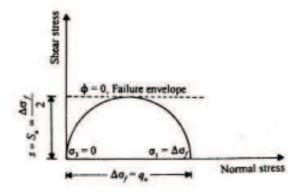

1. Ensayo de compresión no confinada (CNC).


El objetivo de este ensayo es obtener de manera simple y económica la resistencia al corte de una muestra de suelo cohesivo.

Suponiendo que la tensión horizontal (σ 3) es cero y que el ángulo de fricción interna Φ es cero, mediante la construcción del círculo de Mohr se obtiene la resistencia al corte. Sin embargo, estás suposiciones son ciertas en la medida que se realice adecuadamente la obtención y manipulación de la muestra hasta el momento en que se ensaya. Aún así, es difícil asegurar que las suposiciones mencionadas se cumplan en un 100%.

El ensayo consiste en someter a una muestra cilíndrica de suelo cohesivo a un esfuerzo vertical hasta la rotura, midiendo para cada incremento de deformación la carga.

- Gráfico tensión vertical v/s deformación unitaria.
- Gráfico del círculo de Mohr.
- Resistencia al corte del suelo.
- Caracterización del suelo a partir de la sensitividad.

Comportamiento de la arcilla	Rango de variación de sensibilidad
Insensible ó que no se ve afectada cuando se la remoldea	S < 2
Moderadamente sensible	2 < 5 < 4
Sensible	4 < S < 8
Muy sensible	8 < S < 16
Ultrasensible. Estas generalmente se convierten en líquidos viscosos (quick)	S > 16

Formulas.

Deformación unitaria.

$$\epsilon = \frac{\Delta L}{L_0}$$

Donde:

 ΔL : Deformación axial de la muestra (mm).

 L_0 : Longitud inicial de la muestra (mm).

El esfuerzo sobre la muestra se calcula como:

$$\sigma = \frac{P}{A'}$$

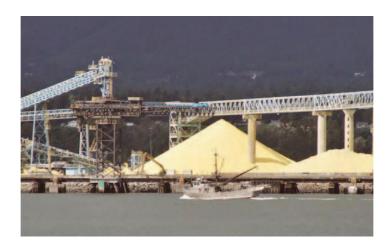
Donde:

A': Área de la sección trasversal para la correspondiente carga P.

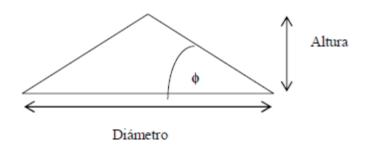
P: Carga aplicada.

Debido a que el área trasversal de la muestra aumenta a mediad que se deforma axialmente, esta debe ser corregida para cada deformación axial, esta se calcula como:

$$A' = \frac{A_0}{1 - \varepsilon}$$

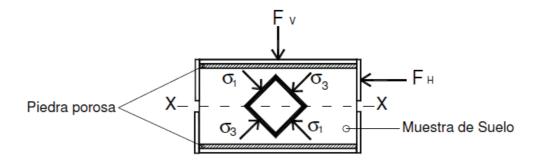

Donde:

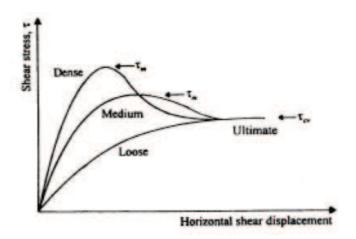
 A_0 = Área inicial.

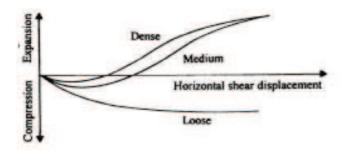

 ε = deformación unitaria.

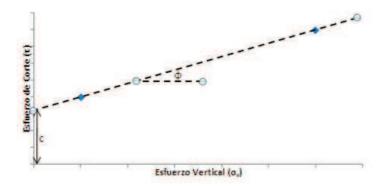
2. Ángulo de fricción en reposo.

Corresponde al ángulo en que el suelo (arena) se mantiene en reposo. Denominado también ángulo de talud natural.

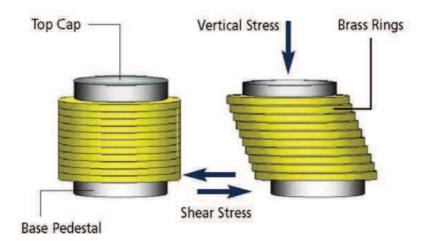

Esquemáticamente.


- Ángulos registrados.
- Comentarios acerca de las diferencias entre ángulos obtenidos.


3. Ensayo de corte directo.


Este ensayo induce una falla a través de un plano predeterminado. Sobre este plano actúan dos fuerzas, uno normal a la superficie y otro cortante horizontal a la superficie. Este ensayo permite obtener de una manera rápida los parámetros de resistencia del suelo.

- Gráfico de tensión de corte v/s deformación horizontal.
- Gráfico deformación vertical v/s horizontal.
- Gráfico de la envolvente de falla.



4. Ensayo corte simple.

Este ensayo consiste en someter una muestra de suelo a una deformación angular. Esto se logra confinando la muestra de suelo con anillos rígidos los cuales pueden deslizar entre sí. La muestra se somete a una carga vertical constante y luego se aplica un esfuerzo de corte en la base de la probeta. Este ensayo reproduce de manera más real el comportamiento sísmico de los suelos.

- Gráfico de tensión de corte v/s deformación horizontal.
- Gráfico deformación vertical v/s horizontal.
- Gráfico de la envolvente de falla.
- Gráficos análogos a los del corte directo.