
Glamour

Chapter 1

Glamour

Browsers are a crucial instrument to understand complex systems or mod-
els. A browser is a tool to navigate and interact with a particular domain.
Each problem domain is accompanied by an abundance of browsers that
are created to help analyze and interpret the underlying elements. The is-
sue with these browsers is that they are frequently (re)written from scratch,
making them expensive to create and burdensome to maintain. While many
frameworks exist to ease the development of user interfaces in general, they
provide only limited support to simplifying the creation of browsers.

Glamour is a dedicated framework to describe the navigation flow of
browsers. Thanks to its declarative language, Glamour allows one to quickly
define new browsers for their data.

In this chapter we will first detail the creation of some example browsers
to have an overview of the Glamour framework. In a second part, we will
jump into details.

1.1 Installation and first browser

To install Glamour on your Pharo image execute the following code:

Jannik Ii cannot load this code in PharoCore 1.3. We need a stable versionJ Alex

IStrange, I just tried and it works with a 13299J Jannik Iok, I should try again. But I am not

sure that we must have loadDefault. We need a fixed version, like that, the source code will work in

3 years.J Andrew IWe will check this before publishing the bookJ

Gofer new
squeaksource: 'Glamour';
package: 'ConfigurationOfGlamour';
load.

(Smalltalk at: #ConfigurationOfGlamour) perform: #loadDefault.

Glamour

2 Glamour

Figure 1.1: File finder as a Glamour implementation.

Now that Glamour is installed, we are ready to build our first browser
by using Glamour’s declarative language. What about building an Apple’s
Finder-like file browser? This browser is built using the Miller Columns
browsing technique, displaying hierarchical elements in a series of columns.
The principle of this browser is that a column always reflects the content of
the element selected in the previous column, the first column-content being
chosen on opening.

In our case of navigating through the file systems, the browser displays
a list of a particular directory’s entries (each files and directories) in the first
column and then, depending on the user selection, appending another col-
umn (see Figure 1.1):

• if the user selects a directory, the next column will display the entries
of that particular directory;

• if the user selects a file, the next column will display the content of the
file.

This may look complex at first because of the recursion. However, Glam-
our provides an intuitive way of describing Miller Columns-based browsers.
According to the Glamour’s terminology this particular browser is called
finder, referring to the Apple’s Finder found on Mac OS X. Glamour offers
this behavior with the class GLMFinder. This class has to be instantiated and
initialized to properly list our domain of interest, the files:

| browser |
browser := GLMFinder new.

1.1 Installation and first browser 3

browser list
display: #children.

browser openOn: FSFilesystem disk root.

Note that at that stage selecting a plain file raises an error. We will under-
stand why and how to fix that situation soon.

From this small piece of code you get a list of all entries (either files or
directories) found at the root of your file system, each line representing either
a file or a directory. If you click on a directory, you can see the entries of
this directory in the next column. The filesystem navigation facilities are
provided by the Filesystem framework, thoroughly discussed in Chapter ??.

This code has some problems however. Each line displays the full print
string of the entry and this is probably not what you want. A typical user
would expect only names of each entry. This can easily be done by customiz-
ing the list:

browser list
display: #children;
format: #basename.

This way, the message basename will be sent to each entry to get its name.
This makes the files and directores much easier to read by showing the file
name instead of its fullname.

Another problem is that the code does not distinguish between files and
directories. If you click on a file, you will get an error because the browser
will send it the message children that it does not understand. To fix that, we
just have to avoid displaying a list of contained entries if the selected element
is a file:

browser list
when: #isDirectory;
display: #children;
format: #basename.

This works well but the user can not distinguish between a line represent-
ing a file or a directory. This can be fixed by, for example, adding a slash at
the end of the file name if it is a directory:

browser list
when: #isDirectory;
display: #children;
format: #basenameWithIndicator.

The last thing we might want to do is to display the contents of the entry
if it is a file. The following gives the final version of the file browser:

4 Glamour

| browser |
browser := GLMFinder new
variableSizePanes;
title: 'Find your file';
yourself.

browser list
when: #isDirectory;
display: [:each | [each children sorted]

on: Exception
do: [Array new]];

format: #basenameWithIndicator.

browser text
when: #isFile;
display: [:entry | [entry readStream contents]

on: Exception
do: ['Can''t display the content of this file']].

browser openOn: FSFilesystem disk root.

This code extends the previous one with variable-sized panes, a title as
well as directory entry sorting, access permission handling and file content
reading. The resulting browser is presented in Figure 1.1.

This short introduction has just presented how to install Glamour and
how to use it to create a simple file browser.

1.2 Presentation, Transmission and Ports

This section gives a realistic example and details the Glamour framework.

Running example

In the following tutorial we will be creating a simple Smalltalk class nav-
igator. Such navigators are used in many Smalltalk browsers and usually
consist of four panes, which are abstractly depicted in figure Figure 1.2.

The class navigator functions as follows: Pane 1 shows a list or a tree of
packages, each package containing classes, which make up the organizational
structure of the environment. When a package is selected, pane 2 shows a
list of all classes in the selected package. When a class is selected, pane 3
shows all protocols (a construct to group methods also known as method cat-
egories) and all methods of the class are shown on pane 4. When a protocol
is selected in pane 3, only the subset of methods that belong to that protocol
are displayed on pane 4.

1.2 Presentation, Transmission and Ports 5

Figure 1.2: Wireframe representation of a Smalltalk class navigator.

Starting the Browser

We build the browser iteratively and gradually introduce new constructs of
Glamour. To start with, we simply want to open a new browser on the list of
packages. Because the example is going to involve more code than the previ-
ous file browser, we are going to implement the code browser in a dedicated
class.

The first step is then to create the class with some initial methods:

Object subclass: #PBE2CodeNavigator
instanceVariableNames: 'browser'
classVariableNames: ''
poolDictionaries: ''
category: 'PBE2-CodeBrowser'

PBE2CodeNavigator class>>open
↑ self new open

PBE2CodeNavigator>>open
self buildBrowser.
browser openOn: self organizer.

PBE2CodeNavigator>>organizer
↑ RPackageOrganizer default

PBE2CodeNavigator>>buildBrowser
browser := GLMTabulator new.

Executing PBE2CodeNavigator open opens a new browser with the text
“a RPackageOrganizer” and nothing else. Note that we now use the
GLMTabulator class to create our browser. A GLMTabulator is an explicit browser
that allows us to place panes in columns and rows.

6 Glamour

We now extend our browser with a new pane to display a list of packages.
Jannik Idoes it work with RPackage or Categories or both ?J Alex IIt works with RPAckage only,

there is a ref to RPackageOrganizerJ Jannik Ithis is a problem, because RPackage is not in 1.3

by defaultJ Alex II think PBE2 should be based on Pharo 1.4J

PBE2CodeNavigator>>buildBrowser
browser := GLMTabulator new.
browser
column: #packages.

browser transmit to: #packages; andShow: [:a | self packagesIn: a].

PBE2CodeNavigator>>packagesIn: constructor
constructor list
display: [:organizer | organizer packageNames sorted];
format: #asString

Glamour browsers are composed in terms of panes and the flow of data
between them. In our browser we currently have only one pane displaying
packages. The flow of data is specified by means of transmissions. These are
triggered when certain changes in the browser graphical user interface occur,
such as an item selection in a list. We make our browser more interesting by
displaying classes contained in the selected package (see Figure 1.3).

PBE2CodeNavigator>>buildBrowser
browser := GLMTabulator new.
browser
column: #packages;
column: #classes.

browser transmit to: #packages; andShow: [:a | self packagesIn: a].
browser transmit from: #packages; to: #classes; andShow: [:a | self classesIn: a].

PBE2CodeNavigator>>classesIn: constructor
constructor list
display: [:packageName | (self organizer packageNamed: packageName)

definedClasses]

The listing above shows almost all of the core language constructs of
Glamour. Since we want to be able to reference the panes later, we give them
the distinct names “packages” and “classes” and arrange them in columns
using the column: keyword. Similarly, a row: keyword exists with which panes
can be organized in rows.

The transmit:, to: and from: keywords create a transmission—a directed con-
nection that defines the flow of information from one pane to another. In
this case, we create a link from the packages pane to the classes pane. The
from: keyword signifies the origin of the transmission and to: the destination.

1.2 Presentation, Transmission and Ports 7

Figure 1.3: Two-pane browser. When a package is selected in the left pane,
the contained classes are shown on the right pane.

If nothing more specific is stated, Glamour assumes that the origin refers to
the selection of the specified pane. We show how to specify other aspects of
the origin pane and how to use multiple origins below.

Finally, the andShow: specifies what to display on the destination pane
when the connection is activated or transmitted. In our example, we want to
show a list of the classes that are contained in the selected package.

The display: keyword simply stores the supplied block within the presen-
tation. The blocks will only be evaluated later, when the presentation should
be displayed on-screen. If no explicit display block is specified, Glamour at-
tempts to display the object in some generic way. In the case of list presenta-
tions, this means that the displayString message is sent to the object to retrieve
a standard string representation. As we have previously seen, format: is used
to change this default behavior.

Along with display:, it is possible to specify a when: condition to limit the
applicability of the connection. By default, the only condition is that an item
is in fact selected, i.e., that the display variable argument is not null.

Another Presentation

So far, packages are visually represented as a flat list. However, packages
are naturally structured with the corresponding class category. To exploit
this structure, we replace the list by a tree presentation for packages:

PBE2CodeNavigator>>packagesIn: constructor
constructor tree
display: [:organizer | (self rootPackagesOn: organizer) asSet sorted];
children: [:rootPackage :organizer | (self childrenOf: rootPackage on: organizer)

sorted];
format: #asString

PBE2CodeNavigator>>classesIn: constructor

8 Glamour

constructor list
when: [:packageName | self organizer includesPackageNamed: packageName];
display: [:packageName | (self organizer packageNamed: packageName)

definedClasses]

PBE2CodeNavigator>>childrenOf: rootPackage on: organizer
↑ organizer packageNames select: [:name | name beginsWith: rootPackage , '-']

PBE2CodeNavigator>>rootPackagesOn: organizer
↑ organizer packageNames collect: [:string | string readStream upTo: $-]

The tree presentation uses a children: argument that takes a selector or a
block to specify how to retrieve the children of a given item in the tree. Since
the children of each package are now selected by our tree presentation, we
have to pass only the roots of the package hierarchy to the display: argument.

At this point, we can also add Pane 3 to list the method categories (Fig-
ure 1.4). The listing below introduces no new elements that we have not
already discussed:

PBE2CodeNavigator>>buildBrowser
browser := GLMTabulator new.
browser
column: #packages;
column: #classes;
column: #categories.

browser transmit to: #packages; andShow: [:a | self packagesIn: a].
browser transmit from: #packages; to: #classes; andShow: [:a | self classesIn: a].
browser transmit from: #classes; to: #categories; andShow: [:a | self categoriesIn: a].

PBE2CodeNavigator>>categoriesIn: constructor
constructor list
display: [:class | class organization categories]

The browser resulting from the above changes is shown in figure Fig-
ure 1.4.

Multiple Origins

Adding the list of methods as Pane 4 involves slightly more machinery.
When a method category is selected we want to show only the methods that
belong to that category. If no category is selected, all methods that belong to
the current class are shown.

This leads to our methods pane depending on the selection of two other
panes, the class pane and the category pane. Multiple origins can be defined
using multiple from: keywords as shown below.

1.2 Presentation, Transmission and Ports 9

Figure 1.4: Improved class navigator including a tree to display the packages
and a list of method categories for the selected class.

PBE2CodeNavigator>>buildBrowser
browser := GLMTabulator new.
browser
column: #packages;
column: #classes;
column: #categories;
column: #methods.

browser transmit to: #packages; andShow: [:a | self packagesIn: a].
browser transmit from: #packages; to: #classes; andShow: [:a | self classesIn: a].
browser transmit from: #classes; to: #categories; andShow: [:a | self categoriesIn: a].
browser transmit from: #classes; from: #categories; to: #methods;

andShow: [:a | self methodsIn: a].

PBE2CodeNavigator>>methodsIn: constructor
constructor list
display: [:class :category |

(class organization listAtCategoryNamed: category) sorted].
constructor list
when: [:class :category | class notNil and: [category isNil]];
display: [:class | class selectors sorted];
allowNil

The listing shows a couple of new properties. First, the multiple ori-
gins are reflected in the number of arguments of the blocks that are used
in the display: and when: clauses. Secondly, we are using more than one
presentation—Glamour shows all presentations whose conditions match in
the order that they were defined when the corresponding transmission is
fired.

In the first presentation, the condition matches when all arguments are

10 Glamour

defined (not null), this is the default for all presentations. The second con-
dition matches only when the category is undefined and the class defined.
When a presentation must be displayed even in the presence of an unde-
fined origin, it is necessary to use allowNil as shown. We can therefore omit
the category from the display block.

The completed class navigator is displayed in Figure 1.5.

Figure 1.5: Complete code navigator. If no method category is selected, all
methods of the class are displayed. Otherwise, only the methods that belong
to that category are shown.

Ports

When we stated that transmissions connect panes this was not entirely cor-
rect. More precisely, transmissions are connected to properties of panes
called ports. Such ports consist of a name and a value which accommodates
a particular aspect of state of the pane or its contained presentations. If the
port is not explicitly specified by the user, Glamour uses the selection port by
default. As a result, the following two statements are equivalent:

browser transmit from: #packages; to: #classes; andShow: [:a | ...].
browser transmit from: #packages port: #selection; to: #classes; andShow: [:a | ...].

1.3 Composing and Interaction

Reusing Browsers

One of Glamour strengths is to use browsers in place of primitive presenta-
tions such as lists and trees. This conveys formidable possibilities to com-
pose and nest browsers.

1.3 Composing and Interaction 11

The subsequent example defines a class editor as shown in figure 1.6.
Panes 1 through 4 are equivalent to those described previously. Pane 5 shows
the source code of the method that is currently selected in pane 4.

Figure 1.6: Wireframe representation of a Smalltalk class editor.

A new class PBE2CodeEditor will implement this editor. An editor will del-
egate the presentation of panes 1 through 4 to the previously implemented
PBE2CodeNavigator. To achieve this, we first have to make the existing naviga-
tor return the constructed browser.

PBE2CodeNavigator>>buildBrowser
...
"new line"
↑ browser

We can then reuse the navigator in the new editor browser as shown
below.

Object subclass: #PBE2CodeEditor
instanceVariableNames: 'browser'
classVariableNames: ''
poolDictionaries: ''
category: 'PBE2-CodeBrowser'.

PBE2CodeEditor class>>open

12 Glamour

↑ self new open

PBE2CodeEditor>>open
self buildBrowser.
browser openOn: self organizer

PBE2CodeEditor>>organizer
↑ RPackageOrganizer default

PBE2CodeEditor>>buildBrowser
browser := GLMTabulator new.
browser
row: #navigator;
row: #source.

browser transmit to: #navigator; andShow: [:a | self navigatorIn: a].

PBE2CodeEditor>>navigatorIn: constructor
constructor custom: (PBE2CodeNavigator new buildBrowser)

The listing shows how the browser is used exactly like we would use a
list or other type of presentation. In fact, browsers are a type of presentation.

Evaluating PBE2CodeEditor open opens a browser that embeds the navi-
gator in the upper part and has an empty pane at the lower part. Source
code is not displayed yet because no connection has been made between
the panes so far. The source code is obtained by wiring the navigator with
the text pane: we need both the name of the selected method as well as the
class in which it is defined. Since this information is defined only within
the navigator browser, we must first export it to the outside world by using
sendToOutside:from:. For this we append the following lines to codeNavigator:

PBE2CodeNavigator>>buildBrowser
...
browser transmit from: #classes; toOutsidePort: #selectedClass.
browser transmit from: #methods; toOutsidePort: #selectedMethod.

↑ browser

This will send the selection within classes and methods to the selected-
Class and selectedMethod ports of the containing pane. Alternatively, we
could have added these lines to the navigatorIn: method in the code editor—it
makes no difference to Glamour as follows:

PBE2CodeEditor>>navigatorIn: constructor
"Alternative way of adding outside ports. There is no need to use this
code and the previous one simultaneously."

| navigator |

1.3 Composing and Interaction 13

navigator := PBE2CodeNavigator new buildBrowser
sendToOutside: #selectedClass from: #classes -> #selection;
sendToOutside: #selectedMethod from: #methods -> #selection;
yourself.

constructor custom: navigator

However, we consider it sensible to clearly define the interface on the side
of the code navigator rather than within the code editor in order to promote
the reuse of this interface as well.

We extend our code editor example as follows:

PBE2CodeEditor>>buildBrowser
browser := GLMTabulator new.
browser

row: #navigator;
row: #source.

browser transmit to: #navigator; andShow: [:a | self navigatorIn: a].
browser transmit

from: #navigator port: #selectedClass;
from: #navigator port: #selectedMethod;
to: #source;
andShow: [:a | self sourceIn: a].

PBE2CodeEditor>>sourceIn: constructor
constructor text

display: [:class :method | class sourceCodeAt: method]

We can now view the source code of any selected method and have cre-
ated a modular browser by reusing the class navigator that we had already
written earlier. The composed browser described by the listing is shown in
figure 1.7.

Actions

Navigating through the domain is essential to find interesting elements.
However, having a proper set of available actions is essential to let one to
interact with the domain. Actions may be defined and associated to a pre-
sentation. An action is a block that is evaluated when a keyboard shortcut is
pressed or when an entry in a context menu is clicked. An action is defined
via act:on: sent to a presentation:

PBE2CodeEditor>>sourceIn: constructor
constructor text
display: [:class :method | class sourceCodeAt: method];
act: [:presentation :class :method | class compile: presentation text] on: $s.

14 Glamour

Figure 1.7: Composed browser that reuses the previously described class
navigator to show the source of a selected method.

The argument passed to on: is a character that specifies the keyboard
shortcut that should be used to trigger the action when the corresponding
presentation has the focus. Whether the character needs to be combined
with a meta-key—such as command, control or alt—is platform specific and
does not need to be specified. The act: block provides the corresponding
presentation as its first argument which can be used to poll its various prop-
erties such as the contained text or the current selection. The other block
arguments are the incoming origins as defined by from: and are equivalent to
the arguments of display: and when:.

Actions can also be displayed as context menus. For this purpose, Glam-
our provides the messages act:on:entitled: and act:entitled: where the last argu-
ment is a string that should be displayed as the entry in the menu. For exam-
ple, the following snippet extends the above example to provide a context
menu entry to “save” the current method back to the class:

...
act: [:presentation :class :method | class compile: presentation text]
on: $s.
entitled: 'Save'

The contextual menu is accessible via the triangle downward-oriented
above the text pane, located on the left hand side.

1.3 Composing and Interaction 15

Multiple Presentations

Frequently, developers wish to provide more than one presentation of a spe-
cific object. In our code browser for example, we may wish to show the
classes not only as a list but as a graphical representation as well. Glamour
includes support to display and interact with visualizations created using
the Mondrian visualization engine (presented in Chapter ??). To add a second
presentation, we simply define it in the using: block as well:

PBE2CodeNavigator>>classesIn: constructor
constructor list
when: [:packageName | self organizer includesPackageNamed: packageName];
display: [:packageName | (self organizer packageNamed: packageName)

definedClasses];
title: 'Class list'.

constructor mondrian
when: [:packageName | self organizer includesPackageNamed: packageName];
painting: [:view :packageName |

view nodes: (self organizer packageNamed: packageName)
definedClasses.

view edgesFrom: #superclass.
view treeLayout];

title: 'Hierarchy'

Glamour distinguishes multiple presentations on the same pane with the
help of a tab layout. The appearance of the Mondrian presentation as embed-
ded in the code editor is shown in figure 1.8. The clause title: sets the name of
the tab used to render the presentation.

Figure 1.8: Code editor sporting a Mondrian presentation in addition to a
simple class list.

16 Glamour

Other Browsers

We have essentially used the GLMTabulator which is named after its ability
to generate custom layouts using the aforementioned row: and column: key-
words. Additional browsers are provided or can be written by the user.
Browser implementations can be subdivided into two categories: browsers
that have explicit panes, i.e.,, they are declared explicitly by the user—and
browsers that have implicit panes.

The GLMTabulator is an example of a browser that uses explicit panes. With
implicit browsers, we do not declare the panes directly but the browser cre-
ates them and the connections between them internally. An example of such
a browser is the Finder, which has been discussed in Section 1.1. Since the
panes are created for us, we need not use the from:to: keywords but can sim-
ply specify our presentations:

browser := GLMFinder new.

browser list
display: [:class | class subclasses].

browser openOn: Collection

The listing above creates a browser (shown in figure 1.9) and opens to
show a list of subclasses of Collection. Upon selecting an item from the list,
the browser expands to the right to show the subclasses of the selected item.
This can continue indefinitely as long as something to select remains.

Figure 1.9: Subclass navigator using Miller Columns style browsing.

To discover other kinds of browsers, explore the hierarchy of the
GLMBrowser class.

1.4 Chapter Summary 17

1.4 Chapter Summary

This chapter gave a short introduction to the Glamour browser framework.
Glamour is essentially used to build to build tool that enable one to navigate
and interact with an arbitrary domain, made of plain objects.

• GLMTabulator is a generic browser in which widget are ordered in
columns and rows.

• Columns are defined by successively sending column: with a symbol
name as argument. Rows are defined with row:.

• Data flows along transmissions set with transmit from: #source; to: #target.

• A transmission may have several source.

• List and text panes are obtained by sending list and text to a browser.
Content is set with display: and items are formatted with format:.

• Ports define the component interface of a browser. This enables easy
reuse and embedding.

• Interaction is defined in term of actions, defined by sending act: to a
widget.

• Glamour support multiple presentations.

• Glamour is not made to build a general purpose graphical user inter-
faces.

Note that this chapter is not meant to give an exhaustive overview of
Glamour, but is merely intended to introduce the reader to the usage and
to our intent for our approach. For a more extensive view of Glamour, its
concepts and implementation, the Moose book1 has a dedicated chapter ded-
icated.

1http://www.themoosebook.org/book

http://www.themoosebook.org/book

	Glamour
	Installation and first browser
	Presentation, Transmission and Ports
	Composing and Interaction
	Chapter Summary

