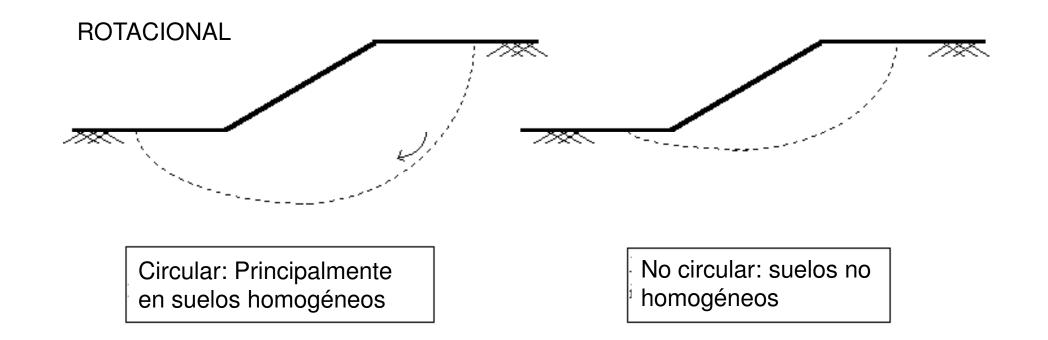


CI4402 GEOMECANICA

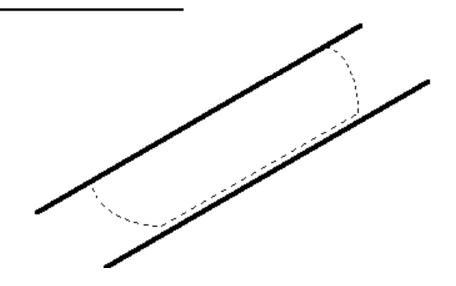
UNIVERSIDAD DE CHILE FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS DEPARTAMENTO DE INGENIERÍA CIVIL

Prof. Luis Paredes

NOVIEMBRE 2010



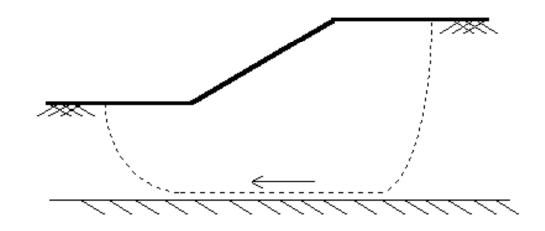
TRASLACIONAL



Aquí la superficie de falla es plana y paralela a la pendiente.

Esta falla ocurre cuando el horizonte subyacente esta relativamente superficial

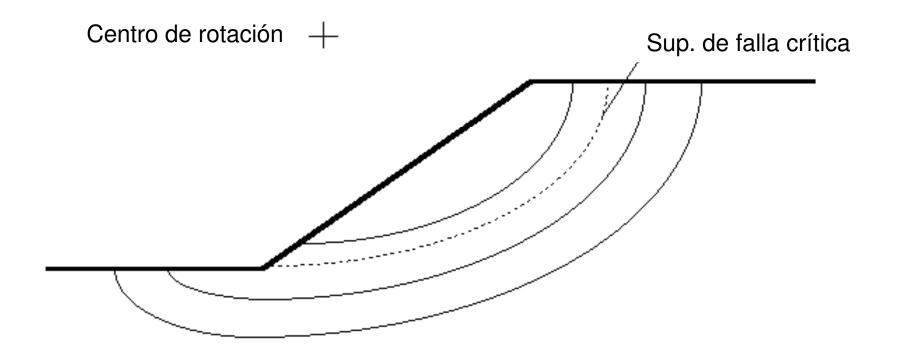
COMPUESTA



La superficie de falla consiste en dos secciones curvas y el plano basal.

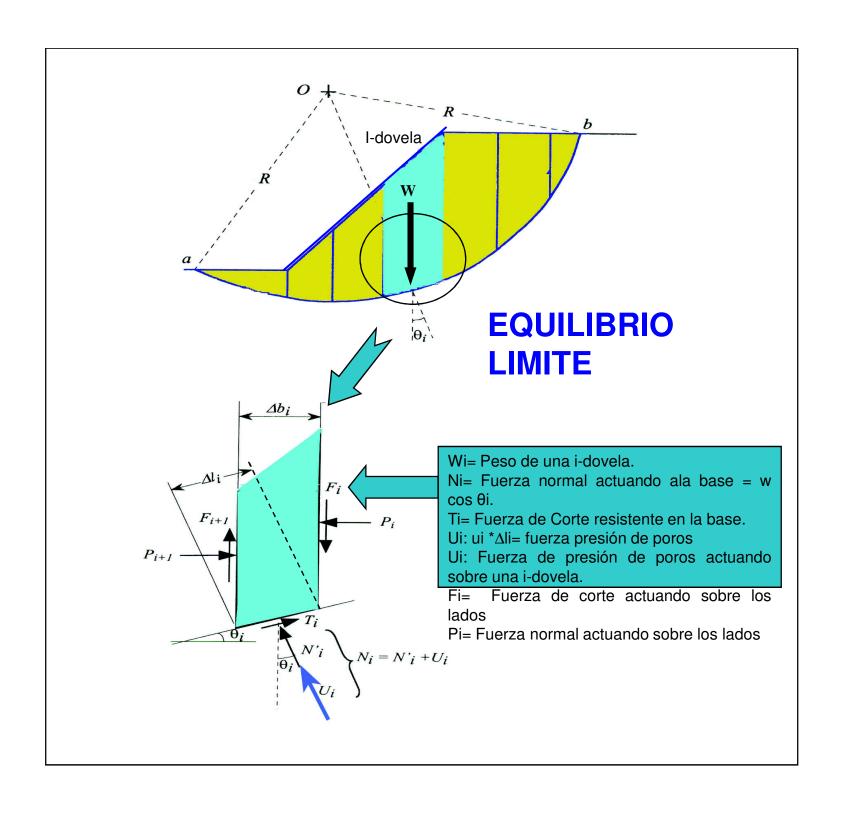
Ocurren cuando los horizontes subyacentes son profundos

Diversas superficies de falla circulares con radios variables desde un solo centro de rotación



EQUILIBRIO LIMITE

Estos métodos son los más utilizados en la práctica para el cálculo de estabilidad de taludes y se basan fundamentalmente en una consideración de equilibrio plástico límite. Se han desarrollado una gran variedad de métodos, los cuales en su mayoría se basan en dividir la potencial masa de deslizamiento en un cierto número de dovelas o rebanadas.



EQUILIBRIO LIMITE

Las fuerzas que actúan sobre cada dovela deben encontrarse en equilibrio, tanto para cada dovela, como para la totalidad de la masa deslizante. Algunos métodos consideran sólo equilibrio de fuerzas, otros sólo de momento y otros satisfacen ambas fuerzas. Las hipótesis del Método de Equilibrio Límite son:

- * El suelo sigue una ley de comportamiento Mohr-Coulomb: $\tau = c + \sigma'_n \cdot \tan(\Phi')$ y la resistencia se moviliza total y simultáneamente a lo largo de la superficie de deslizamiento,
- * El Factor de Seguridad (FS) de la componente cohesiva y friccionante del material es igual para todos los suelos involucrados en la superficie de deslizamiento y es el mismo para todas las dovelas,
- * Se debe verificar el equilibrio de cada dovela como para toda la masa de suelo potencialmente deslizante

EQUILIBRIO LIMITE

La primera formulación del método corresponde a la propuesta por Fellenius (1927), en donde postuló que la resistencia al corte movilizado para satisfacer la condición de equilibrio límite queda determinada por la expresión:

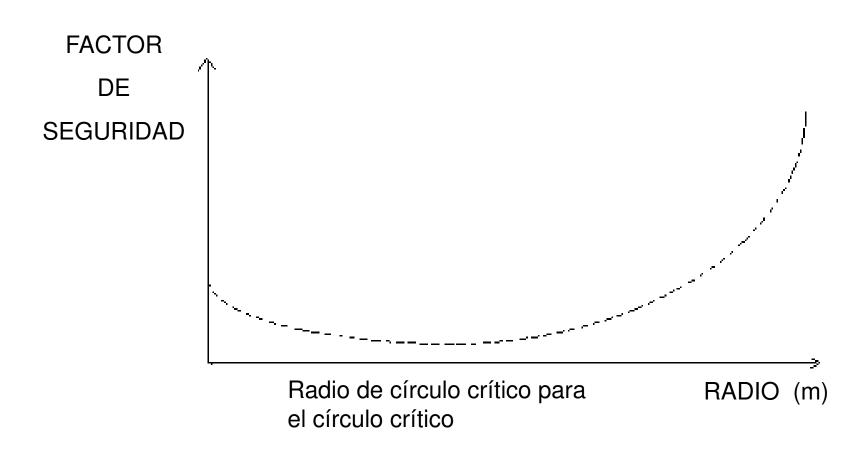
$$c + \sigma'_n \tan \phi'$$

$$\tau_{mov} = -----FS$$

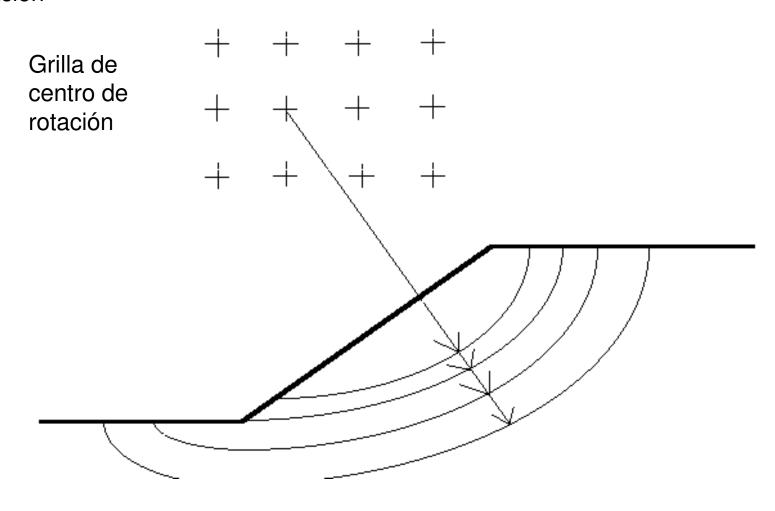
La solución del problema se encuentra indeterminada, razón por lo cual es necesario introducir hipótesis sobre la dirección, magnitud y/o posición del punto de aplicación de algunas de las fuerzas actuantes. Los Métodos de equilibrio limite más comunes son: Fellenius, Bishop Simplificado, Janbu Simplificado, Janbu Generalizado, Spencer, Morgenstern-Price, GLE, Corps of Engineers y Lowe-Karafiath.

De los métodos indicados, el más preciso es el de Morgenstern-Price, pero su comprensión y aplicación es laboriosa. En cambio, el de Bishop Simplificado, obtiene muy poca diferencia con los métodos precisos. Whitman & Bailey (1967) analizaron en detalle el Método Simplificado de Bishop, concluyendo que el error cometido al utilizar este método frente a otros más rigurosos es inferior al 7%, siendo en general menor a un 2%.

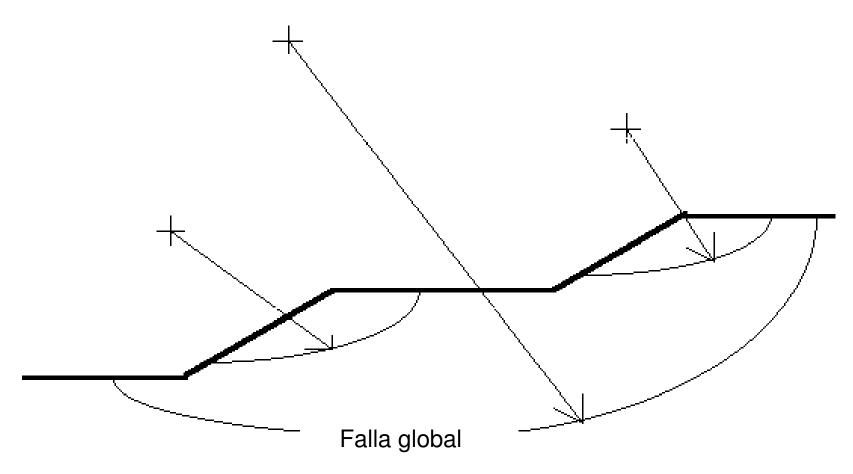
Factor de Seguridad en función del radio



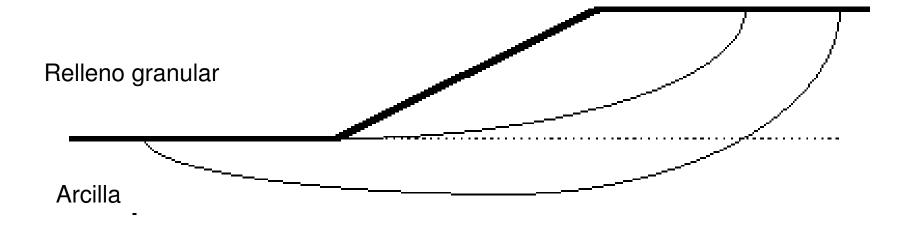
Superficies de falla analizadas desde diversos centros de rotación



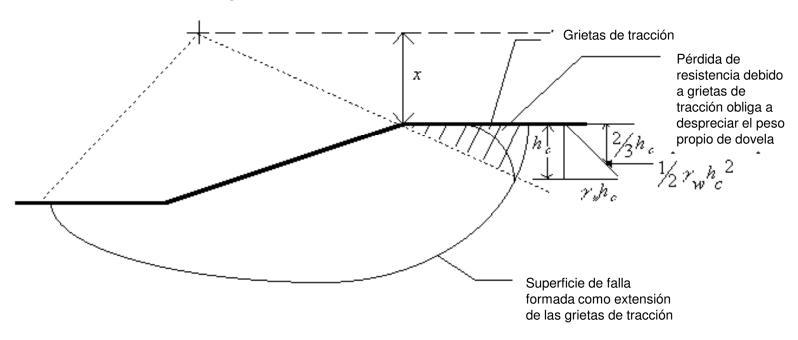
Fallas globales y locales



Talud en suelo granular sobre arcilla



Efecto de las grietas de tracción en las dovelas

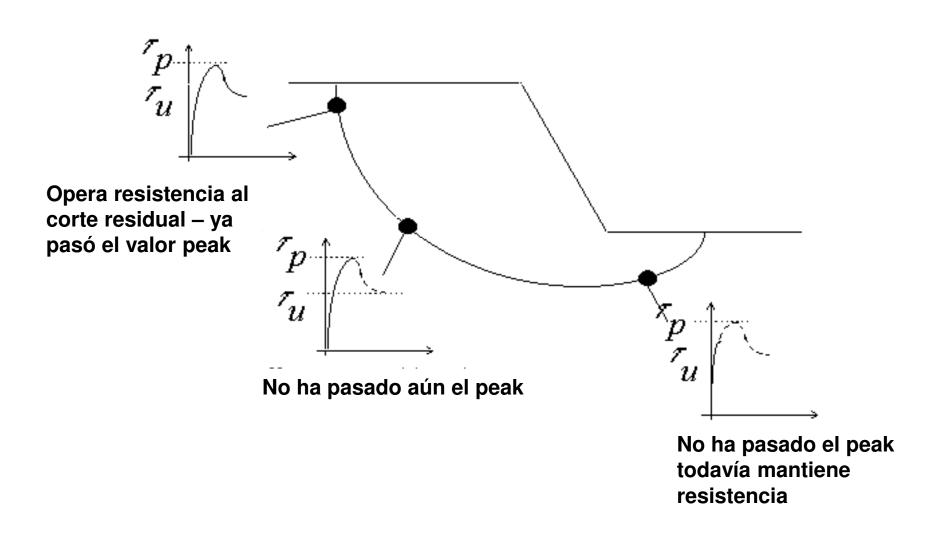


 γ_{W} = Peso unitario de agua

 h_c = . Prof grieta tracción

x = i Altura desde coronam. a centro de rot.

Tres puntos de superficie de falla con diferentes estados de falla



Análisis sísmico (pseudoestático)

La forma más simple para incluir los efectos del sismo es considerar que las fuerzas inducidas por éste son incorporadas como fuerzas horizontales en el análisis. La magnitud de la fuerza horizontal FH es tomada igual al peso de la masa que desliza, multiplicada por un coeficiente *kh* que "representa" al sismo, transformándolo en un problema pseudoestático.

Aunque en la realidad el sismo impone fuerzas horizontales y verticales, diversos autores recomiendan no incluir estas últimas en el análisis.

El coeficiente sísmico *kh*, es un valor empírico que depende entre otros factores, de la aceleración horizontal máxima de campo libre, las características del sismo (magnitud, profundidad, contenido de frecuencias, etc.,), dimensiones de la obra (volumen potencial masa deslizante y condiciones de borde), existencia de poblados, instalaciones y equipos que puedan verse afectados. Diversos autores han propuesto valores y expresiones para determinar el valor de *kh*, los que se muestran en lamina siguiente.

Como es posible observar, existe una amplia gama de posibilidades para adoptar el valor de *kh*, pero exceptuando la expresión propuesta por Saragoni, todas fueron desarrolladas sin incluir las particularidades de los sismos chilenos.

ANALISIS SISMICO

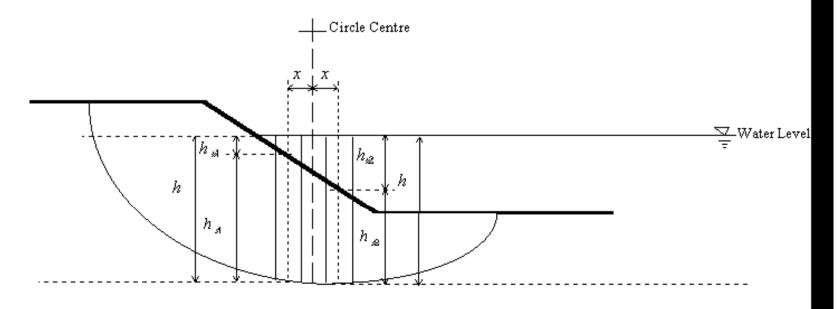
Coeficientes Sísmicos

Division of Mines and Geology, California (1997)

Autor Observación Terzaghi (1950) kh = 0.1, kh = 0.2 y kh = 0.5Para sismos severos, violentos y destructivos y sismos catastróficos respectivamente Noda & Uwave (1976) kh=amax/g Si amax ≤ 2 m/s2 $kh=0.33\cdot(amax/g)0.33$ Si amax > 2 m/s2Seed (1979) kh=0.10. FSsísmico ≥ 1.15 Grandes deslizamientos y sitios cercanos a la fuente sísmica, capaz de generar un sismo de Magnitud 6.5 kh=0.15, FSsísmico ≥ 1.15 Grandes deslizamientos y sitios cercanos a la fuente sísmica, capaz de generar un sismo de Magnitud 8.5 Seed (1980) kh=0.15 FSsísmico ≥ 1.15 Siempre que no exista una pérdida significativa de resistencia de los materiales durante el sismo (suelos arcillosos, arenas drenadas y suelos no-cohesivos densos). Además, sugiere verificar deformaciones con método de Newmark (1965) kh=0.33·amax/g, a kh=0.5·amax/g Considera posible amplificación ó Marcuson (1981) amortiguamiento Krinitzsky et al (1993), Taniguchi& Sasaki (1986) kh=0.65·amax/g Recomendada para deslizamiento de magnitud intermedia Seed & Martin (1966), Dakuolas & Gazetas (1986) kh=amax/a Para un talud pequeño. kh=0.65·amax/g Deslizamiento de magnitud intermedia Idem Seed (1979) Grandes deslizamientos Hynes-Griffin & Franklin (1984) kh=0.5·amax/g Para presas y con FS=1, concluyó que la presa no estará sujeta a deformaciones importantes. Saragoni (1993) $kh=0.3 \cdot amax/g Si amax \le 6.6 m/s2$ kh=0.22(amax/g)0,33 Si amax > 6.6 m/s2Kramer (1996) kh=0.5·amax/q Apropiado para muchos taludes, pero acota que no es una regla general.

kh = 0.15

To Analyse the Effect of an External Water Load on a Slope



h = Height of water level above base of failure surface $h_{w1, h_{w2}}$ = Depth of water above failure surface for each slice $h_{s1, h_{s2}}$ = Depth of slice below failure surface for each slice

 M_1 = Disturbing moment M_2 = restoring / stabilizing moment

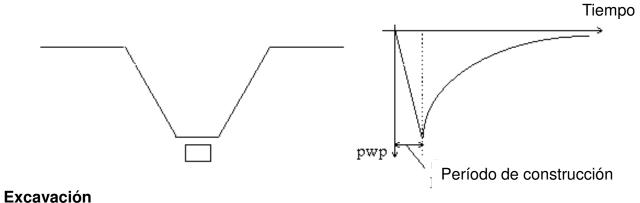
$$So M_1 = \left(h_{s1} + \gamma_w h_{w1} \right) x$$

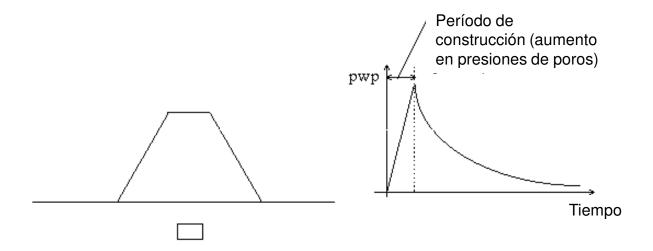
$$M_2 = \left(h_{s2} + \gamma_w h_{w2} \right) x$$

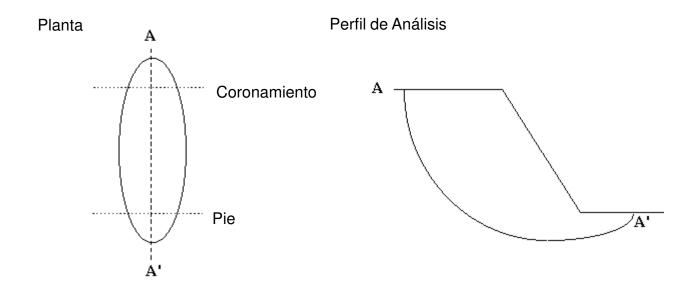
Re sulting effect = $(\gamma h_{s1} + \gamma_w h_{w1} - \gamma h_{s2} - \gamma_w h_{w2})x$ and as $h_{w1} = h - h_{s1}$, $h_{w2} = h - h_{s2}$, $h_{w1} - h_{w2} = h_{s2} - h_{s1}$

where, y'=submerged density.

Estabilidad de largo y corto plazo

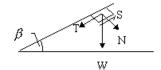






$$T = W \sin \beta$$

 $N = W \cos \beta$



$$\tau_f = c' + \sigma' \tan \phi$$

as c'=0 and there are no fluid pressures;

$$\tau_f = \sigma \tan \phi$$
 $S = zA$
 $N = aA$

$$S_f = N \tan \phi$$

$$S = \frac{S_f}{F} = \frac{N \tan \mathscr{A}}{F} = \frac{W \cos \mathscr{A} \tan \mathscr{A}}{F} = \text{Resisting force}$$

For equilibrium;

Disturbing Force = Resisting Force

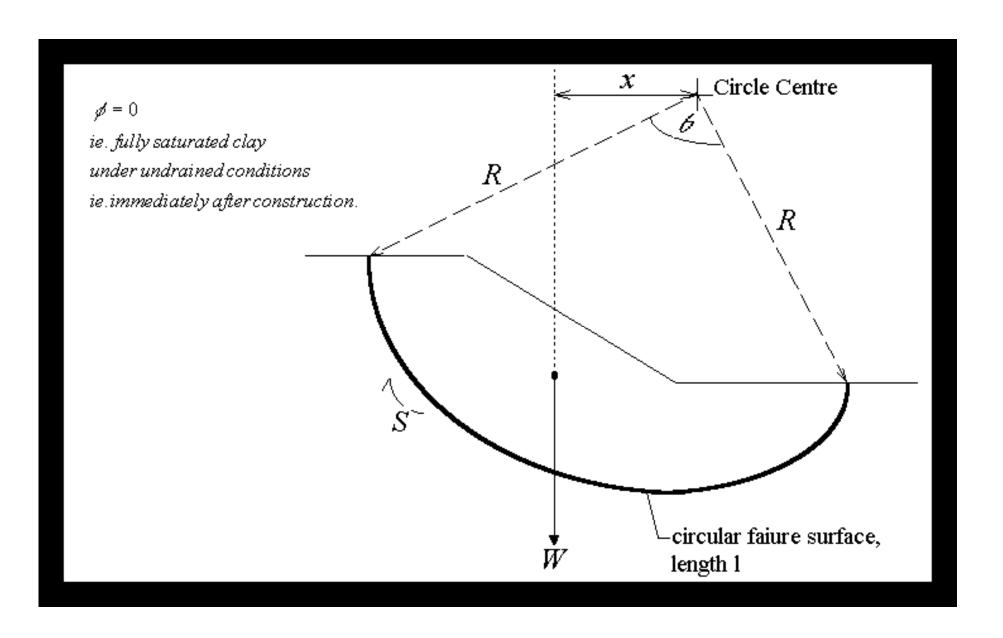
So,

$$T=S$$

or

$$W \sin \not = \frac{W \cos \beta \tan \phi}{F}$$

$$F = \frac{\tan \phi'}{\tan \beta}$$



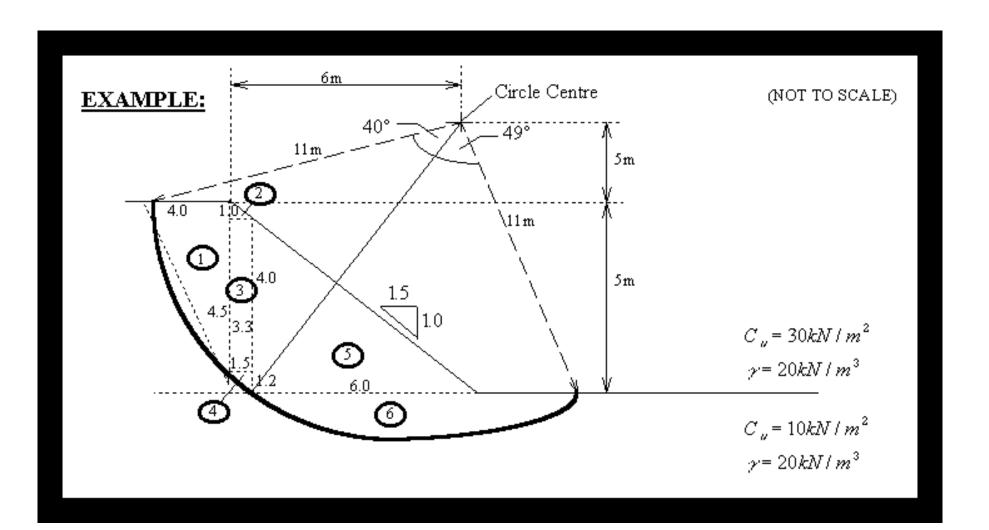
We find the Disturbing Moment
$$=W_X$$
 and the Resisting Moment $=SR = \frac{C_u lR}{F}$

for equilibrium;
$$W_{x} = \frac{C_{u}lR}{F}$$

so:
$$F = \frac{C_u lR}{W_X}$$

Or:
$$F = \frac{C_u R^2 \mathscr{O}}{W_{\chi}}$$
, where \mathscr{O} is in Radians

To find W , the weight of the soil mass, we split the shape into weight blocks as in the following example.



DISTURBING MOMENT

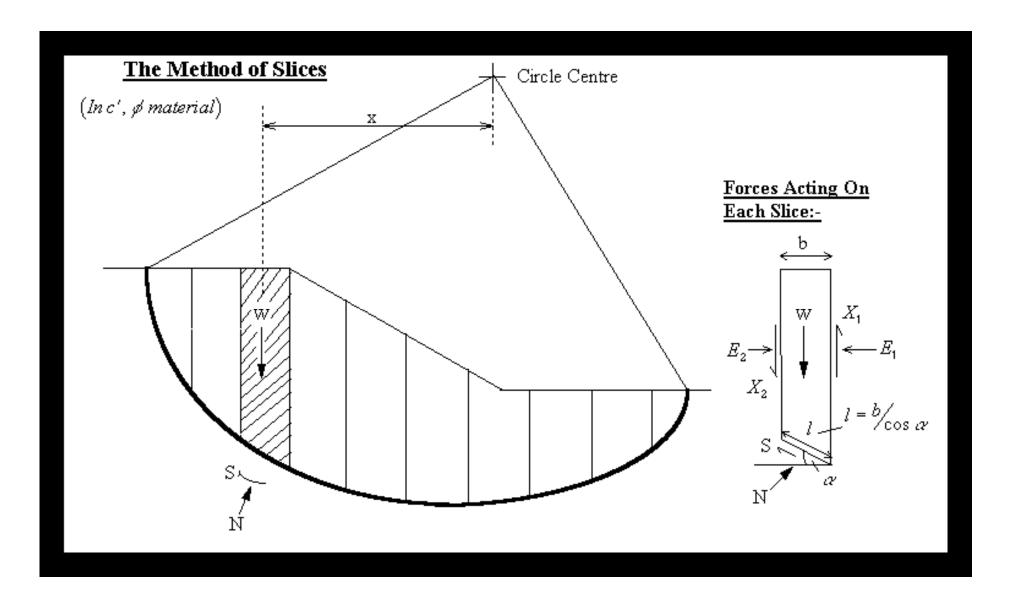
BLOCK	WEIGHT (kN)	LEVER ARM (m)	MOMENT (kNm)
1	$0.5 \times 4 \times 4.5 \times 20 = 180$	$6 + \frac{4}{3} = 7.33$	1319
2	$0.5 \times 1 \times 1.5 \times 20 = 15$	$6 - \frac{1.5}{3} = 5.5$	83
3	$1.5 \times 3.3 \times 20 = 99$	$6 - \frac{1.5}{2} = 5.25$	520
4	$0.5 \times 1.5 \times 1.2 \times 20 = 18$	$6 - \frac{2}{3}(1.5) = 5$	90
5	$0.5 \times 4 \times 6 \times 20 = 240$	$6 - 1.5 - \frac{6}{3} = 2.5$	600
6			

 $_{D}$ =2612kNm

$$\frac{\textbf{RESTORING MOMENT}}{M_{\mathcal{B}} = C_{\nu} \mathcal{R}^{2} \mathcal{S} = \left(30 \times 11^{2} \times \frac{\pi}{180} \times 40\right) + \left(10 \times 11^{2} \times \frac{\pi}{180} \times 49\right)}{M_{R} = 3569 kN/m}$$

So:- The Factor Of Safety,

$$F = \frac{M_R}{M_{\odot}} = \frac{3569}{2612}$$
 $F = 1.37$



We have, $r_f = c' + \sigma' \tan \phi'$

$$r_f = \frac{r_f}{F}$$

$$\sigma' = \sigma - u$$

So
$$r_m = \frac{1}{F} [c' + (\sigma - u) \tan \phi]$$

$$S = A$$
 and $N = A$

$$S = \frac{1}{F} [c'l + (N - ul) \tan \phi]$$

 X_1, X_2 = shear forces acting between adjacent elements.

 E_1, E_2 = total normal forces on the sides of the element.

S = shear force on the base.

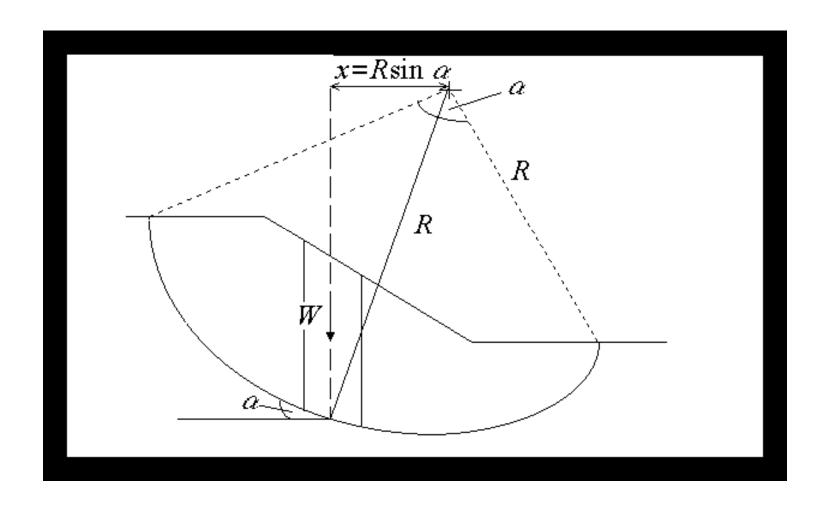
W = weight of slice.

N = total normal force on the base.

 $\tau_f = available shear strength.$

 τ_m = shear stress needed to mobilise the slip.

Fellenius



Fellenius

```
We assume that E_1 = E_2 = X_1 = X_2 = 0

We are left with S, N, and W.

N = W \cos \alpha

S = \frac{1}{F} [c'l + (W \cos \alpha - ul) \tan \phi]

Using moment equilibrium,

\sum Wx = \sum SR

\sum WR \sin \alpha = \sum SR

\sum W \sin \alpha = \sum S

from before,

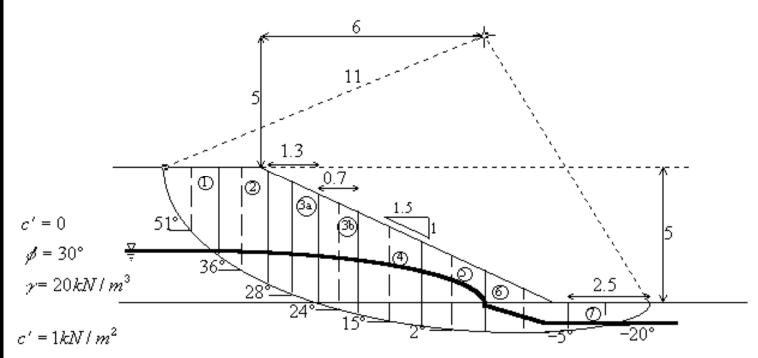
\sum W \sin \alpha = \sum \frac{1}{F} [c'l + (W \cos \alpha - ul) \tan \phi]

So, F = \frac{\sum [c'l + (W \cos \alpha - ul) \tan \phi]}{\sum W \sin \alpha}
```

as we use the same Factor of Safety for each slice.

 $This \it method \it under \it estimates \it the FoS \it by \it 5-20\% \it compared \it to \it more \it rigo \it rous \it methods.$

EXAMPLE USING FELLENIUS' METHOD



$$\gamma = 20kN/m^3$$

Slice No.	α (°)	b (m)	$ l = b / \cos \alpha \\ (m) $	h (m)	W = yhb (kW/m)	$u = \gamma_w h_w$ (kV/m^2)	c'	ø' (°)	$c'l+(W\cos\alpha-ul)\tan\phi'$	Wsina
1	51	2.0	3.18	1.65	66	0	0	30	24	51
2	36	2.0	2.47	3.65	146	10	0	30	54	86
3a	28	1.3	1.47	4.15	108	17	0	30	41	51
3b	24	0.7	0.77	3.90	55	18	1	22	16	22
4	15	2.0	2.07	3.50	140	18	1	22	42	10
5	2	2.0	2.00	2.50	100	14	1	22	31	1
6	-5	2.0	2.08	1.20	48	6	1	22	16	-1
7	-20	2.5	2.66	0.50	25	0	1	22	12	-9
									236	211

$$F = \frac{\sum c' l + (W\cos\alpha - ul)\tan\phi'}{\sum W\sin\alpha} = \frac{236}{211} = 1.1$$

BISHOP'S METHOD:-

This is another method which follows on from the basic "Method of Slices".

Resolving vertically:-

$$N\cos \alpha = W + \Delta X - S\sin \alpha$$

$$N = \frac{W + \Delta X - S\sin \alpha}{\cos \alpha}$$
(from earlier in "Method of Slices").

$$S = \frac{1}{F} [c'l + (N - ul) \tan \emptyset]$$

Substituting for N;

$$S = \frac{1}{F} \frac{\left[c' l \cos \alpha + (W + \Delta X - S \sin \alpha - u l \cos \alpha) \tan \phi'\right]}{\cos \alpha}$$

as
$$b = width of slice = l \cos \alpha$$
.
$$S = \frac{1}{F} \left[\frac{c'b + (W + \Delta X - ub) \tan \phi}{\cos \alpha} - S \tan \alpha \tan \phi \right]$$

$$S = \left[1 + \frac{\tan \alpha \tan \phi}{F} \right] = \frac{1}{F} \frac{\left[c'b + (W + \Delta X - ub) \tan \phi \right]}{\cos \alpha}$$

$$S = \frac{1}{F} \left[\frac{c'b + (W + \Delta X - ub) \tan \phi}{\cos \alpha} \right] \frac{1}{1 + \left(\tan \alpha \tan \phi \right)}$$

From moment equilibrium;

$$\sum W \sin \alpha = \sum S$$

So:-

$$F = \frac{\sum [c'b + (W + \Delta X - ub) \tan \phi] \left[\frac{\sec \alpha}{1 + \tan \alpha \tan \phi} \right]}{\sum W \sin \alpha}$$

To Solve:-

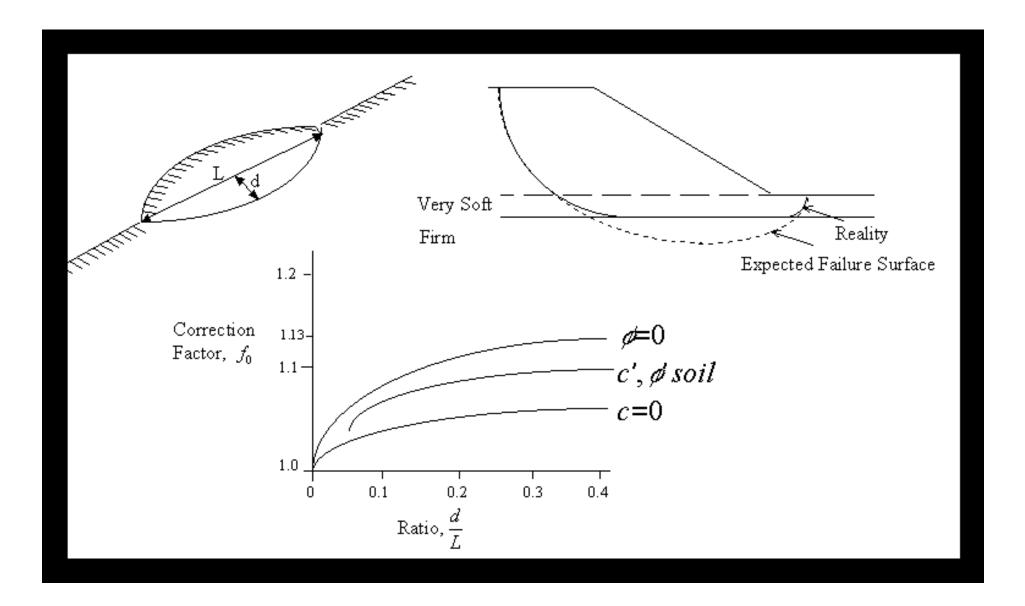
- (1) We assume $X_1 = X_2 = 0$, i.e. that the resultant forces on the sides of the slices are horizontal. So we neglect ΔX . E forces are still taken into account.
- (2) As F is on both sides of the equation, we must solve it iteratively. We obtain an initial value of F by carrying out the "Fellenius Method" and multiplying the solution by 1.2. This value is inserted into the right hand side of the equation, and the left hand side value of F is calculated. This new value is then inserted into the Right hand side and the process is repeated until right hand side = left hand side.
- (3) This is known as Bishop's "simplified" or "routine" method, and gives errors of only around 1%

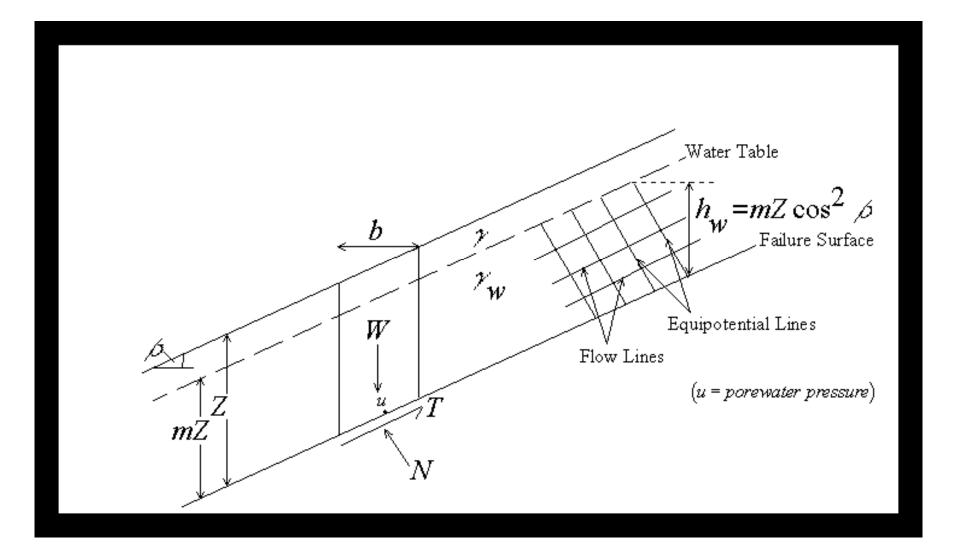
$$F = \frac{\sum [c'b + (W + \Delta X - ub) \tan \varphi] \left[\frac{\sec^2 \alpha}{1 + \tan \alpha \tan \varphi} \right]}{\sum W \tan \alpha}$$

- (1) This equation is again solved iteratively, using the same method as for Bishop's Method.
- (2) Janbu, after discovering a certain amount of innacuracy in this formula, decided on a correction factor, f_0 , which should be applied after iteration has taken place:-

$$SO_{:-}F_{corrected} = f_0 \times F_{iterative}$$

- (3) The value of f_0 is found from the limited graph below:-
- (4) It is necessary to use narrow slices for this method.





Resolving forces:-
$$N = W \cos \beta$$
$$T = W \sin \beta$$

Mohr Coulomb Theory gives:-
$$\mathcal{F}_{mob} = \frac{1}{F} [c' + (\sigma - u) \tan \phi']$$

 $(r_{mob}$ = shear stress needed to mobilise the slide)

In terms of forces:-

$$T = r_{mob} \frac{b}{\cos \beta} = \frac{1}{F} \left[\frac{c'b}{\cos \beta} + \left(\frac{ab}{\cos \beta} - \frac{ub}{\cos \beta} \right) \tan \phi \right]$$

$$N = \frac{ab}{\cos \beta} = W \cos \beta$$

$$\therefore W \sin \beta = T = \frac{1}{F} \left[\frac{c'b}{\cos \beta} + \left(W \cos \beta - \frac{ub}{\cos \beta} \right) \tan \phi \right]$$

$$So:-$$

$$F = \frac{c'b + \left(W \cos^2 \beta - ub \right) \tan \phi}{W \sin \beta \cos \beta}$$

$$W = mZb \gamma_{sat} + (1-m)Zb \gamma = Zb \left[m \gamma_{sat} + (1-m)\gamma \right]$$
and $u = \gamma_w h_w = mZ\cos^2 \beta \gamma_w$

$$F = \frac{c'b + \left[Zb\cos^2\beta(m\gamma_{sat} + (1-m)\gamma) - mbZ\cos^2\beta\gamma_w\right]\tan\beta}{Zb\sin\beta\cos\beta\left[m\gamma_{sat} + (1-m)\gamma\right]}$$
$$= \frac{c' + Z\cos^2\beta\left[m\gamma_{sat} + (1-m)\gamma - m\gamma_w\right]\tan\beta}{Z\sin\beta\cos\beta\left[m\gamma_{sat} + (1-m)\gamma\right]}$$

For most clayey soils, we can assume $\gamma = \gamma_{sat}$

So:-

$$F = \frac{c' + Z\cos^2\beta \left(m\gamma + \gamma - m\gamma - m\gamma_w\right)\tan\phi}{Z\cos\beta\sin\beta \left(m\gamma + \gamma - m\gamma\right)}$$
$$F = \frac{c' + Z\cos^2\beta \left(\gamma - m\gamma_w\right)\tan\phi}{Z\sin\beta\cos\beta\gamma^2}$$

Conditions:-

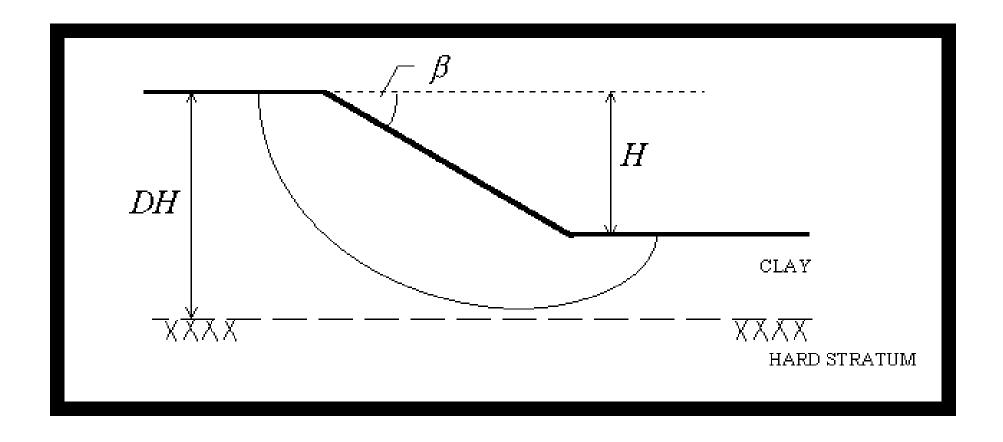
Where c'=0 ie. granular material;

(1) DRY: (m=0)

$$F = \frac{\tan \phi'}{\tan \beta}$$

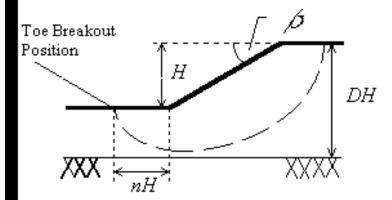
(2) WATER TABLE AT SURFACE: (m=1)

$$F \approx 0.5 \frac{\tan \phi'}{\tan \beta}$$

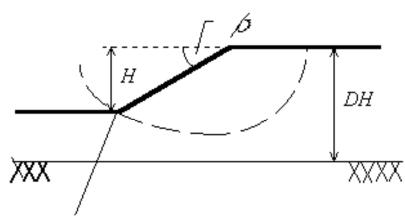


A different curve plotted to a larger scale and on a different axes is used for purely cohesive soil, when the effect of a restriction on the position of the toe "breakout" exists:-

CASE A



CASE B



Toe Breakout Position

Here, the toe breakout position is totally unconstrained (represented by solid lines on the chart.)

n is the "Toe Breakout Factor".

Here, the critical slip surface is restricted to being a toe circle (represented by dashed lines on the chart).

In undrained, homogeneous soil, and for a slope of simple profile, we use Taylor's Charts, using the soil properties c_u , ϕ_u , and γ , and slope

dimensions etaand H .

A number of slopes of various heights and slope angles were analysed, and a stability no. N determined.

$$N = \frac{C}{F \, yH}$$
, so a simple calculation enables us to find F .

 β = slope angle

H = slope height

D = measure of depth to hard stratum

u = undrained mobilized angle of shearing resis tan ce.

N = stability number

 $\gamma = unit weight of soil$

F = factor of safety

 C_{u} = undrained shear strength.

RESUMEN METODOS MAS CONOCIDOS PARA ANALISIS DE ESTABILIDAD

METODO	LIMITACIONES Y SUPUESTOS
ORDINARIO DE DOVELAS	Factores bajos de seguridad: muy inexacto para taludes de poca pendiente y con presiones altas de poros; sólo para superficies circulares de falla; se asume que la fuerza normal sobre la base de cada rebanada es Wcos α; una ecuación (equilibrio de momento de toda la
	masa), una incógnita (factor de seguridad).
BISHOP MODIFICADO	Método preciso; sólo para superficies circulares de falla; satisface el equilibrio vertical y el equilibrio de momento total; asume que las fuerzas laterales sobre rebanadas son horizontales.
SIMPLIFICADO DE JAMBU	Método de equilibrio de fuerzas; aplicable a cualquier forma de superficie de deslizamiento; asume que las fuerzas laterales son horizontales (las mismas para todas las rebanadas); generalmente los factores de seguridad son considerablemente más bajos que los calculados empleando métodos que satisfacen todas las condiciones de equilibrio.

METODOS MAS CONOCIDOS PARA ANALISIS DE ESTABILIDAD

METODO	LIMITACIONES Y SUPUESTOS
SUECO SIMPLIFICADO	Método de equilibrio de fuerzas, aplicable a cualquier forma de superficie de falla; asume que las inclinaciones de las fuerzas laterales son iguales a la inclinación del talud (las mismas para todas las rebanadas); los factores de seguridad a menudo son considerablemente mas altos que los calculados empleando los métodos que satisfacen todas las condiciones de equilibrio.
JANBU GENERALIZADO	Satisface todas las condiciones de equilibrio; aplicable a cualquier forma de superficie de falla; asume alturas de fuerzas laterales por encima de la base de dovela (variando de dovela en dovela); problemas de convergencia numéricos
SPENCER	Muy utilizado. Satisface todas las condiciones de equilibrio; aplicable a cualquier forma de superficie de falla; asume que la inclinación de fuerzas laterales es la misma para todas las dovelas; la inclinación de la fuerza lateral es calculada en todas las condiciones de equilibrio; método preciso.

ANALISIS DE ESTABILIDAD DE TALUDES

- * Para la verificación de la estabilidad de los taludes se considera en general en la práctica el método de equilibrio límite, utilizándose para ello algoritmos numericos o códigos como los softwares MStabl, Clara, Slide, Geoslope, SlopeW y otros.
- * Estos códigos utilizan el método de dovelas, junto con el enfoque de equilibrio límite, para calcular los factores de seguridad para una posible falla en superficies circulares o de bloque. Los softwares utilizan un proceso de búsqueda a fin de obtener el factor de seguridad mínimo y la superficie de falla más crítica, calculando los factores de seguridad según un número de algoritmos establecidos, tales como los ya mencionados (Bishop simplificado, Janbu corregido, Spencer u otros).

ANALISIS DE ESTABILIDAD DE TALUDES

* El método Bishop simplificado es frecuentemente utilizado en análisis de fallas circulares, mientras que los algoritmos Janbu corregido y Spencer son utilizados tanto en análisis de fallas circulares como fallas de bloque. Estas diferencias se deben a que el algoritmo Spencer y Janbu corregido, o también llamado Janbu riguroso, cumplen tanto con el equilibrio de fuerzas en sus dos direcciones, como con el equilibrio de momento, considerando una inclinación constante de las fuerzas entre dovelas, en el caso del algoritmo Spencer y una línea de falla en el caso de Janbu corregido, mientras que Bishop simplificado no compatibiliza todas las fuerzas en su análisis, además de considerar las fuerzas entre dovelas horizontales. Por lo tanto, el método de Spencer es uno de los métodos más completos, y como se ha mencionado, preciso.

EXPLORACION GEOTECNICA

(o prospección Geotécnica):

- * Investigación mediante métodos invasivos, que pueden ser complementarios con métodos no invasivos, del subsuelo con fines geotécnicos.
- Habitualmente incluye la obtención de muestras del subsuelo

EXPLORACION DE SUELOS (GEOTECNICA)

Objetivo principal:

Detectar, reconocer e identificar los materiales geomecánicos y profundidades de napas y roca basal en sector de emplazamiento (o trazado) de obras de ingeniería que se proyectan (a profundidades influenciadas por ella -bulbo de presión), en el area en que pueden influenciarla (taludes adyacentes) o en profundidades donde se requiera prevenir efectos en aguas subterraneas

EXPLORACION GEOTECNICA

- Identificar horizontes o estratos de suelos => Descripción estratigráfica
- Definir posible secuencia
 estratigráfica => Programar campaña
 en extensión
- Efectuar trabajos de terreno que permitan caracterizar los materiales representativos de los horizontes

Exploración geotécnica

Procedimientos

Excavación de calicatas

Excavación de zanjas

Perforación de sondajes

Desarrollo de procedimientos geofísicos

Programa

- * Se debe definir mediante:
- Cantidad de puntos a investigar
- * Profundidad a alcanzar en cada punto
- Distribución de los puntos en la superficie del terreno
- * Numero y tipo de muestras a extraer

Prospección Geofísica

- * Sísmica de refracción
- * Propagación de ondas en sondajes
- * Resistividad electrica

Numero mínimo de calicatas de investigación para profundidades de hasta 4 m

Superficie a explorar (m2)	Cantidad de puntos de exploración
Hasta 500	2
De 501 a 1000	3
De 1001 a 2000	4
De 2001 a 5000	5
De 5001 a 10000	6
Mas de 10000	Según lo indicado por el ing. Geotécnico con un minimo de 7

Numero mínimo de calicatas de investigación para profundidades de entre 4 y 8 m

Superficie a explorar (m2)	Cantidad de puntos de exploración
Hasta 1000	2
De 1001 a 4000	3
De 4001 a 10000	4
Mas de 10000	Según lo indicado por el ing. Geotécnico con un minimo de 5

Profundidad mínima a alcanzar en cada punto de exploración

Se entiende como profundidad mínima de exploración aquella dentro de la cual se produce la interacción suelo-estructura de la obra en proyecto

Profundidad mínima a alcanzar en cada punto de exploración

Fundaciones superficiales

Edificación sin subterráneo

$$Zp = Df + z$$

* Edificaciones con subterráneo

$$Zp = h + Df + z$$

En ambos casos z=1,5 B

y B el ancho menor de fundación

Df profundidad de fundación distancia desde terreno a sello de fundación

Profundidad de exploración

- z puede tener el valor de B, con un mínimo de 2 m
- * Zp no puede ser menor a 2,5 m

Fundaciones profundas

$$Zp = h + Df + z$$

Con Df el extremo de la fundación profunda pilote, pilas

Debe profundizarse un mínimo de 3 m por debajo de su punta

En caso de cepas o estribos de puentes, un mínimo de 7 m