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The paper compares six methods of slices commonly used for slope stability analysis. The factor
of safety equations are written in the same form, recognizing whether moment and (or) force
equilibrium is explicitly satisfied. The normal force equation is of the same form for all methods
with the exception of the ordinary method. The method of handling the interslice forces differen-
tiates the normal force equations.

A new derivation for the Morgenstern—Price method is presented and is calied the ‘best-fit
regression’ solution. It involves the independent solution of the force and moment equilibrium
factors of safety for various values of A. The best-fit regression solution gives the same factor of
safety as the ‘Newton—Raphson’ solution. The best-fit regression solution is readily com-
prehended, giving a complete understanding of the variation of the factor of safety with A.

L’article présente une comparaison des six méthodes de tranches utilisées couramment pour
I'analyse de la stabilité des pentes. Les équations des facteurs de sécurité sont écrites selon la
méme forme, en montrant si les conditions d’équilibre de moment ou de force sont satisfaites
explicitement. L’ équation de la force normale est de la méme forme pour toutes les méthodes a
I'exception de la méthode des tranches ordinaires. La fagon de traiter les forces intertranches est
ce qui différencie les équations de force normale.

Une nouvelle dérivation appelée solution *‘best-fit regression’” de la méthode de Morgens-
tern—Price est présentée. Elle consiste & déterminer indépendemment les facteurs de sécu-
rité satisfaisant aux équilibres de force et de moment pour différentes valeurs de A. La solu-
tion *‘best-fit regression’’ donne les mémes facteurs de sécurité de la solution de Newton—Raph-
son. La solution **best-fit regression” est plus facile & comprendre et donne une image détaillée

de la variation du facteur de sécurité avec A.
Traduit par la revue
Can. Geotech. J., 14, 429 (1977) l P !

Introduction

The geotechnical engineer frequently uses
limit equilibrium methods of analysis when
studying slope stability problems. The methods
of slices have become the most common
methods due to their ability to accommodate
complex geometrics and variable soil and
water pressure conditions (Terzaghi and Peck
1967). During the past three decades ap-
proximately one dozen methods of slices have
been developed (Wright 1969). They differ
in (i) the statics employed in deriving the
factor of safety equation and (ii) the assump-
tion used to render the problem determinate
(Fredlund 1975).

This paper is primarily concerned with six
of the most commonly used methods:

(i) Ordinary or Fellenius method (some-
times referred to as the Swedish circle method
or the conventional method)

(ii) Simplified Bishop method

(iii) Spencer’s method

(iv) Janbu’s simplified method

(v) Janbu’s rigorous method

(vi) Morgenstern—Price method

The objectives of this paper are:

(1) to compare the various methods of
slices in terms of consistent procedures for
deriving the factor of safety equations. All
equations are extended to the case of a com-
posite failure surface and also consider partial
submergence, line loadings, and earthquake
loadings.

(2) to present a new derivation for the
Morgenstern—Price method. The proposed
derivation is more consistent with that used
for the other methods of analysis but utilizes
the elements of statics and the assumption
proposed by Morgenstern and Price (1965).
The Newton-Raphson numerical technique is
not used to compute the factor of safety
and A.

(3) to compare the factors of safety ob-

‘Presented at the 29th Canadian Geotechnical
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tained by each of the methods for several
example problems. The University of Sas-
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FiG. 1. Forces acting for the method of slices applied to a composite sliding surface.

katchewan SLOPE computer program was
used for all computer analyses (Fredlund
1974).

(4) to compare the relative computational
costs involved in using the various methods
of analysis.

Definition of Problem

Figure 1 shows the forces that must be de-
fined for a general slope stability problem.
The variables associated with each slice are
defined as follows:

W = total weight of the slice of width & and

height 4

total normal force on the base of the slice

over a length /

S,, = shear force mobilized on the base of the
slice. It is a percentage of the shear
strength as defined by the Mohr-Coulomb
equation. That is, S, = [ {¢’ + [P/l — u]
tan ¢'}/F where ¢’ = effective cohesion
parameter, ¢’ = effective angle of internal
friction, F = factor of safety, and u =
porewater pressure

R = radius or the moment arm associated with
the mobilized shear force S,

f = perpendicular offset of the normal force
from the center of rotation

x = horizontal distance from the slice to the

center of rotation

= angle between the tangent to the center of

the base of each slice and the horizontal

P

If

R

— "BEDROCK

= horizontal interslice forces
= subscript designating left side
subscript designating right side
= vertical interslice forces
= seismic coefficient to account for a dynam-
ic horizontal force
vertical distance from the centroid of each
slice to the center of rotation

A uniform load on the surface can be taken
into account as a soil layer of suitable unit
weight and density. The following variables are
required to define a line load:
L = line load (force per unit width)
w = angle of the line load from the horizontal
d = perpendicular distance from the line load

to the center of rotation

The effect of partial submergence of the slope
or tension cracks in water requires the definition
of additional variables:
A = resultant water forces
a = perpendicular distance from the resultant
water force to the center of rotation

RS Al
H

~
It

Derivations for Factor of Safety

The elements of statics that can be used to
derive the factor of safety are summations of
forces in two directions and the summation
of moments. These, along with the failure
criteria, are insufficient to make the problem
determinate. More information must be known
about either the normal force distribution or
the interslice force distribution. Either addi-
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Fic. 2 Interslice forces for the ordinary method.

tional elements of physics or an assumption
must be invoked to render the problem deter-
minate. All methods considered in this paper
use the latter procedure, each assumption
giving rise to a different method of analysis.
For comparison purposes, each equation is
derived using a consistent utilization of the
equations of statics.

Ordinary or Fellenius Method

The ordinary method is considered the
simplest of the methods of slices since it is
the only procedure that results in a linear
factor of safety equation. It is generally stated
that the interslice forces can be neglected be-
cause they are parallel to the base of each
slice (Fellenius 1936). However, Newton’s
principle of ‘action equals reaction’ is not satis-
fied between slices (Fig. 2). The indiscriminate
change in direction of the resultant interslice
force from one slice to the next results in
factor of safety errors that may be as much
as 60% (Whitman and Bailey 1967).

The normal force on the base of each slice
is derived either from summation of forces
perpendicular to the base or from the sum-
mation of forces in the vertical and horizontal
directions.

[1] YFy=0
W— Pcosa — S, sina =0
2] ¥ Fu=0

Spcosa — Psina — kW=20

Substituting [2] into [1] and solving for the
normal force gives

[3] P = Wcosa — kW sin a

The factor of safety is derived from the
summation of moments about a common point
(i.e. either a fictitious or real center of rotation
for the entire mass).

[4] Y Mo=0
YWx—Y S.R—YPf+> kWe + Aa
+Ld=0

Introducing the failure criteria and the
normal force from [3] and solving for the
factor of safety gives

Y{c'IR + (P — ul)R tan ¢'}
YWx —~ Y Pf+ YkWe + Aa + Ld

[S]F =

Simplified Bishop Method

The simplified Bishop method neglects the
interslice shear forces and thus assumes that a
normal or horizontal force adequately defines
the interslice forces (Bishop 1955). The nor-
mal force on the base of each slice is derived
by summing forces in a vertical direction (as in
[1]1). Substituting the failure criteria and
solving for the normal force gives

_ cIsina  ultan ¢’ sin«
[6] P —[ We—p—+ F :I/ma

where my = cos « + (sin « tan ¢’) /F

The factor of safety is derived from the
summation of moments about a common
point. This equation is the same as [4] since
the interslice forces cancel out. Therefore, the
factor of safety equation is the same as for the
ordinary method ([5]). However, the defini-
tion of the normal force is different.
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Spencer’s Method
Spencer’s method assumes there is a con-
stant relationship between the magnitude of the

interslice shear and normal forces (Spencer
1967).
~ X _ X
[71 tan 6 = E - Ex
where § = angle of the resultant interslice

force from the horizontal.

Spencer (1967) summed forces perpendic-
ular to the interslice forces to derive the
normal force. The same result can be ob-
tained by summing forces in a vertical and

horizontal direction.
[8] YFy=0

W—(Xg — X)) — Pcosa — S sina =0
[91 YFu=0

—(Eqg — E) + Psina — S, cosa + kW =10

The normal force can be derived from [8]
and then the horizontal interslice force is ob-
tained from [9].

[10] P= [W— (Eg — E,) tan 6

clsina wultan ¢’ sina

Spencer (1967) derived two factor of safety
equations. One is based on the summation of
moments about a common point and the other
on the summation of forces in a direction
parallel to the interslice forces. The moment
equation is the same as for the ordinary and
the simplified Bishop methods (i.e. [4]). The
factor of safety equation is the same as {5].

The factor of safety equation based on
force equilibrium can also be derived by
summing forces in a horizontal direction.

[11] YFy=0
Y(EL — Eg) + YPsina — )'S, cos«
+ZkWiA — Lcosw =20

The interslice forces (Er, — Er) must cancel
out and the factor of safety equation with
respect to force equilibrium reduces to

S{c'lcosa + (P — ul) tan ¢’ cos o}
YPsina + YkW+ A — Lcosw

[12] F¢ =

Spencer’s method yields two factors of The cor
safety for each angle of side forces. However, [15]
at some angle of the interslice forces, the two
factors of safety are equal (Fig. 3) and both Janbu's
moment and force equilibrium are satisfied. Janb
The Corps of Engineers method, sometimes point a
referred to as Taylor’s modified Swedish be defi
method, is equivalent to the force equilibrium used ar
portion of Spencer’s method in which the direc- I, Iy =
tion of the interslice forces is assumed, generally S!ICC to
at an angle equal to the average surface slope. sides of
between
Janbu’s Simplified Method a slice :
Janbu’s simplified method uses a correction The 1
factor f, to account for the effect of the inter- is deriv
slice shear forces. The correction factor is forces.
related to cohesion, angle of internal friction,
and the shape of the failure surface (Janbu [16] P -
et al. 1956). The normal force is derived from
the summation of vertical forces ([8]), with
the interslice shear forces ignored.
[13] P =|:W— c'l S;"na"'ul tanzj’ Sina]/ma The
from th
The horizontal force equilibrium equation [111). .
is used to derive the factor of safety (i.e. the simj
[11]). The sum of the interslice forces must are kepf
cancel and the factor of safety equation The fac
becomes Spencer
Y{c'lcos« + (P — ul) tan ¢’ cos a} (i.e. [1]
[14] Fo = YPsina + YkW+ A— Lcosw In or
- tion. il
F, is used to designate the factor of safety evaluate
uncorrected for the interslice shear forces.
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Fic. 3 Variation of the factor of safety with
respect to moment and force equilibrium vs. the
angle of the side forces. Soil properties: ¢’ /vh = 0.02;
¢ = 40°; ry = 0.5. Geometry: slope = 26.5°%; FiG. 4

height = 100 ft (30 m). rigorous
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The corrected factor of safety is
[15] F = foFo

Janbu’s Rigorous Method

Janbu’s rigorous method assumes that the
point at which the interslice forces act can
be defined by a ‘line of thrust’. New terms
used are defined as follows (see Fig. 4):
t;,, tn = vertical distance from the base of the
slice to the line of thrust on the left and right
sides of the slice, respectively; o, = angle
between the line of thrust on the right side of
a slice and the horizontal.

The normal force on the base of the slice
is derived from the summation of vertical
forces.

[16] P=[W— Xr— X0)

clsine  wultan ¢’ sin «
- F + F :|/ma

The factor of safety equation is derived
from the summation of horizontal forces (i.e.
[11]). Janbu’s rigorous analysis differs from
the simplified analysis in that the shear forces
are kept in the derivation of the normal force.
The factor of safety equation is the same as
Spencer’s equation based on force equilibrium
(i.e. [12]).

In order to solve the factor of safety equa-
tion, the interslice shear forces must be
evaluated. For the first iteration, the shears

b
!
!
!

w
XL l

| - Line of Thrust

Fic. 4. Forces acting on each slice for Janbu’s
rigorous method.

are set to zero. For subsequent iterations,
the interslice forces are computed from the
sum of the moments about the center of the
base of each slice.

[17] ¥M. =0
X b/2 + Xgb/2 — E; [t, + (b/2) tan «]
+ Ex [t + (/) tana — b tana ] — kWh/2 =0

After rearranging [17], several terms become
negligible as the width b of the slice is reduced
to a width dx. These terms are (X — X1.) b/2,
(Ex — Ey) (b/2) tan « and (Evw — Er)b
tan o Eliminating these terms and dividing by
the slice width, the shear force on the right side
of a slice is

[18] Xg = Egtana, — (Eg — Ep) /b

+ (kW/b) (h/2)

The horizontal interslice forces, required
for solving [18], are obtained by combining
the summation of wvertical and horizontal
forces on each slice.

[19] (Er — E) =[W—(Xg — X )] tana
— S, /cos o + kW

The horizontal interslice forces are obtained
by integration from left to right across the
slope. The magnitude of the interslice shear
forces in [19] lag by one iteration. Each
iteration gives a new set of shear forces. The
vertical and horizontal components of line
loads must also be taken into account when
they are encountered.

Morgenstern—Price Method

The Morgenstern—Price method assumes an
arbitrary mathematical function to describe
the direction of the interslice forces.

[20] Mx) = X/E

where A = a constant to be evaluated in
solving for the factor of safety, and f(x) =
functional variation with respect to x. Figure
5 shows typical functions (i.e. f(x)). For a
constant function, the Morgenstern—Price
method is the same as the Spencer method.
Figure 6 shows how the half sine function
and A are used to designate the direction of
the interslice forces.

Morgenstern and Price (1965) based their
solution on the summation of tangential and
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Fic. 5. Functional variation of the direction of the
side force with respect to the x direction.
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FiG. 6. Side force designation for the Morgenstern—
Price method.

normal forces to each slice. The force equilib-
rium equations were combined and then the
Newton—-Raphson numerical technique was
used to solve the moment and force equations
for the factor of safety and A.

In this paper, an alternate derivation for
the Morgenstern—Price method is proposed.
The solution satisfies the same elements of
statics but the derivation is more consistent
with that used in the other methods of slices.
It also presents a complete description of the

variation of the factor of safety with respect
to A.

The normal force is derived from the
vertical force equilibrium equation ([16]). Two
factor of safety equations are computed, one
with respect to moment equilibrium and one
with respect to force equilibrium. The moment
equilibrium equation is taken with respect to
a common point. Even if the sliding surface
is composite, a fictitious common center can
be used. The equation is the same as that ob-
tained for the ordinary method, the simplified
Bishop method, and Spencer’s method ([4]
and [5]). The factor of safety with respect to
force equilibrium is the same as that derived
for Spencer’s method ([12]). The interslice
shear forces are computed in a manner similar
to that presented for Janbu’s rigorous method.
On the first iteration, the vertical shear forces
are set to zero. On subsequent iterations, the
horizontal interslice forces are first computed
([19]) and then the vertical shear forces are
computed using an assumed A value and side
force function.

[21] X = ExMf(x)

The side forces are recomputed for each

(.20 ° |
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Fic. 7. Variation of the factor of safety with re-
spect to moment and force equilibrium vs. \ for the
Morgenstern—Price method. Soil properties: ¢’/vh =
0.02; ¢' = 40°; r. = 0.5. Geometry: slope = 26.5°;
height = 100 ft (30 m).
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(120, 90)

60

Y =120 pcf

@' =20° CONDITION 2 (weak layer)
40— ¢ 2600psf ¢'-0, g=10°

PIEZOMETRIC LINE
20

BEDROCK
L 1 i 1 1 1 i ]

o} 20 40 60 80 100 120 140’

Fic. 8. Example problem.

iteration. The moment and force equilibrium
factors of safety are solved for a range of A
values and a specified side force function.
These factors of safety are plotted in a manner
similar to that used for Spencer’s method
(Fig. 7). The factors of safety vs. A are fit by
a second order polynomial regression and the
point of intersection satisfies both force and
moment equilibrium.

Comparison of Methods of Analysis

All methods of slices satisfying overall
moment equilibrium can be written in the
same form.

Yc'IR + Y(P — ul)R tan ¢’
T YWx — YPf+ YkWe + Aa + Ld
All methods satisfying overall force equilib-

rium have the following form for the factor of
safety equation:

[22] Fa

[231 Fe = YPsina+ YkW+ A — Lcosw

The factor of safety equations can be
visualized as consisting of the following com-
ponents:

Moment Force
equilibrium equilibrium
Cohesion Xc'IR Xc'l cos o
Friction Z(P-ul)R tan ¢’ 2(P-ul) tan ¢’ cos o
Weight IWx —
Normal XPf TPsino
Earthquake TkWe kW
Partial
submergence Ada A
Line loading Ld L cos®

Yec'lcoso + Y (P — ul) tan ¢’ cosa

From a theoretical standpoint, the derived
factor of safety equations differ in (i) the
equations of statics satisfied explicitly for the
overall slope and (ii) the assumption to make
the problem determinate. The assumption used
changes the evaluation of the interslice forces
in the normal force equation (Table 1). All
methods, with the exception of the ordinary
method, have the same form of equation for
the normal force.

4] P = [W— X — X0)
ul tan ¢ sin o :|/m<x

clsina §’ sin
- F T F
where m, = cos « + (sina tan ¢') /F.

It is possible to view the analytical aspects
of slope stability in terms of one factor of
safety equation satisfying overall moment
equilibrium and another satisfying overall
force equilibrium. Then each method becomes
a special case of the ‘best-fit regression’ solu-
tion to the Morgenstern—Price method.

TaBLE 1. Comparison of factor of safety equations

Factor of safety based on

Moment Force Normal
equili- equili- force

Method brium brium  equation
Ordinary or Fellenius X [3]
Simplified Bishop X [6]
Spencer’s X X [10]
Janbu’s simplified X [13}
Janbu’s rigorous X [16]
Morgenstern-Price X X [24]
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TasLE 2. Comparison of factors of safety for example problem

Morgenstern—
Price method
Simplified Spencer’s method Janbu’s Janbu’s f(x) = constant
Case Ordinary Bishop simplified rigorous ————
no. Example problem*  method method F 9 A method  method** F A
1 Simple 2:1 slope, 40 1.928 2.080 2.073 14.81 0.237 2.041 2.008 2.076 0.254
ft (12 m) high,
¢’ = 20° ¢” = 600
psf (29 kPa) ‘
2 Sameas 1 withathin, 1.288 1.377 1.373 10.49 0.185 1.448 1.432 1.378 0.159
weak layer with
¢ =10°%¢" =0
3 Sameas1except with  1.607 1.766 1.761 14.33 0.255 1.735 1.708 1.765 0.244
rq = 0.25
4 Same as 2 except with  1.029 1.124 1.118 7.93 0.139 1.191 1.162 1.124 0.116
r, = 0.25 for both
materials
5 Same as 1 except with  1.693 1.834 1.830 13.87 0.247 1.827 1.776 1.833 0.234
a piezometric line
6 Sameas?2exceptwith 1.171 1.248 1.245 6.88 0.121 1.333 1.298 1.250 0.097

a piezometric line
for both materials

*Width of slice is 0.5 ft (0.3 m) and the tolerance on the nonlinear solutions is 0.001.

**The line of thrust is assumed at 0.333.

Figure 8 shows an example problem in-
volving both circular and composite failure
surfaces. The results of six possible combina-
tions of geometry, soil properties, and water
conditions are presented in Table 2. This
is not meant to be a complete study of
the quantitative relationship between various
methods but rather a typical example.

The various methods (with the exception
of the ordinary method), can be compared by
plotting factor of safety vs. A. The simplified
Bishop method satisfies overall moment equi-
librium with A = 0. Spencer’s method has A
equal to the tangent of the angle between the
horizontal and the resultant interslice force.
Janbu’s factors of safety can be placed along
the force equilibrium line to give an indication
of an equivalent A value. Figures 9 and 10
show comparative plots for the first two cases
shown in Table 2.

The results in Table 2 along with those
from other comparative studies show that the
factor of safety with respect to moment equi-
librium is relatively insensitive to the inter-
slice force assumption. Therefore, the factors
of safety obtained by the Spencer and
Morgenstern—Price methods are generally
similar to those computed by the simplified
Bishop method. On the other hand, the factors

of safety based on overall force equilibrium
are far more sensitive to the side force
assumption.

The relationship between the factors of
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TabLE 3. Comparison of two solutions to the Morgenstern—Price method**

University of Saskatchewan
SLOPE program
side force function

University of
Alberta program
side force function

Constant Half sine Constant Half sine Clipped sine*
Case
no. Example problem F A F A F A F A F A
1 Simple 2:1 slope, 40 ft (12 m) 2.085 0.257 2.085 0.314 2.076 0.254 2.076 0.318 2.083 0.390
high, ¢’ = 20°, ¢’ = 600 psf
(29 kPa)
2 Same as 1 with a thin, weak 1.394 0.182 1.386 0.218 1.378 0.159 1.370 0.187 1.364 0.203
layer with ¢’ = 10°,¢" =0
3 Sameas 1 exceptwithr, = 0.25 1.772 0.351 1.770 0.432 1.765 0.244 1.764 0.304 1.779 0.417
4 Sameas 2except withr, = 0.25 1.137 0.334 1.117 0.441 1.124 0.116 1.118 0.130 1.113 0.138
for both materials
5 Sameas | except with a piezo- 1.838 0.270 1.837 0.331 1.833 0.234 1.832 0.290 1.832 0.300
metric line
6 Same as 2 except witha piezo- 1.265 0.159 Not converging 1.250 0.097 1.245 0.101 1.242 0.104

metric line for both materials

*Coordinates x = 0, y = 0.5, and x = 1.0, y = 0.25.
**Tolerance on both Morgenstern—Price solutions is 0.001.

1.65 T T T T T T ‘
1.60 {
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.50 / 4
F
7
& .45+ , / _
] SIMPLIFIED ;A UANBU'S RIGOROUS |
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N

Fic. 10. Comparison of factors of safety for case 2.

safety by the various methods remains similar
whether the failure surface is circular or com-
posite. For example, the simplified Bishop
method gives factors of safety that are always
very similar in magnitude to the Spencer and
Morgenstern—Price method. This is due to the
small influence that the side force function has
on the moment equilibrium factor of safety

equation. In the six example cases, the aver-
age difference in the factor of safety was
approximately 0.1%.

Comparison of Two Solutions to the
Morgenstern-Price Method

Morgenstern and Price (1965) originally
solved their method using the Newton-Raphson
numerical technique. This paper has presented
an alternate procedure that has been referred
to as the ‘best-fit regression’ method. The two
methods of solution were compared using the
University of Alberta computer program
(Krahn ef al. 1971) for the original method
and the University of Saskatchewan computer
program (Fredlund 1974) for the alternate
solution. In addition, it is possible to compare
the above solutions with Spencer’s method.

Table 3 shows a comparison of the two
solutions for the example problems (Fig. 8).
Figures 11 and 12 graphically display the
comparisons. Although the computer programs
use different methods for the input of the
geometry and side force function and different
techniques for solving the equations, the
factors of safety are essentially the same.

The example cases show that when the side
force function is either a constant or a half
sine, the average factor of safety from the
University of Alberta computer program
differs from the University of Saskatchewan




438 CAN. GEOTECH. J. VOL. 14, 1977

2.00 T T T T T T

+ - SPENCER
MORGENSTERN - PRICE

195 o - f(x)= CONSTANT

x— f(x) = SINE

4 - f(x)= CLIPPED SINE

1.90 - -

1.85

1.80

175

FACTOR OF SAFETY

.70} .//i -

1.65 %{/ _

.60 -

.55 | 1 | I 1 |
0.0 0.2 0.4 06

Fig. 11. Effect of side force function on factor of
safety for case 3.
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Fic. 12. Effect of side force function on factor of
safety for case 4.

computer program by less than 0.7%. Using
the University of Saskatchewan program, the
Spencer method and the Morgenstern—Price
method (for a constant side force function)
differ by less than 0.2%. The average A values
computed by the two programs differ by ap-
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Fic. 13. Time per stability analysis trial for all
methods of analysis.

proximately 9% . However, as shown above,
this difference does not significantly affect the
final factor of safety.

Comparison of Computing Costs

A simple 2:1 slope was selected to compare
the computer costs (i.e. CPU time) associated
with the various methods of analysis. The
slope was 440 ft long and was divided into
5-ft slices. The results shown in Fig. 13 were
obtained using the Univeristy of Saskatchewan
SLOPE program run on an IBM 370 model
158 computer.

The simplified Bishop method required
0.012 min for each stability analysis. The
ordinary method required approximately 60%
as much time. The factor of safety by Spencer’s
method was computed using four side force
angles. The calculations associated with each
side force angle required 0.024 min. The factor
of safety by the Morgenstern—Price method was
computed using six A values. Each trial required
0.021 min. At least three estimates of the side
force angle or A value are required to obtain
the factor of safety. Therefore, the Spencer or
Morgenstern—Price methods are at least six
times as costly to run as the simplified Bishop
method. The above relative costs are slightly
affected by the width of slice and the tolerance
used in solving the nonlinear factor of safety
equations.
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Conclusions

(1) The factor of safety equations for all
methods of slices considered can be written
in the same form if it is recognized whether
moment and (or) force equilibrium is ex-
plicitly satisfied. The normal force equation is
of the same form for all methods with the
exception of the ordinary method. The method
of handling the interslice forces differentiates
the normal force equations.

(2) The analytical aspects of slope stability
can be viewed in terms of one factor of safety
equation satisfying overall moment equilibrium
and another satisfying overall force equilibrium
for various A values. Then each method be-
comes a special case of the best-fit factor of
safety lines.

(3) The best-fit regression solution and
the Newton—Raphson solution give the same
factors of safety. They differ only in the
manner in which the equations of statics are
utilized.

(4) The best-fit regression solution is readily
comprehended. It also gives a complete under-
standing of the variation of factor of safety
with respect to A.
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