

UNIVERSIDAD DE CHILE FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS DEPARTAMENTO DE INGENIERÍA CIVIL

Prof. Luis Paredes

AGOSTO 2010

Falla por corte en suelos

Los suelos suelen fallar por corte

En la falla, la tensión de corte a lo largo de la superficie de falla (resistencia al corte movilizada) alcanza la resistencia al corte.

Suelos suelen fallar por corte

Falla por corte en suelos Suelos suelen fallar por corte

En la falla, la resistencia al corte a lo largo de la superficie de falla (resistencia al corte movilizada) alcanza la resistencia al corte.

Mecanismo de falla por corte

<u>Superficie de</u> <u>falla</u>

Las particulas de suelo deslizan unas sobre otras a lo largo de la superficie de falla.

Las partículas individuales no se fragmentan.

Mecanismo de falla por corte

En la falla, las tensiones de corte a lo largo de la superficie de falla (τ) alcanzan la resistencia al corte (τ_f).

 $\tau_{\rm f}$ es la tensión máxima de corte que el suelo puede asumir antes de la falla, bajo la tensión normal σ .

σ

σ

 $\tau_{\rm f}$ es la maxima tensión de corte que el suelo puede tomar sin fallar, bajo la tensión efectiva normal σ '.

Criterio de Falla de Mohr-Coulomb

La Resistencia al Corte consta de dos componentes: cohesiva y friccional.

τ

c y \u03c6 son los par\u00e1metros de resistencia al corte

A mayores valores, más alta es la resistencia al corte

Es la envolvente de ruptura de un suelo.

Se ha determinado que la envolvente y los parámetros dependen fuertemente de los siguientes factores:

Cohesión

- * Contenido de humedad
- Historial de esfuerzos previos (en arcillas preconsolidadas, c diferente de cero en todos los ensayos CD)
- * Composición mineralógica

Angulo de fricción interna

- * Metodo de ensayo (UU,CU, CD)

- Tamaño de particulas y forma (mayores tamaños y aumento de angularidad tiende a incrementar \u00f8)
- * Densidad (aumento de densidad en el orden de solo 0,05 gr/cm3 incrementa ϕ en dos a tres grados)
- * Composición mineral (efectos inciertos)

Círculo de Mohr de tensiones

<u>Resolviendo fuerzas en direcciones $\sigma y \tau$,</u>

$$\tau = \frac{\sigma_{1}^{'} - \sigma_{3}^{'}}{2} Sin2\theta$$

$$\sigma' = \frac{\sigma_{1}^{'} + \sigma_{3}^{'}}{2} + \frac{\sigma_{1}^{'} - \sigma_{3}^{'}}{2} Cos2\theta$$

$$\tau^{2} + \left(\sigma - \frac{\sigma_{1}^{'} + \sigma_{3}^{'}}{2}\right)^{2} = \left(\frac{\sigma_{1}^{'} - \sigma_{3}^{'}}{2}\right)^{2}$$

Círculo de Mohr de tensiones

$$\tau^2 + \left(\sigma - \frac{\sigma_1 + \sigma_3}{2}\right)^2 = \left(\frac{\sigma_1 - \sigma_3}{2}\right)^2$$

Circulo de Mohr de tensiones

Circulos de Mohr & Envolvente de falla

 $X \sim falla$

Circulos de Mohr & Envolventes de Falla

Circulos de Mohr & Envolventes de Falla

Orientación del Plano de Falla

Orientación del plano de Falla

Círculos de Mohr en terminos de esfuerzos totales & efectivos

Círculos de Mohr en terminos de esfuerzos totales & efectivos

Criterio de Falla de Mohr Coulomb con círculo de tensiones de Mohr

$$\left[c'Cot\phi' + \left(\frac{\sigma_1' + \sigma_3'}{2}\right)\right]Sin\phi' = \left(\frac{\sigma_1' - \sigma_3'}{2}\right)$$

Criterio de Falla de Mohr Coulomb con círculo de tensiones de Mohr

$$\left[c'Cot\phi' + \left(\frac{\sigma_1' + \sigma_3'}{2}\right)\right]Sin\phi' = \left(\frac{\sigma_1' - \sigma_3'}{2}\right)$$

$$(\sigma_1' - \sigma_3') = (\sigma_1' + \sigma_3') Sin \phi' + 2c' Cos \phi$$

$$\sigma_{1}'(1 - Sin\phi') = \sigma_{3}'(1 + Sin\phi') + 2c'Cos\phi'$$

$$\sigma_{1}' = \sigma_{3}'\frac{(1 + Sin\phi')}{(1 - Sin\phi')} + 2c'\frac{Cos\phi'}{(1 - Sin\phi')}$$

$$\sigma_{1}' = \sigma_{3}'Tan^{2}\left(45 + \frac{\phi'}{2}\right) + 2c'Tan\left(45 + \frac{\phi'}{2}\right)$$

Determinación de parametros de resistencia al corte de suelos (c, ϕ o c', ϕ ')

Ensayos de laboratorio en probetas obtenidas de muestras representativas no perturbadas

Los ensayos de laboratorio más empleados son,

1.Corte directo 2.Compresión Triaxial

Otros ensayos de laboratorio, Corte directo simple, anillo torsional, triaxial plano, veleta de laboratorio, cono de laboratorio

- 1. Veleta man Jal
- 2. Veleta
- 3. Penetrometro manual
- 4. Cono dinámico
- 5. Presiometro Menard
- 6. Penetrometro de cono estatico

Ensayos in situ

- 7. Ensayo SPT penetración estandard
- 8. Corte directo

Ensayos de Laboratorio

Paso previo:

<u>obtención de muestras =></u> <u>Campaña de exploración Geotecnica</u>

Ensayos de Laboratorio

Paso previo:

<u>Obtención de muestras =></u> <u>Campaña de exploración Geotecnica =></u> <u>Programación de Ensayos – Estudio de</u> <u>Antecedentes, antes de definir campaña</u>

Ensayos previos, Caracterización de suelos y propiedades Indice

Antes de muestreo: Inspección de calicatas y descripción estratigráfica (revisión registros sondajes)

Antes de construcción

Despues y durante construction

Ζ

Ensayo de Corte Directo

Caja de corte directo

Ensayo de corte Directo

Es el más aplicado para ensayos consolidados drenados, especialmente en suelos granulares como arenas o arcillas rígidas

Preparación de muestra de arena

Componentes equipo

Preparacion de probeta de arena

Corte directo

Placa de presión

Montaje placa

Corte directo

Paso 1 : Carga vertical y consolidación

Paso 2: Desplazamiento de caja a velocidad constante
Corte Directo

Corte Directo

Analisis de resultados de ensayes

Carga normal (P)

 σ = Presion normal = -----

Area de seccion transversal de probeta

Corte Directo en arenas

Relación tensión-deformación

Corte Directo en Arenas

Presión Normal, σ

Ensayos corte directo en arenas

La arena es no cohesiva, de allí c = 0

Los ensayos de corte directo son drenados y la presión de poros disipada, de allí u = 0

Por lo tanto,

 $\phi' = \phi \qquad \mathbf{y} \qquad \mathbf{c}' = \mathbf{c} = \mathbf{0}$

Corte Directo en arcillas

En el caso de arcillas, el desplazamiento horizontal debe ser aplicado a una velocidad muy baja para permitir la disipación de la presión de poros (de alli, un ensaye puede tomar varios días)

Envolvente de falla para arcilla de ensaye de corte directo drenado

Interacción suelo – estructura y corte directo

En muchos casos de diseño de fundacioness y estructuras de retención, se necesita determinar el angulo de fricción interna suelo-estructura (hormigón, acero o madera)

$$\tau_f = c_a + \sigma' \tan \delta$$

Siendo,

 $c_a = adhesion,$

 δ = angulo de fricción interna

Ventajas de equipo de Corte Directo

- Debido al reducido espesor de la probeta, se puede drenar rapidamente
- **D** Puede ser empleado para determinar parametros de interfaces
- Probetas de arcilla pueden ser orientadas a lo largo de su plano de debilidad o un plano de falla identificado

Desventajas de equipo de corte directo

- Falla ocurre a lo largo de un plano de falla predeterminado
- ❑ Area de la superficie de deslizamiento cambia a medida que transcurre el ensaye
- Distribución del esfuerzo de corte no uniforme a lo largo de la superficie de falla

Resultado típico corte directo Probeta 60 x 60

Equipos de corte directo

Equipos corte directo

Compresión Triaxial

Ensaye Compresión Triaxial

Preparación probeta (muestra no perturbada)

Tubo muestreador

Extractor muestras

Compresión Triaxial

Preparación probeta (muestra no perturbada)

Extremos son cortados y afinados Colocación de la probeta en celda triaxial

Compresión triaxial

Preparación probeta (muestra no perturbada)

Probeta es cubierta con membrana de latex y sellada

La celda es llenada completamente de agua

Compresión triaxial

Preparación probeta (muestra no perturbada)

Anillo de carga para medir la carga desviadora

Dial deformaciones para medir desplazamiento vertical en algunos ensayes

Ensayo Consolidado - drenado(CD)

Tensión Desviadora (q or $\Delta \sigma_d$) = $\sigma_1 - \sigma_3$

Ensayo Consolidado - drenado (Ensayo CD)

Cambio de Volumen de muestra durante consolidación

Ensayo Consolidado- drenado (Ensayo CD) Relaciones tensión-deformación durante el corte

Ensayos CD

Como u = 0 => $\sigma = \sigma'$

Luego $c = c' = \phi'$

Se suelen denotar como $c_d y \phi_d$

Arcillas Normalmente consolidadas se suelen denotar NC y las arcillas pre-consolidadas OC

Ensayos CD Envolventes de falla

Para arenas y arcillas NC, $c_d = 0$

De allí, un ensayo CD podría ser suficiente para determinar ϕ_d para arenas o arcillas NC

Ensayos CD

Envolventes de falla

Para arcillas OC, $c_d \neq 0$

Algunas aplicaciones practicas de análisis CD para arcillas

1. Terraplén construido muy lentamente, en niveles sobre una arcilla muy blanda

2. Presa de tierra con infiltración en régimen

τ = Resistencia al corte drenada de nucleo de arcilla

3. Excavación o talud natural en arcilla

 τ = resistencia al corte drenada

Nota: ensayo CD simula la condición de largo plazo in situ. Así, $c_d y \phi_d$ deben ser usadas para evaluar el comportamiento en el largo plazo del suelo

Ensaye Consolidado – No Drenado (CU)

Cambia el Volumen de la muestra durante la consolidación

Ensaye Consolidado- No drenado (CU)

Relación tensión-deformación durante el corte

Ensayes CU

Parámetros de resistencia al corte en terminos de tesniones totales C_{cu} y \u03c6_{cu} En terminos de tensiones efectivas son c´y ¢´

Luego

De alli, un ensaye CU podría ser suficiente para determinar ϕ_{cu} y $\phi'(= \phi_d)$ en arenas o arcillas NC
Algunas aplicaciones prácticas de análisis CU para arcillas

1. Terraplen construido rápidamente sobre depósito de arcilla blanda

Algunas aplicaciones prácticas de análisis CU para arcillas

2. Vaciado rápido de embalse con presa de tierra

τ = Resistencia al corte no drenada de arcilla del nucleo

Algunas aplicaciones prácticas de análisis CU para arcillas

3. Construcción rápida de terraplén sobre ladera natural

 τ = Resistencia al corte no drenada

Nota: Parametros en tensiones totales de ensayes CU ($c_{cu} y \phi_{cu}$) pueden ser usados para problemas de estabilidad, donde Suelos han llegado a consolidarse y están en equilibrio con el estado de esfuerzos existentes; Luego, por alguna razón se aplican rapidamente esfuerzos adicionales lo que ocurre sin drenaje

Ensaye No consolidado No Drenado (ensaye UU)

Analisis de datos

Condición Inicial probeta

Volumen inicial de la probeta = $A_0 \times H_0$

Volumen de la probeta durante corte = $A \times H$

Como el ensaye es efectuado bajo condición no drenada,

 $A \times H = A_0 \times H_0$ $A \times (H_0 - \Delta H) = A_0 \times H_0$ $A \times (1 - \Delta H/H_0) = A_0$

$$A = \frac{A_0}{1 - \mathcal{E}_z}$$

Ensaye No Consolidado No Drenado (Ensaye UU)

Paso 1: Inmediatamente despues del muestreo

Ensaye No Consolidado No Drenado (Ensaye UU)

Ensaye No Consolidado No Drenado (Ensaye UU)

Incremento total de presión de poros en cualquier etapa, Au

 $\Delta \mathbf{u} = \Delta \mathbf{u}_{c} + \Delta \mathbf{u}_{d}$

$$\Delta \mathbf{u} = \mathbf{B} \left[\Delta \sigma_3 + \mathbf{A} \Delta \sigma_d \right]$$

 $\Delta \mathbf{U} = \mathbf{B} \left[\Delta \sigma_3 + \mathbf{A} (\Delta \sigma_1 - \Delta \sigma_3) \right] \leftarrow \begin{array}{l} \text{Ecuación} & \text{de} \\ \text{presión de poros} \\ \text{de Skempton} \end{array}$

Ensaye No Consolidado No Drenado (Ensaye UU) Derivación de ecuación de presión de poros de Skempton

Derivación de ecuación de presión de poros de Skempton

Paso 1 : Incremento de tensiones isotropicas

Incremento de presión efectiva en cada dirección = $\Delta \sigma_3 - \Delta U_c$

Derivación de la ecuación de presión de poros de Skempton

Valores típicos del parámetro B

Typical relationship between B and degree of saturation.

Valores Típicos del parámetro A

En arcillas altamente sensitivas puede ocurrir colapso de la estructura de suelos debido a la generación de altas presiones de poros

SENSIBILIDAD DE ARCILLAS

Muchas arcillas pierden parte de su resistencia y rigidez cuando son remoldeadas, debido a la reorientación de particulas a posiciones menos favorables. Terzaghi la definió como la razón entre la resistencia no perturbada y la resistencia perturbada. Suele emplearse el ensaye de compresión no confinada.

Skempton - Bjerrum

Sensibilidad	Clasificación
<2	Insensible
2-4	Moderadamente sensible
4-8	Sensible
8-16	Muy sensible
16-32	Levemente rápida
32-64	Mediana rapidez
>64	rápida

Valores típicos de parámetro A

Durante el incremento de la tensión principal mayor la presión de poros puede llegar a ser negativa en arcillas muy preconsolidadas debido a la dilatación de la probeta

Valores Típicos del parametro A

Typical relationship between A at failure and overconsolidation

Ensaye No Consolidado – No Drenado (Ensaye UU)

El círculo de Mohr en términos de tensiones efectivas no depende de la presión de cámara.

De allí, obtenemos un sólo círculo de <u>Mohr en términos de tensiones</u> <u>efectivas para diferentes presiones de cámara</u>

Círculos de Mohr en terminos de tesniones totales

Ensaye No Consolidado – No Drenado (Ensaye UU)

Efecto del grado de saturación en la envolvente de falla

Algunas aplicaciones prácticas de analisis UU para arcillas

1. Terraplén construido rapidamente sobre un depósito de arcilla blanda

Algunas aplicaciones practicas de análisi UU para arcillas

2. Presa de tierra construida rapidamente sobre arcilla blanda sin cambio en contenido de humedad de ella

τ = Resistencia al corte no drenada de nucleo de arcilla

Algunas aplicaciones prácticas de Analisis UU para arcillas

3. Fundación construida rapidamente sobre deposito de arcilla

Nota: Ensayes UU simulan la condición de corto plazo en terreno. Así, c_u puede ser usada para analizar el comportamiento de suelos en el corto plazo

La presión de confinamiento es cero en el ensaye UC

Ensaye de Compresión No Confinada (Ensaye UC)

Nota: Teoricamente $q_u = c_u$, sin embargo en el caso q_u < c_u debido a la falla prematura de la probeta

Invariantes de tensiones (*p* y *q*)

p y *q* pueden emplearse para expresar la variación del estado tensional de una probeta durante el ensaye triaxial

Invariantes de tensiones (p y q)

Envolvente de falla de Mohr Coulomb en términos de invariantes de tensiones

Trayectorias de tensiones para ensayes Triaxiales CD

Trayectorias de tensiones para ensayes triaxiales CU

Otros ensayes de laboratorio

Corte Directo Simple

Ensaye de Anillo Torsional

Ensaye Triaxial Plano

Otros ensayes de Laboratorio

Corte Directo Simple

Ensaye de Anillo Torsional

Ensaye Triaxial Plano

Ensaye Corte Directo Simple

Otros ensayes de Laboratorio

Ensaye Corte Directo Simple

Ensaye de Anillo Torsional

Ensaye Triaxial plano

Ensaye de Anillo Torsional

Preparación de la muestra anular no perturbada es muy dificil. Por ende, generalemente se emplean muestras remoldeadas

Direct simple shear test

Torsional ring shear test

Ensaye Triaxial Plano

Ensaye Triaxial Plano

Ensayes de Corte In situ

U Veleta
Torvena
Penetrometro
Presiometro

Penetrometro de Cono estatico, PCPT)

Standard Penetration Test, SPT

Para resistencia al corte no drenada (C_u) y sensibilidad de arcillas blandas

Como el ensaye es rápido se espera una condición no drenada(UU)

$$T = M_s + M_e + M_e = M_s + 2M_e$$

M_e – Asumiendo una distribución uniforme de resistencia al corte

$$M_e = \int_0^2 (2\pi r dr) \cdot C_u r$$

$$M_{e} = 2\pi C_{u} \int_{0}^{\frac{d}{2}} r^{2} dr = 2\pi C_{u} \left[\frac{r^{3}}{3} \right]_{0}^{\frac{d}{2}}$$

$$M_e = \frac{2\pi C_u}{3} \left[\frac{d^3}{8} \right] = \frac{\pi C_u d^3}{12}$$

$$T = M_s + M_e + M_e = M_s + 2M_e$$

$$C_u = \frac{T}{\pi \left(\frac{d^2h}{2} + \frac{3d^3}{20}\right)}$$

Sensibilidad= resist peak/resist última

Corrección de resistencia al corte de veleta

Bjerrum (1974) propuso corregir los valores de terreno, C_u en aras de la seguridad de los diseños.

$$C_{u(diseño)} = \lambda C_{u(veleta)}$$

Con, λ = factor de correccion = 1.7 – 0.54 log (IP) IP = Indice plasticidad

Torvena

Penetrometro

Entrega resistencia a compresión no confinada (q_u) por medio de resorte calibrado.

Swedish Fall Cone (suitable for very soft to soft clays)

 $C_u \propto Mass of the cone$

∞ 1/(penetration)²

The test must be calibrated

Presiómetro

Penetrometro estatico de cono

Aquellos que pueden medir presiones de poros se les llama piezoconos

Standard Penetration Test, SPT

Existen diversas coreelaciones (c, ϕ , ect) para N

Arenas, granos redondeados	<pre></pre>
Suelta	27 - 30
Media	30 - 35
Densa	35 - 38
Arenas granos angulares	
Suelta	30 - 35
Media	35 - 40
Densa	40 - 45
Grava con algo de arena	34 - 48
Limos	26 - 35
Arcillas normalmente	
consolidadas	20 - 30

Standard Penetration Test, SPT

SPT (Manual operation)

Correlaciones para resistencia al corte

Para arcillas NC, la resistencia al corte no drenada (c_u) se incrementa con la presión efectiva, σ'_0

"Para arcillas NC, el ángulo de fricción efectivo (φ') se relaciona con el IP según:

 $Sin\phi' = 0.814 - 0.234\log(IP)$ Kenny (1959)

Resistencia al corte de suelos parcialmente saturados

En las secciones previas se abordó la resistencia al corte de suelos saturados. Sin embargo, en algunos casos, será necesario estudiar suelos no saturados.

Resistencia al corte de suelos parcialmente saturados

Bishop (1959) propuso una ecuación para la resistencia al corte de suelos no saturados

$$\tau_f = c' + [(\sigma_n - u_a) + \chi(u_a - u_w)] \tan \phi'$$

Donde,

- $\sigma_n u_a$ = Tensión normal neta
- $u_a u_w =$ Succion

χ= parametro dependiente del grado de saturación

(χ = 1 para suelos saturados y 0 para suelos secos)

Fredlund et al (1978) modificó dicha relación

$$\tau_f = c' + (\sigma_n - u_a) \tan \phi' + (u_a - u_w) \tan \phi^b$$

Donde,

 $tan\phi^{b}$ = Tasa de aumento de la resistencia al corte con la succión

Resistencia al corte de suelos parcialmente saturados

De allí, la resistencia al corte de suelos no saturados es mayor que la de los saturados debida a la succión

