- i
Transpn Res- B Vol 178, No. 1. pp. 13-23. 1983 0191-2615/83/010013-1 1503.00/0
Printed in Great Britain. © 1983 Pergamon Press Ltd.

DISCRETE CHOICE THEORY, INFORMATION THEQORY
AND THE MULTINOMIAL LOGIT
AND GRAVITY MODELS

ALEX ANAS
Department of Civil Engineering, Northwestern University, Evanston, IL 6020%, U.S.A.

{Received 18 May 1981}

Abstract—-The strong “similarity”’ between “‘information minimizing” and “utility maximizing” models of
spatial interaction has been known for some time (see Anas 19735, Williams, 1977), but the extent of this
“similarity” has been underestimated. This paper proves that the twe approaches are identicaf in that the
multinomiz| logit model can be derived and identically estimated by either method. It is also proved that the
doubly-constrained gravity model derived by Wilson (1967) is identical to a multinomiai logit model of joint
origin-destination choice, consistent with stochastic utility maximization. It foflows that behaviorally valid
“gravity modefs™ can be estimated from disaggregated data on individual choices. In closure, “behavioral
demand modeling”, which follows McFadden (1973), and “entropy-maximizing modeling”, which follows
Wilson (1967}, should be seen as'two equivalent views of the same problem. The behavioral content of
models estimated by either approach is entirely deteritined by the model specification and data aggregation
beliefs of the analysts, and not by any inherent structural property of the models themselves.

Gravity models have a long history as tools invented to help the transportation planner balance
an origin-to-destination trip table so that the predicted zone-to-zone flows are consistent with the
trips generated at each origin and the trips terminating at each destination, The crudest gravity
model has the form,

Nij Glj m (1)

where O; are the trips originating from zone i; D; are the trips terminating in zone f; f(d;) is the
impedance {or separation) between i and j as an increasing function of the distance from i to'j;
Nj is the predicted trips originating from zone i and terminating in zone j; and G; is an
“adjustment factor”, the value of which is selected to “balance” trips by assuring that
Z Ny =D; and 2 Ny = O, for each i and j.

i i

Gravity models became widely used and abused in the fifties and sixties, and it was not until
1967 that Wilson provided the first theoretically valid derivation of the gravity model from
statistical information-minimizing (or entropy-maximizing) principles. Wilson’s work brought
elegance, analytical rigor with a long-awaited sense of closure to the raging confusion about the
interpretability and theoretical integrity of the gravity model. Following Wilson’s work the
application of entropy-maximizing models flourished in Britain and to a lesser extent, in the
U.S. and elsewhere. Transportation modeling became enhanced by a new generation of gravity
models. Many practicing transportation planners were able to correct their previous abuses of
the gravity model and to balance their trip tables with a new sense of statistical consistency.

While these developments were occurring, McFadden (1973), Ben-Akiva (1973) and others
began formulating the problems of travel mode and location decisions as problems in micro-
economic consumer choice among discrete alternatives. McFadden’s work was preceded by a
decade of empirical research stemming from Warner’s (1962) binary choice analysis. Much like
the empirical research on gravity models, the work on choice modeling preceding McFadden’s
contributions had not succeeded in providing a theoretical grounding of empirically established
concepts. McFadden’s derivation of the logit model from utility maximization closed this gap
and a new area of research, labeled “behavioral demand modeling”, emerged. This research
area stressed the importance of stochastic utility maximization and the use of disaggregate
small-sample data in the estimation of choice modeis via maximum likelihood.

The strong similarities between the multinomial fogit model of behavioral modeling and the
spatial interaction model of entropy maximization did not remain unnoticed. Syntheses of
entropy-maximization and utility-maximization concepts in different contexts have been pro-
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posed by Anas (1975), Willisms (1977) and Los (1979). Despite the search for a conclusive
synthesis, the two approaches remained apart because their perceived similarities were greatly
obscured by important differences in prevailing practices in the use of data. Analysts working
within Wilson's entropy-maximization paradigm estimated models from aggregated data, while
behavioral demand modelers shifted their emphasis to small-sample disaggregate data.

This paper proves that the minimum-information and the behavioral discrete choice modelling
approaches are identical. The different estimation methods of the two approaches applied to the
same data yield identical coefficients for the multinomial logit model and produce identical
predictions of actual choice patierns. The two paradigms imply mutually consistent and fully
equivalent model search and model specification strategies: one is rooted in micro-behavioral
postulates, the other in macro-statistical information theory.

It is also shown in this paper that the traditional spatial gravity model (1), rederived by
Wilson (1967) as an entropy model, is identical to a multinomial logit model of joint origin-
destination choice derived from stochastic utility maximization.

1. STOCHASTIC UTILITY MAXIMIZATION AND THE
MULTINOMIAL LOGIT MODEL

The work of McFadden (1973) and others has accomplished two important tasks: (1) the
theoretical grounding of discrete choice models in utility maximization, and (2) the establish-
ment of the econometrics of maximum likelihood as the estimation method for choice models.

By far the most tractable and widely used of available choice models is the multinomiai logit
(MNL) model. We now briefly review the theoretical derivation of the MNL model.

Consider a population of h=1... H individual decision-makers (hereafter, choosers) who
have homogeneous preferences up to an additive stochastic term. Each chooser faces a choice
among j=1...J discrete alternatives. The set of these J alternatives is called the choice sef.
The utility of each alternative j is assumed to be a linear function of the utility attributes or of
predetermined non-linear transformations of these attributes. Hence,

E.
Ujh = Oy -+ ’(21 CI‘.kX?k + €jh (2)

where fff‘ is the perceived utility of alternative j for chooser h; & = [@1@2 . . - Aost10¥2. - - agl
are the utility coefficients common to all choosers in the population; X 5 is the value of the kth
attribute (or transformed attribute) for alternative j and chooser h; and €= [€1€z. .. €] is the
vector of stochastic utility which is distributed over the population. The coefficients a; are
alternative-specific constants, because they measure the unspecified part of utility for each
alternative.

The utility-maximizing choice model is derived from

P/ =Prob. [0 > U Vj#il 3)
where P is the probability that chooser h chooses alternative i. The MNL model is derived by
assuming that each ¢" 1s independently and identically distributed (IID) over the population and

for each chooser according to the Gumbel distribution which has the cumulative distribution
function,

Prob. (e" =€) = exp (— exp [— (g{;) " e]) 4

with mode zero and variance o2 for each alternative i = 1...J. The MNL model, thus derived,
has the form

exp {Ba; + g BiX 'L}

P! 5

S e {pa+ 2 px4]
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where B,; = (760 ?ay; and By = (760" . The utility coefficients & cannot be identified,
but the scaled coefficients § = [Bo; . .. BuiBi - - - Bx] are uniquely estimable with the exception of
one of the alternative-specific constants, say f,. The differences B,—B,; are uniguely
estimable for each j.

To estimate the model we maximize the likelihood function (joint probability that the
observed choices are generated by the model) with respect to the estimable coefficients 3. Thus,

Maximize log £ = 2, 2, 5" log P/'(3) Y
f R

where 8 =1 if chooser h chooses alternative j and 8/ =0 if chooser h does not choose
alternative j. The first-order equations for this unconstrained maximization problem are

dlog ¥ _ [P (B)aBT _ |
L @
where
"B = -
%%=Pjh(g)X%_Pjh(B)z PMBIX i k=1...K (8)
zh ] -

Substituting (8) and (9) into (7):

aBk [ Boog
and
alog.i’:EPjh(E}_z 8F =0, j=1...1 (1n
3Boj h h

where %E 8"X % =X, is the aggregate value of the kth attribute over the estimation data, and
i

3 8" = N; are the observed frequencies of choosers choosing each of the j alternatives. The

k

ratio NjH is also called the market share of the jth alternative.

Solving the K +J eqns in (10) and (11) simultaneously, we obtain all the elements of E ; and
this is an MNL model with K generic attributes and a full set of alternative-specific constants,
all but one of which are identified. It follows from (11) that the estimated alternative-specific
constants insure perfect predictions of the market shares and it follows from (10) that the
generic-attribute coeficients insure perfect predictions of the mean value of each generic
attribute.

The assumptions needed to derive the MNL model are quite strong, and can be summarized
as follows: _

(A1) All choosers in the population have the same utility function, which is linear in
attributes or linear in predetermined transformations of the attributes {such as loglinear,
quadratic, etc.). )

(A2) The utility coefficients do not vary over the population of choosers (i.e. there is no taste
variation).

{A3) The stochastic part of utility is additive and is Gumbel distributed in the population of
choosers and for each chooser, with mode zero and variance o for each alternative.

(A4) Each chooser maximizes utility, thus choosing the most preferred alternative.

2 INFORMATION MINIMIZATION AND THE MULTINOMIAL
LOGIT MODEL

Within Wilson’s information-minimization (entropy-maximization) approach, models are not
derived from micro-behavioral postulates but from information-theoretic principles which seek.
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to find the most random predictions of individual choices consistent with observations on the
aggregate (macro) or average (mean) states of the entire population of choosers.

We shall now state the information-minimization problem which fully corresponds to the
maximum-likelihood problem given by (5). This is obtained by minimizing Shannon’s measure
of the information in & probability distribution (or minus-one times the entropy &), subject to
constraints on the aggregate values of the attributes and choices. Thus,

Mi?li]jr,}}ize - = ; E}: P log P’ (12)
subject to:
S P =1; h=1...H (13
7
2P,—"=ZS,-“; j=1...1 (14)

%ZEPth?F;ZS;"X}L; k=1...K 5)
] ]

In this formulation the unknowns are the choice probabilities [P*]. We seek the most
random (information-minimizing) predictions (P!, but we require that these predictions repii-
cate the aggregate observations on the entire system. These requirements are imposed in the
constraints. Constraint (14) states that the predicted expectation of choosers choosing each
alternative should equal the actual number of choosers choosing it. Constraint (15) states that
the expectation of the aggregate value of each attribute should equal the observed aggregate
value. Constraint (13) states that the choice probabilities for each chooser should sum to unity.
Because the objective function is convex and the constraints linear, the solution of this

~ optimization problem generates unique probabilities [P,-"].

If we minimize (12) subject only to (13), we obtain the result that P}-h =1/J for each j and
each h: if there 18 no structure imposed by observation of the aggregates of the system, then the
best (most knowledgeable) prediction is an entirely random one, i.e. the uniform distribution or
equiprobable assignment of choosers to alternatives. By imposing constraints (15), (14} and (13)
we obtain a model which replicates ali market shares and all generic attribute aggregate values.
The probabilities obtained are always the most random possible, but will replicate the required
macro information.

To obtain the analytical solution we form the Lagrangian of (12)-(15). This is
L<g=22Pjh10ngh—E By [2 P,-“—l]—E Aj [Epjh—ﬁ?]
ho§ h i i h
- Ek: Ak [% 2 PEXG — Xk] (16)
]

where 8, \oj and A, are the Lagrange multipliers and Nj =2 5%, K= 2% 8/X . The first-order
h i

conditions are

%%ﬁ—=1+10gpih_9h—)\0i—2khert;€=0; j=1...1, h=1...H (n
1
e _Spt-1=0; h=1...H s
aty 7
e 9 pr-Sgt=0; 1.7 19
8)\0,- h 3

Le o5 S PIXE-% D X5 =0; k=1...K L (0)
dhe F5 L
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From (17),
Pl =exp (=148 + A+ Ek) MX D) or,
P* =exp (~1+ 6,) exp (Aoj +3 Akx;;). ., Qn
Substituting (21) into (18) we find,
exp(-1+6)=1/ 3 exp (ha+ b X)) @)
and substituting this into (21}, we obtain

exp { s S nxh]
k
Ej: exp {Aoj + g )LkX}}(}

P = (23)

which is the multinomial logit model identical in form to (5). The Lagrange multipliers 8,
h=1...H have been eliminated in insuring that (23) satisfies (18). To estimate A, j=1...J
and A, k=1... K, we substitute (23} into (19) and (20) and solve the resulting J + K equatlons
for the values of these Lagrange multipliers.

Letting A = [Aoihoz . . Aorhi . .. Agl, eqns (20) and (19) which must be solved to find A, can be
written as,

"’L“ -SSAOX-TSHxE=0  k=1..K 24)

a)\ = PI'(\)- Za —0 i=1...1 (25)
of h

The assumptions needed to derive the MNL model through information minimization are
quite weak. In summary, these assumptions are as follows:

(A4): The most probable prediction of the choice probabilities is that which minimizes the
information in these probabilities (maximizes randomness, entropY) sub]ect to available in-
formation.

(A5): The predicted choice probabilities must replicate certain macro properties of the
aggregate system of choosers: (1) the predicted expected number of choosers choosing each
alternative should equal the number of actual choosers choosing that alternative; (2) the expected
total value of each attribute should equal the observed total value of that attribute.

Our stated information-minimizing derivation differs from Wilson’s original derivation only
because we have presented ours for the case of individual (chooser-specific) choice prob-
abilities. Wilson’s original formulation was based on relative frequencies because he dealt with
aggregations of choosers, each aggregation corresponding to a spatial zone. Wilson’s original
formulation will be considered in Section 5, while the problem of aggregation is reviewed in
Section 4.

3. PROOF THAT LIKELIHOOD MAXIMIZATION AND INFORMATION
MINTMIZATION YIELD IDENTICAL ESTIMATES FOR THE
COEFFICIENTS OF THE MNL MODEL

We now prove that the MNL model can be identically estimated via maximum likelihood,
which finds the utility coefficients, B, or via information minimization, which finds the Lagrange
multipliers, A

Theorem: Let #* be the maximum likelihood (ML) estimate of B obtained via (6), and let A*
be the minimum information (MI) Lagrange multipliers of (12) subject to (13)-(15). Given the

TR-B Vol 178, No. i—B
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same data {87, [X ] and [X,], the two problems (i.e. {6) and (12) subject to (13)-(15)), have
identical solutions, i.e. %= A*.

Proof: It has been shown that ML and MI can be used interchangeably to derive the MNL
model (5) or (23). To find B* one solves (10) and (11), and to find A* one solves (24} and (25).
Since these two sets of equations are identical and since Pjh(é) and PJ-"(X) are the same
function, it follows that §* = A*. QED.

Corollary 1: To estimate correctly the coefficients of the MNL model, the minimum amount
of observed data are the following: (i) the number of choosers choosing each alternative
(N’j- = % th, j=1...J); (i) the level of each generic attribute k for each chooser h and each

choice alternative j (X }‘k, h=1...H j=1...], k=1...K); (iii) the aggregate level of each
generic attribute (X,, k=1...K). If the aggregate level of each generic attribute and the
aggregate choices are directly observed, then the matrix of individual choices, ES,-"], need not be
observed.

Proof: The proof follows directly by examining the form of the eqns (10) and (11} or (24)
and (25). It can be seen from these equations that observing individual choices {8,-"] is not
necessary if the left sides of X, =§2 5"X"% and N; = % 8" can be observed directly without

I

observing the choice of each chooser. Indeed, the only reason ever to have to observe the
actual choice of each chooser is that this information is used solely to compute the aggregates
X, and N;, and makes no other contribution to the estimation process. QED.

This corollary has an important implication for survey and questionnaire design in “dis-
aggregate behavioral demand modelling”. Such surveys are necessary only in order to obtain
the attribute information [X ], but can also be extended at negligible marginal cost to obtain
data on actual choices, [8,—“]. It is interesting to note, however, that if the aggregates of
attributes such as travel time, travel cost, housing price, etc. can be estimated from independent
sources, then the need to know the actual choices of choosers disappears: so long as the
distribution of [X%] over the population is observed accurately enough, the MN1L model can
still be estimated consistently without observing the choices of individual choosers. Modelers
working in Wilson's tradition have been aware of the importance of the aggregate attribute
information. Disaggregate demand modelers, on the other hand, have insisted on collecting
information on [8"] without apparent knowledge that this information is mecessary oniy to
obtain the aggregate quantities I\DI,- and X,, which are the essential inputs in the estimation
problem. [t is, of course, true that in most cases the most efficient way to estimate NJ and X; is
to observe [6] and compute N; = 3 8" and X, = 23 8/X . But this need not always be the

]

case, because aggregate measures sich as travel cost, travel time, etc. may in many cases be
estimated from observations on gasoline sales, transit station surveys, high-precision aerial
photography techniques applied to traffic flow and from other sources. If a survey must be
done, then the survey needed to obtain the attribute variation [X",] and that needed to obtain the
aggregates X, and NJ need not be the same one.

Corollary 2: The marginal utility of the kth generic attribute, %, is equal to the marginal
change in the information ievel resulting from a marginal change in the observed aggregate
value of the kth attribute over all alternatives and choosers choosing those alternatives.

Proof: Since % = aiMaX " (any i} and since At = 3(— %)/ aX,, it follows from p* = A* that
aUMsxh = 9(~ %)/aX, for each i. QED.

Covollary 3: The jth alternative-specific constant of the utility function g¥ is equal to the
marginal change in the information level A% resulting from a marginal change in the observed
number of choosers choosing the jth alternative.

Proof: Since A% = o(— €)/aN,, it follows from B* = A* that g% = 9(~ €)/aN;. QED.

Corollary 4; An attribute’s contribution to the MNL model ¢an be measured equivalently
either as €*— &% or as log ¥*—log £ where €* and ¥* are the values of entropy and
likelihood of the model estimated with all K attributes included and &% and Pt are the values
of entropy and likelihood of the model estimated with all K but the kth attribute.

Proof: €* — €% and log ¥* — log £} are two monotonically related measures of the marginal
improvement in the information and log-likelihood achieved by the inclusion of the kth
attribute. QED.
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4. DATA AGGREGATION

In Sections 1 and 2 we treated the derivation of the MNL model from the disaggregate
v;ewpomt It has been assumed that each chooser’s choices are known and given by a matrix
[8 ]. We also assumed that the attribute values are given as [X ;k] for each chooser h, each
alternative j and each attribute k.

While utility-maximizing models are traditionally (but not exclusively) estimated from
disaggregate data, maximum-entropy models are generally estimated from aggregated data..
This, of course, is unnecessary; it is perfectly reasonable and just as easy computationally to
maximize entropy for a sample of M aggregation units as it is to maximize entropy for a sample
of M individual choosers. This fact follows directly from Section 2, in which the maximum-
entropy model was cast in disaggregate format.

If choices _are observed as aggregates, then only the mean value of each attribute k for
alternative j, Xj = (2 8 hy Ik)l'N is observed and the MNL madel can be written as,

exp {p4+ S B%a )
S e {Boﬁ > %

P[=

(26)

where P, is the predicted relative frequency or expected choice probability for alternative i
The aggregated model can be estimated by maximizing the log-likelihood function

log ¥ = > I\GT,- log Pf(,é") + constant 2n
i

where 1\3} is the number of choosers choosing alternative j and P,-(,éA) is (26).
The minimum-information formulation can be stated as,

Mir%];’rr]lize —~ %€= P;logP; (28)
i i
2 P=1 (29)
i
P=NjH; j=1...0 (30)
S P - KH;  k=1..K &h)
i

where H is the total number of choosers. Using Lagrangian minimization we can prove once

again that the solution has the same form as (26) with A the Lagrange multiplier of (30) and

A2 the Lagrange multiplier of (31). Furthermore, the first-order equations needed to maximize

(26) are identical to those needed to maximize (28) subject to (29)-(31). It thus follows that
= g% for each |, and At = B for each k.

Becanse disaggregate attribute information is not observed, the coefficients estimated from
aggregated data will differ from those estimated from the underlymg disaggregate data
(B** = §* and A**#X®); but it will be true that p** = A%* and B*=\* The differences
BA*— g = A%* - A* is known as aggregation bias, Empirical studies (see Anas 1981) demon-
strate that meaningful estimates can be obtained when aggregation vnits are reasonably small,
thus minimizing the aggregation bias.

5. THE DOUBLY CONSTRAINED GRAVITY MODEL IS A
LOGIT MODEL OF-JOINT ORIGIN-DESTINATION CHOICE

As a final culmination of the synthesis of behavioral choice modeling and non—behavmral
information modeling, we will discuss the derivation of the gravity model and multiattribute

generalizations of it, via both paradigms. Both derivations will be presented for the disaggregate
case. The information-minimizing derivation is presented first.
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Suppose i=1...I1isa set of trip origin locations and j=1...Jisasetof trip destination
locations. An example of a trip origin location may be the location of an individual job, while an
example of a trip destination location may be a dwelling. Let P! be the probability that chooser

h will choose origin i and destination j, i.e. will choose to work at job i and reside at dwelling j.
We seek the model which minimizes information subject to macro constraints. .

Mi?limize _g=S3 3 PhlogPj (32)
{ih h i i
subject io:
SSph=1; h=1...H " (33)
i

%ZPE=§ZSE; i=1...1 (34)
] ]
2};21’7;:228'; i=1...J (35)
i h i
EhEZP%X%k=§h‘.§_:ZSE}X1}k; k=1...K. (36)
i

i

Letting Ay, i=1... 1 Agp j=1...7, and Ag k=1...K be the Lagrangian multipliers of
(34)-(36), respectively, we derive the model as

exp (Aoi + )tdj + ; )\kX gk)

37N
3 ex0 (hon b+ 3 4K
m k

h o
Pij—

where the A’s must be chosen to solve (34)-(36).
The behavioral derivation of the same model now follows. Suppose that the stochastic
utility function has the form,

t’f:;=ﬁm+sd,-+2k BX i+ el 39)

and is the utility of choosing origin-destination pair (i, j) with ¢ the random utility, B, the
origin-specific unspecified utility, B the destination-specific unspecified utility, and By the
generic utility coefficients. If we assume that,

2, 12
Prob (e} =€)} =exp (— exp [ - (%z) e]) (39)
with mode zero and variance o2 for each (i, j), then the demand model can be derived from,

Ph=Prob. (0> Uhes  Vlm,m)# (G (40)

and has the form,

eXp (301' + B4 T ; BiX ﬁk)

—_— Y {41)
% En: CXp (Bom + Bdn + Ek ﬁkX Jrlnnk)

Ph=

Once again, (41) and (37) are identical, and estimation will yield B = i. In this formulation there
are I -J alternatives and Bo;+ Bai = Aoi + Ag is the alternative-specific constant for the (i, Hth
alternative.
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Suppose now that an origin, f, is not a distinct job (or other) alternative, but a zone (spatial
aggregation) of alternatives; and a destination, j, is likewise an aggregation of home (or other)
alternatives. Let there by i =1...1 zones of origin and j=1...J zones of destination. If
spatial alternatives are so aggregated, then the attribute measures Xy are the means for
attribute k over the choosers choosing any specific origin within zone i and any specific
destination within zone j, namely X = };‘, X !},J% 1. The model of joint origin-destination

choice now becomes a model of joint origin-destination zone pair choice, and must be written
in aggregated form, as

exp {Aﬁj AL+ 2 A'Ef(_',-jk}
P;= : (42)

2 2 CXp {/\?m + /\gn + 2 Aﬁj&mnk}
m n k

where A%;, A% and A} are the coefficients to be estimated with aggregation error. To derive (42)
we must pose the following information-minimization problem, which seeks to find [Py], the
matrix of relative frequencies or expected choice probabilities. The formulation is,

Mi[{l}iﬂ]lize ~8=2 > Pylog Py (43)
, T
Ej:Pﬂ:O,-/H; i=1...1 (44)
ZPy=DJH;  j=1..J (45)
ZEJ:PHK]-,F}_(;JH; k=1...K (46)

with A%, A%; and A} the Lagrange multipliers of (44)~(46), respectively. Equation (42) will
satisfy constraints (44)-(46) if the Lagrange multipliers are appropriately defined. It must be

true, of course, that £ O, =Z D; = H, where 0; is the number of trips (choices) originating at i
i i

and D; the number of trips (choices) terminating at .

The relationship between the MNL model (42) also derived from (43) subject to (44)-(46)
and the conventional gravity model follows if we first recall that N; = HP;—i.e., N; is the
expected number of choosers choosing (i, ), and thus the expected number of trips (or
exchanges) between i and j. In the workplace/residence choice example, N; is the expected
number of commutes between i and j. Next, we make the definitions,

exp (0= 0,/ exp (14+ 3 M%) )
i k
exp (A =D, / S exp (,\ 5+3 ,\';)Z’if.k) (48)
and -
A;=exp (A)O; (49)
B;=exp (A 5)ID. (50)

From these definitions we can write,
N =(HPy) = AB,OD; exp (2 /\'::"_}?fjk) (51)
. k

with

A= [EJ: B, exp (3 ,v;)_'q,-k)] h (52)
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. -1
B]. = [E Aioi e){p (Ek: /\’:Xijk)] . (53)

This model (51)~(33) is precisely Wilson’s (1967) doubly-constrained entropy {or gravity) model
with several attributes in exp (). It is identical to eqn (1) if we simply define G; = A;B; and
replace exp (1) with a gencralized function of distance, f(d;). As a historical curiosity, the
Newtonian gravity mode! is obtained directly from (51) by defining G; = A;B; and letting
exp ()= A% log d; where A*=-2 and d; is the average distance between i and j, the only
attribute in the “utility function”. The result is,

oD,
Nij = Gij —&“%J'. (54)
i

We have thus come full circle and shown that the doubly-constrained gravity model (51) is a
multinomial logit model of joint origin-destination choice consistent with stochastic utility
maximization up o some aggregation error in the estimated coefficients. Furthermore, we have
shown that the same model without any aggregation error is derivable in disaggregate form (41)
and can be thus estimated. To estimate the gravity model correctly one must, in fact, estimate a

multinomial logit model of joint origin-destination choice from disaggregate data.

6. BEHAVIORAL VERSUS INFORMATIONAL APPROACHES
TO MODEL SPECIFICATION

We have proved that stochastic utility maximization based on assumptions A1-A3 yields
results which are identical to information minimization based on assumptions A4 and AS. The
former approach is ‘“behaviora » while the latter is purely informational, but the result is the
same. This means that analysts who are following Wilson’s paradigm and others following
McFadden’s are engaged in precisely the same endeavor, of which they have different—indeed,
opposed—views. If these 1W0 analysts are given the same data (disaggregate or ageregate) and
asked to produce the same model specification, then both will estimate the same model. If, on
the other hand, each is allowed to seek and find the “best” specification, then each may arrive
at a different answer. The reason for this is that the model-specification criteria employed by

the two analysts will probably differ. The behavioral analyst is very likely to begin the work

with strong preconceptions of what goes into a utility function and to select only those
attributes, leaving out superfluous attributes and unsatisfactory proxy attributes. The pure
information theorist is an “agnostic” in comparison to the behavioral “believer”. Information
theory per se does not contain any insights as to what should go into a model. Nevertheless, the
context of a particular problem does in most cases provide clues as to which atiributes are
“explanatory” and which are not, and also as to the correct sign a particular attribute coefficient
should obtain.

Information theory is at once more general than utility maximization: since the MNL model
is consistent with both utility maximization and information theory, the information theorist
will in many instances succeed in producing models which are acceptable to the economist who
is operating from a behavioral viewpoint. The choice of a particular model is ultimately
conditioned by prior belief (value judgments) about what attributes to enter into the utility
function or what constraints to impose in the information-minimizing approach.

Historically, the different uses of data within the two paradigms has acted as a com-
munication barrier, obscuring the full equivalence of the two methods. Wilson’s pioneering
contribution took aggregative gravity models as the point of departure and did not sufficiently
emphasize the applicability of information theory at the disaggregate level. Had this been done,
an early synthesis with behavioral modeling could have been achieved. The behavioral
modelers took a suspicious and misguided view of entropy maximizing modeling, mistaking
what is merely a problem in aggregation error for a more serious difference in mathematical
structure,

7, CONCLUSIONS

This paper shows that it is no longer reasonable or excusable to claim that entropy and
gravity models are inherently less “behavioral” than stochastic utility models of discrete choice
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and multinomial logit in particular. The two approaches are two equivalent views of the same
problem. The fact that models estimated within one approach have yielded results quite
different from similar models estimated within the other approach is not due to any inherent
difference between the two approaches, but is due entirely to differences in the use of data and
its aggregation and in differences in value judgments used in specifying. the explanatory
attributes. These differences are determined entirely by historical intertia and intellectual bias on
the part of investigators.

Tt is important to recall that, although information theory and discrete choice theory overlap
in the MNL model, each of the two approaches is more general than it appears from this
context. Information minimization is a powerful principle which does not subscribe to any
behavioral postulates. It is thus applicable to a wide range of problems as a tool for generating
most probable predictions subject to available information and in the absence of any behavioral
structure. Discrete choice theory, on the other hand, is a powerful tool for exploring the validity
of a potentially large number of specific behavioral postulates about preferences and their
stochastic distribution. The MNL model corresponds to one subset of such postulates;
multinomial probit (MNP), generalized extreme value (GEV) and other choice models cor-
respond to other postulates.

It would be naive to think that the equivalence between information minimization and
discrete choice theory ends with the MNL model. The MNL model is derived by minimizing
information subject to linear macro-constraints. Nonlinear constraints reflecting higher moment
properties of the distribution of certain attributes will result in models which are more complex
but possibly also more realistic. One cannot help but ask: what-additional macro-behavioral
constraints must be imposed on information minimization in order to derive the multinomial
probit model?
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