ^ + ^ + 6)W0 + ( ~ 7 - ^)(WL + ^ ) + (~~ ~ A^(WT + WB)

2 1

Since ^ = - ^ w 0 we must rearrange the wo term of Eq. (10-11) to read

(a)

Slab

Area



The form shown for the ks term results from computing a spring using ksrh2, dividing through
by rh2, and multiplying by h4. Note that rD does not cancel in the P term.

When r = 1 we have the familiar deflection coefficient at any interior node of

(20 +ks-\wo (b)

Referring to Fig. 10-8, we see that the horizontal grid spacing rh can be different from the
vertical grid spacing h(\ < r or r < 1). In a computer program, of course, one simply orients
the mat so that the minimum grid points are horizontal with the origin of the grid at the lower
left corner. The input then consists in the horizontal grid spacing and vertical grid spacing,
which are constant, and the band width, which is 2 X horizontal grid points + 1 (thus, a
minimum is obtained if the horizontal grid points are the minimum).

The finite-difference method has several advantages:

1. It has been widely used (and should be used as a check on alternative methods where it is
practical).

2. It is reliable if the mat can be modeled using a finite-difference grid.
3. It is rapid since the input data are minimal compared with any other discrete method, and

the computations to build the stiffness array are not so extensive as other methods. Usually
only three to five lines of input data are needed compared with up to several hundred for
the other methods.

There are also a number of disadvantages:

1. It is extremely difficult to model boundary conditions of column fixity.

2. It is very difficult to model notches, holes, or reentrant corners.
3. It is difficult to apply a concentrated moment (as from a column) since the difference

model uses moment/unit of width.

The following example illustrates typical input and output from an FDM program (e.g.,
program FADMATFD, B-19).

Example 10-4. Do the Example 10-5 (p. 565) using the finite-difference method (FDM) to illustrate
the small amount of input needed and typical output, at least output using program FADMATFD.

Figure 10-8 Finite-difference grid of ele-
ments of rh X h dimension.



NAME OF DATA FILE USED FOR THIS EXECUTION: EX104FDM.DTA

EXAMPLE 10-4-SQUARE PLATE 3 X 3 M—AND NONLIN—FINITE DIFF METHOD—SI UNITS

MAT FOUNDATION INPUT DATA:
NO OF COLS, M - 6
NO OF ROWS, N - 6

NO OF NON-ZERO Q-VALUES - 4
MAT GRID SPACING: H - .600 RH - .600 M

PLATE THICK, T - .600 M
MOD OF ELASTICITY, E - 22408000. KPA
POISSON1S RATIO, XMU - .150

UNIT WT OF MAT - .000 KN/M~3
SOIL MODULUS SK - 15700.0 KN/M~3

COMPUTED PARAMETERS: FLEX RIGID D - .41263E+06
FACTOR DD = H~2/R*D = .87246E-06

MAT DIMENSIONS ARE: X = 3.000 M HORIZ
Y - 3.000 M VERT

MAX NON-LIN SOIL DEF, XMAX - .0200 M

++++++ BANDWIDTH OF MATRIX = 13 +++++++++++++++

SOIL SPRING (SOK(I,J) CONSTANTS—EDGES DOUBLED IF IDBLK > 0—IDBLK - 1
1 2 3 4 5 6

1 .00247 .00493 .00493 .00493 .00493 .00247
2 .00493 .00493 .00493 .00493 .00493 .00493
3 .00493 .00493 .00493 .00493 .00493 .00493
4 .00493 .00493 .00493 .00493 .00493 .00493
5 .00493 .00493 .00493 .00493 .00493 .00493
6 .00247 .00493 .00493 .00493 .00493 .00247

THE INPUT FOUNDATION LOADS AND COORDS ARE
3 3 550.
3 4 550.
4 3 550.
4 4 550.

FOOTING WT = .000 SUM OF INPUT LOADS = 2200.000 KN

THE LOAD ARRAY—AND CORRECTED FOR NON-LINEAR EFFECTS IF CYCLE > 1
THE CURRENT CYCLE = 1

1 2 3 4 5 6
1 .00000 .00000 .00000 .00000 .00000 .00000
2 .00000 .00000 .00000 .00000 .00000 .00000
3 .00000 .00000 550.00000 550.00000 .00000 .00000
4 .00000 .00000 550.00000 550.00000 .00000 .00000
5 .00000 .00000 .00000 .00000 .00000 .00000
6 .00000 .00000 .00000 .00000 .00000 .00000

NO OF STIFF(I) ENTRIES = 468

Figure E10-4



THE DEFLECTION MATRIX IS ( M)
1 2 3 4 5 6

1 .01107 .01126 .01139 .01139 .01126 .01107
2 .01126 .01146 .01161 , .01161 . .01146 .01126 .
3 .01139V .01161V .01181V .01181V .01161V .01139V
4 .01139 .01161 .01181 .01181 .01161 .01139
5 .01126 .01146 .01161 .01161 .01146 .01126
6 .01107 .01126 .01139 .01139 .01126 .01107

CURRENT CYCLE - 1 CURRENT NON-LIN COUNT - 0 PREVIOUS COUNT - 0

THE BENDING MOMENTS IN SLAB IN KN-M ARE AS FOLLOWS
COORDS X-AXIS Y-AXIS COORDS X-AXIS Y-AXIS
1 1 .0000 .0000 4 1 .0000 -154.0598 ,
1 2 -74.0461 .0000 4 2 -60.4754 -180.3783V
1 3 -154.0774 .0000 4 3 -259.3937 -259.3710 /.
1 4 -154.0733 .0000 4 4 -259.3881 -259.3681V
1 5 -74.0465 .0000 4 5 -60.4837 -180.3847
1 6 .0000 .0000 4 6 .0000 -154.0587
2 1 .0000 -74.0377 5 1 .0000 -74.0414
2 2 -66.8780 -66.8707 5 2 -66.8739V -66.8711
2 3 -180.4002 -60.4756 5 3 -180.4066/ -60.4766
2 4 -180.4025 -60.4770 5 4 -180.4068V -60.4776
2 5 -66.8763 -66.8663 5 5 -66.8683 -66.8620
2 6 .0000 -74.0354 5 6 .0000 -74.0354
3 1 .0000 -154.0615 6 1 .0000 .0000
3 2 -60.4810 -180.3875 6 2 -74 .0441 .0000
3 3 -259.3906 -259.3779 6 3 -154.0870 .0000
3 4 -259.3921 -259.3813 6 4 -154.0808 .0000
3 5 -60.4859 -180.3924 6 5 -74.0396 .0000
3 6 .0000 -154.0653 6 6 .0000 .0000

THE NODAL REACTIONS (KN ) ARE AS FOLLOWS
1 2 3 4 5 6

1 31.28732 63.63005 64.36333 64.36211 63.62643 31.2843
2 63.63162 64.78147 65.64455 65.64334 64.77783 63.6255
3 64.36652 65.64617 66.75721 66.75600 65.64252 64.3604
4 64.36701 65,64664 66.75768 66.75645 65.64296 64.3608
5 63.63311 64.78294 65.64601 65.64476 64.77919 63.6268
6 31.28856 63.63249 64.36577 64.36450 63.62873 31.2854

TOTAL SUM OF FOOTING LOADS = 2200.000 KN
SUM OF SOIL REACTIONS - 2200.396 KN

THE NODAL SOIL PRESSURE, KPA , IS
1 2 3 4 5 6

1 173.81850 176.75010 178.78700 178.78360 176.74010 173.8017
2 176.75450 179.94850 182.34600 182.34260 179.93840 176.7376
3 178.79590 182.35040 185.43670 185.43330 182.34030 178.7789
4 178.79720 182.35180 185.43800 185.43460 182.34150 178.7801
5 176.75860 179.95260 182.35000 182.34650 179.94220 176.7413
6 173.82530 176.75690 178.79380 178.79030 176.74650 173.8080

Figure E10-4 (continued)

Solution. Refer to Fig. E10-5a for gridding, but for the FDM take the origin at the lower left corner
(node 31). Count

M = 6 (nodes 31-36) and
N = 6 (nodes 31, 25, 19, 13, 7, and 1)



Prorate the column to four nodes as shown giving coordinates of

I J Load I J Load

3 3 55OkN 4 3 55OkN
3 4 55OkN 4 4 55OkN

H = rH = 0.6 m (square grid) Mat concrete fi = 0.15

Thickness t = 0.6 m £c = 22408 MPa

The input data set named EX104FDM.DTA is as follows:

EXAMPLE 10-4 SQUARE PLATE 3 x 3 M - A N D NONLIN—FINITE DIFF METHOD—SI UNITS
6 6 4 0 13 0 0
0 1 1

.6000 .6000 .6000 22408.0 0.15 15700. 0.0 .02
3 3 550.000

3 4 550.000 t i t t
4 3 550.000 £ c ,MPa fi ks XMAX, m
4 4 550.000

The program computes

(computer output

Select data marked with a u* from the computer output sheet (Fig. E10-4) is shown on Fig.
E10-5fl.

Note that the program FADMATFD allows a "nonlinear" displacement check, the inclusion of
mat weight, the doubling of edge springs, and user input of node springs in the form of SK X HA/D
(gives 15 700 X 0.64/412 628.1 = 0.00493 for interior and doubled side nodes and 0.00493/2 =
0.00247 for doubled corner nodes). Here the only option used was doubling of the edge springs so
the output could be compared to the output from the other two methods shown on Fig. E10-5«. The
program always checks for any soil-mat separation and recycles if any nodes separate from the soil
regardless of the NONLIN input parameter.

Checking. Perform checks as follows since mat and load are symmetrical.

1. Displacement array is symmetrical. For example, corner nodes of 1,1, 1,6, 6,1, and 6,6 =
0.01107 m.

2. Moments are symmetrical. For example, the jc-moment at nodes 2,2, 2,5, 5,2, and 5, 5 =
-66.87 kN • m.

3. Since the displacements are symmetrical, the node reactions and soil pressures are also equal.
The node soil pressure at node 2,2 = SK X X(2,2) = 15 700 X 0.01146 = 179.9 kPa.

4. Note the sum of the soil reactions = 2200.396 kN versus the sum of column loads = 2200.000
kN (slight computer round-off error).



10-8 FINITE-ELEMENT METHOD FOR MAT FOUNDATIONS

In the finite-element analysis, element continuity is maintained through use of displacement
functions. The displacement function is of the form

u = ax + a2X + a3Y + a4X
2 + a5XY + a6Y

2 + ̂ 7Z3 + asX
2Y + a9XY2 + ^10F3

4- anX
4 + anX

3Y + 0I3X2F2 + auXY3 + ai5Y
4 (10-12)

With a rectangular plate and three general displacements at each corner node (Fig. 10-9) only
12 unknowns of Eq. (10-12) are necessary. This results in reducing the general displacement
equation to one with 12 a,- coefficients instead of 15. Which three are best to discard becomes
a considerable exercise in both engineering judgment and computational ability/tenacity. Var-
ious procedures have been and are being periodically proposed to reduce and solve the re-
sulting matrix such as those proposed at the finite-element conferences at McGiIl University
(1972), Wright Patterson AFB (1965, 1968, 1971), and regular papers in several journals
including the Journal of Structural Division, ASCE.

One of the major advances in the FEM is using isoparametric element formulation so that a
given element may have more nodes than an adjacent one. In any case, the FEM output is very
difficult to interpret. Additionally the method is computationally intensive (about four times
as long to run a problem of reasonable length as the FGM of the next section). The general
methodology uses advanced mathematical concepts with which many civil and structural
engineers are not familiar so that identification of incorrect output may be difficult.

Concentrated node moments can be readily input as part of the load array; however, a nodal
statics check is difficult. The reason is that the output element node moments are in units of
moment/unit of width, whereas the input is the moment at that node. A moment summation
is not directly possible because of units incompatibility, and the situation is not helped from
having to interpret and apply the twist moment Mxy of Fig. 10-9. Similarly a vertical force
summation is not easy since element node shears are difficult to compute with the element
moments obtained on a unit width basis.

For these several reasons, the author does not recommend use of the FEM for mat and
plate problems. There are many design situations where the FEM is particularly suited; how-
ever, the FGM following is preferred for the more direct solution of foundation engineering
problems.

Figure 10-9 Finite-element method using a rectangular plate element.

(a) Displacements. (b) Element moments



10-9 THE FINITE-GRID METHOD (FGM)

This method is particularly well-suited for use for the analysis of mats and plates. It has these
distinct advantages:

1. The output is easy to interpret since beam-column type elements that have only bending
and torsion are used. The moment/unit width is simply the node moment (from a node
summation) divided by the element width.

2. It is easy to obtain design shears at the ends of the elements. The shear is simply the sum
of the element end moments divided by element length. Then one divides the total element
shear by the element width to get the shear/unit width.

3. It is easy to input concentrated column moments directly.

4. Boundary cases are as easily modeled as with the FEM.
5. It is relatively simple to extend the 3 degrees of freedom (d.o.f.) nodes of this method to

use 6 d.o.f. nodes that are required for pile cap analysis [Bowles (1983)].

Although Table 10-1 (based on Fig. 10-10) established the general validity of the FGM,
users have been the ultimate test. The program (your diskette program B-6 but often supple-
mented by professionals with the data generator program B-18) has been used for silo bases
and liquid storage tank bases as well as mat foundations for buildings.1 A recent comparison
was made between the FEM and FGM for a full-scale mat foundation in Australia [Payne
et al. (1992)]. This reference compared a modification of B-6 and the commercial computer
program NASTRAN. They found a maximum difference of about 10 percent between the
stresses computed by the two methods when analyzing a mat on expansive soil. It was not
possible to identify the "correct" stress. About the best that could be done was to see if the
programs predicted crack locations reasonably well.

The FGM is similar to the beam finite element used in Chap. 9 but extended to a beam
column (which has torsion) and used for a plate. The same equations as in Sec. 9-8 are used,
namely,

P = AF e = A1X F = Se = SATX
P - ASA1X X = (ASA 1T 1P

As before, it is necessary to develop the element EA and ES matrices, with the com-
puter taking care of the remainder of the work including the building of the global ASAT

matrix.
Referring to Fig. 10-11, the element EA matrix is built by X F at each node. For example,

at node 1

P\ = F\ sin a + OF2 - F^ cos a

P^ = F\ cos a + OF2 - F3 sin a

1 Since this textbook has been translated into several foreign languages and has been published in an international
student edition the usage has been worldwide, not just the United States.



TABLE 10-1
Comparison of finite grid method (FGM) to the FEM using one-quarter of a symmetrical plate (Fig. 10-10)
with edge supports indicated and plate L/B ratios shown [Bowles (1986a)].
Fps units from original source.

t, Mx, k- ft/ftMomeniFor node 9: Deflections, ft

Net FEM

9.2

11.8
8.4

6.2

Mx,

-1.2

-1.1
-1.2

-1.0

FEM

10.4

12.9
9.6

7.2

FGM

9.0

11.6
8.1

5.7

Theory*

0.00645
0.00645
0.00645
0.007 52
0.00918
0.00918

[Fig. 10-10 with both diagonals (-)]
[Fig. 10-10 with one diag. (-) and other (+)]

0.00752
0.00752

7.5

6.0

4.5

-1.1

-1.0

-0.9

8.6

7.0

5.4

7.4

5.6

3.6

0.00311
0.00311
0.003 60
0.003 84
0.003 84
0.00401
0.00401

FEM

0.0068
0.0066
0.0066
0.0080
0.0086
0.0097

0.003 24

0.0042

0.0043

FGM

0.00641
0.00625
0.00704
0.00742
0.01025
0.009 36
0.007 56
0.00768

0.00311
0.003 29
0.00409
0.00411
0.003 93
0.00472
0.003 89

Element
type

Square
Triangle
Squaref
Rectangle
Triangle
Rectangle
Mixed
Mixed

Triangle
Squared
Mixed
Triangle
Rectangle
Triangle
Rectangle

Support
type

Simple
Simple
Simple
Simple
Simple
Simple
Simple
Simple

Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed

Ratio
LIB

1
1
1
1.2
2.0
2.0
1.2
1.2

1.0
1.0
1.2
1.4
1.4
2.0
2.0

*From Timoshenko and Winowsky-Krieger (1959), pp. 143 and 206.

tUsing 25 nodes instead of 9 (finer mesh).

tEdge moment by FGM gives -4.9 k • ft/ft versus theoretical solution of 0.1257(40) = 5.0 k • ft/ft. The FEM value = -5.4 with Mxy = +0.7 to yield a comparable

value of M = -4.7 k • ft/ft.

Notes: 1. Triangle moments not shown since FEM centroid values require interpolation to node values.

2. Net FEM moments are obtained by adding FEM + Mxy as shown above.
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P = 40 kips (P/4 = 10 kips for 1/4 plate)
T = OS £f = 432 000 ksf ft = 0A5
D = 4603.6 (computed to check theoretical solution)

Figure 10-10 Plate with simple and fixed edge supports to illustrate FGM versus FEM with select data given
in Table 10-1. Only one-quarter of the plate is used with symmetry. Gridding for finer mesh and to use triangles
are shown with dashed lines.

and the resulting matrix (Note: a makes program general but usually a = 0° or a = 90°) is
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NNODES = 45 NP = 45x3 =135
NBAND = 6 x 3 - 1 + 1 = 18 (Elem 5)
NM = 76 (elements by direct count)
Stiffness matrix = NP x NBAND

= 135X18 = 2430
(a) Plate gridding

(b) P-X (node) and F-e (element) coding

Figure 10-11 Method of finite-element (grid) analysis. Note that orientation of node numbers in (a) results in a
banded stiffness matrix of minimum width of 18. Orient so origin is at upper left corner.

Similar to the ES of Sec. 9-8 but including a torsion adjustment factor £1 for /% the mat
ES matrix is

Node springs are built during element input based on node contributory area and saved
in a "spring" array. After the global ASAT is built (in band form to save computing effort
and memory) the node springs are added at the appropriate NP location. All edge springs or,
preferably, the perimeter ks, should be doubled to approximate spring coupling.

The torsion factor J should be computed for a rectangle (see p. 528 unless a T or other
shape is involved). The adjust factor Ci is used [along with the double area (see Fig. 10-
12)] to make the solution better fit the theoretical solutions as found in Timoshenko and
Woinowsky-Krieger (1959), usually used by others to verify FEM solutions. This step is
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Figure 10-12 Typical coding for a mat. Program "sees" element widths B as shown above. For horizontal mem-
bers L = H and V = O; vertical members L = - V and H = O. Note use of double the mat area since horizontal
and vertical members overlap.

not greatly different frd?h discarding terms in the FEM or using interpolation functions. At
present the Cl factor for a best fit is

where L, B = grid element length and width, respectively. This method has been extended
to allow triangular elements (shown in Table 10-1) and described in more detail in Bowles
(1986). As with the beam element, it is necessary to have access to the P-X coding used to
develop the EA array so the output can be interpreted.

The concept of subgrade reaction with spring contribution at nodes is easy to modify for
soil separation, since the diagonal term is the only coefficient in the stiffness matrix with the
soil spring K(i

(Au + JT1OX1- = P1

Thus, for footing separation we simply make Kt = 0, rebuild (or reuse a copy of) the stiffness
matrix, and again solve for the displacements X1-.

Generally one should include the mat weight in the analysis. The mat does not cause inter-
nal bending moments due to self-weight since the concrete is poured directly on the subbase
and in the fluid condition conforms to any surface irregularities prior to hardening. Should
the loads cause separation, however, the mat weight tends to counter this. Deflections will be
larger when including mat weight, since the soil springs react to all vertical loads.

(elem.6)

First across

P-X coding

Elem. no.



Preliminary Work

Generally, the depth of the mat is established from shear requirements as in Example 10-6
following. This depth + clear steel cover Dc is used to compute the moment of inertia or D:

/-"3S(FEM) D = T 1 f ^ ( F E M )

The bending moments obtained from the later plate analysis are used to design the mat rein-
forcement in both directions.

Total deflections are sensitive to the value of ks used. Bending moments are much less
so, but the designer should try to use a realistic minimum and a probable maximum value
of ks and obtain at least two solutions. The design would be based on the best information
available or the worst conditions obtained from either of the two solutions (generally when
ks is minimum).

Establishing Finite-Grid Elements
(variables in brackets refer to diskette
computer program B-6.)

Begin the design by drawing the mat plan to scale and locate all columns and walls. Next lay
a grid on this plan such that grid intersections (nodes) occur at any points of zero rotation or
displacements (at column faces, wall edges, fixed edges, and similar). Use any convenient
gridding if no nodes have unknown rotations or displacements. Grid elements do not have
to be the same size, but best results are obtained if very small members are not adjacent to
large ones (e.g., a member 0.2 m long connecting to a 2-m-long member is not so satisfactory
as a 1-m connecting to a 2-m member). For pinned columns the grid can be at convenient
divisions. The load matrix is developed using both column locations and loads. Code the grid
starting at the upper left corner, across and then down. Orient the grid so a minimum number
of nodes are horizontal for minimum bandwidth.

Develop a data generator to produce element data including the member number (MEMNO)
and the six NP values for each element [NPE(I)] and H, V, and B (refer to Fig. 10-12). A
data generator (program B-18) is a necessity, since the element input data are enormous.

Develop the nonzero P-matrix entries for each load condition; use simple beam theory for
pinned columns between nodes.

Establish if any changes in soil modulus are required. These may be accounted for in the
data generator; however, for local soft spots, holes in the ground, hard spots, etc., it may be
more convenient to hand-compute the node springs to input into the spring array.

Establish the number of zero boundary conditions (NZX).
Compute the number of NPs in the matrix: NP = 3 X number of nodes; also count the

number of members (NM) to be used in the grid.
Compute the bandwidth of the matrix as follows:

1. Find the minimum NP value at various nodes.
2. Find the maximum NP value at adjacent nodes that are interconnected by grid lines.
3. Compute bandwidth as

NBAND = NPmax - NP1111n + 1



As shown on Fig. 10-12, NBAND = 2 1 - 1 + 1 = 2 1 (element 6). The size of the resulting
band matrix ISIZE is

ISIZE = NBAND X NP

The Solution Procedure

With the displacements from X = (ASAT) - 1P wecan solveF = SATX for each element in
turn to find the element forces.

The computer program performs the necessary matrix multiplication to form the element
ESAT (ESAT) and EASAT (EASAT). The element EASAT will be of size 6 x 6 . The EASAT

is then sorted for values to be placed at the appropriate locations in the global ASAT (ASAT)
for later banding and solution. Normally the ASAT will have to be put on a disk or tape file
capable of random access.

The computer routine next recalls the ASAT from disk (or tape) and stores the band in main
memory (refer to Fig. 10-13), filling the lower right corner with zeros. Boundary conditions
are applied if specified, which result in zeroing the appropriate row and upper diagonal of
the band matrix and placing a 1.0 in the first column as shown here (typical):

With the band reduction method, the displacements are exchanged with the P matrix
at the end of the reduction. If it is desired to save the original P matrix for any reason, it
must be stored in some alternative location. The Xs (or redefined P's) are used to compute the

Bandwidth (NBAND)

Only this part used
NBAND x NP

Figure 10-13 Symmetrical ASAT matrix. Part used in reduction is as shown.

NP, 1 NP, NP

LNP1, 1



Figure 10-14 Checking moments in output for statics at a node.

F's. Also they should be scanned to see if mat-soil separation has occurred at any nodes. If
negative deflections occur (tension soil springs), the stiffness matrix is rebuilt with no springs
(K = 0) at those nodes, and the problem is cycled until the solution converges. Convergence
is understood to occur when the current number of nodes with soil separation Ni is equal to
the Ni-\ number of nodes with soil separation just used, or

Nt = N1-X

When convergence is achieved, the program then computes the element bending and torsion
forces using

F = ESATX

Here some savings in computation time can be made if the ESAT was saved to a disk file
when it was computed. But this can be done only if the node springs are added from a spring
array; otherwise the element Kt values are included in the ESAT.

It is helpful to have the program sum soil node forces (X1Ki) to compare with the input
vertical forces as a quick statics check. It is also helpful if the program makes a moment
summation (includes both bending and torsion moments) for the several elements framing
into a node for a visual X M = 0 within computer round-off at any node i (see Fig. 10-14).
These node moments can be directly used in design by dividing by the element width to
obtain moment/unit width.

Design shear requires access to a listing of element forces so the two end moment values
can be summed (with attention to sign) and divided by the element length and divided by
the element width to obtain shear/unit width. In passing we note that at any node the sum of
vertical applied force (from P matrix) + soil reaction + X sum of element shears framing to
node = 0 within computer round-off (and with attention to signs).

10-10 MAT FOUNDATION EXAMPLES
USING THE FGM

The following several examples are used to illustrate mat analysis using the FGM.

Example 10-5. (a) Compare the Bowles finite-grid method (FGM) with the classical finite-element
method (FEM) and the finite-difference method (FDM). Both the FDM and the FEM programs
are from the author's program library, (Z?) Also compare the bending moments from these elastic

(a) Node and moments. (b) Node with moments summed
for checking.

Equal and opposite

Next Page


	Front Matter
	Table of Contents
	10. Mat Foundations
	10.1 Introduction
	10.2 Types of Mat Foundations
	10.3 Bearing Capacity of Mat Foundations
	10.4 Mat Settlements
	10.5 Modulus of Subgrade Reaction ks for Mats and Plates
	10.6 Design of Mat Foundations
	10.7 Finite-difference Method for Mats
	10.8 Finite-element Method for Mat Foundations
	10.9 The Finite-grid Method (FGM)
	10.10 Mat Foundation Examples Using the FGM
	10.11 Mat-superstructure Interaction
	10.12 Circular Mats or Plates
	10.13 Boundary Conditions
	Problems

	Index



