
Mondrian

Chapter 1

Mondrian

Giving a meaning to a a large amount of data is challenging without ade-
quate tools. Textual outputs are known to be limited in their expression and
interactions.

Mondrian is an agile visualization engine. It is made to visualize and
interact with any arbitrary data, defined in terms of objects and their rela-
tionships. Mondrian is commonly employed in software assessment activi-
ties. Mondrian excels at visualizing software source code. This chapter in-
troduces Mondrian’s principles and describes its expressive commands to
quickly make up your data. After its reading, you will be able to create inter-
active and visual representation.

1.1 Installation and first visualization

Mondrian is available via a Metacello configuration. Just open a workspace
and type: Jannik Iwe need a stable version before the publishingJ

Gofer new
squeaksource: 'Mondrian';
package: 'ConfigurationOfMondrian';
load.

(Smalltalk at: #ConfigurationOfMondrian) loadDefault

There are essentially two ways to work with Mondrian, either using the
easel or a view renderer. The easel is a tool in which users may interactively
and incrementally build a visualization by means of a script. The easel is par-
ticularly useful when prototyping. MOViewRenderer enables a visualization to
be programmatically built, in a non-interactive fashion. You probably want
to use this class when embedding your visualization in your application.

Mondrian

2 Mondrian

We will first use Mondrian in its easiest way, by using the easel. To open
an easel, you can either use the World menu (it should contains the entry
“Mondrian Easel”) or execute the expression:

MOEasel open.

In the easel you have just opened, you can see two panels: the one on
top is the visualization panel, the second one is the script panel. In the script
panel, enter the following code and press the generate button:

view nodes: (1 to: 20).

You should see in the top pane 20 small boxes lined up in the top left
corner. You have just rendered the numerical set between 1 and 20. Each
box represents a number. The amount of interaction you can do is quite
limited for now. You can only drag and drop a number and get a tooltip that
indicates its value. We will soon see how to define interactions. For now, let
us explore the basic drawing capabilities of Mondrian.

We can add edges between nodes that we already drawn. Add a second
line:

view nodes: (1 to: 20).
view edgesFrom: [:v | v * 2].

Each number is linked with its double. Not all the doubles are visible.
For example, the double of 20 is 400, which is not part of the visualization.
In that case, no edge is drawn.

The message edgesFrom: defines one edge per node, when possible. For
each node that has been added in the visualization, an edge is defined be-
tween this node and a node lookup from the provided block.

1.2 Visualizing the collection framework 3

Mondrian contains a number of layouts to order nodes. We use the circle
layout:

view nodes: (1 to: 20).
view edgesFrom: [:v | v * 2].
view circleLayout.

The visualization you obtain is:

In the subsequent section we will visualize software code. Visualizing
source code is often employed to discover patterns, useful when assessing
code quality.

1.2 Visualizing the collection framework

We will now visualize Smalltalk classes. In the remaining of this section, we
will intensively use the reflective capability of Pharo to introspect the collec-
tion class hierarchy. This will serve as compelling examples. Let’s visualize
the hierarchy of classes contained in the Collection framework:

view nodes: Collection withAllSubclasses.
view edgesFrom: #superclass.
view treeLayout.

4 Mondrian

We have used a tree layout to visualize Smalltalk class hierarchies. This
layout is particularly adequate since Smalltalk is single-inheritance oriented.
Collection is the root class of the Smalltalk collection framework library. The
message withAllSubclasses returns the list of Collection and its subclasses.

Classes are ordered vertically along their inheritance link. A superclass
is above its subclasses.

1.3 Reshaping nodes

Mondrian visualizes graph of objects. Each object of the domain is associated
to a graph element, a node or an edge. Graph element are not aware of their
graphical representation. Graphical aspect is given by a shape.

So far, we have solely use the default shape to represent node and edges.
The default shape of a node is a five pixels wide square and the default shape
of an edge is a thin straight gray line.

A number of dimensions defines the appearance of a shape: the width
and the height of a rectangle, the size of a line dash, border and inner colors,
for example. We will reshape the nodes of our visualization to convey more
information about the internal structure of the classes we are visualizing.
Consider:

view shape rectangle
width: [:each | each instVarNames size * 3];
height: #numberOfMethods.

view nodes: Collection withAllSubclasses.
view edgesFrom: #superclass.
view treeLayout.

Figure 1.1 shows the result. Each class is represented as a box. The
Collection class, the root of the hierarchy, is the top most box. The width of
a class tells about the amount of instance variables it has. We multiply it by
3 for more contrasting results. The height tells about the number of meth-
ods. We can immediately spot classes with many more methods than others:
Collection, SequentiableCollection, String, CompiledMethod. Classes with more vari-
ables than others are: RunArray and SparseLargeTable.

1.4 Multiple edges 5

Figure 1.1: The system complexity for the collection class hierarchy.

1.4 Multiple edges

The message edgesFrom: is used to draw one edge at most per node. A variant
of it is edges:from:toAll:. It support the definition of several edges starting from
a given node. Consider the dependencies between classes. The script:

view shape rectangle size: [:cls | cls referencedClasses size].
view nodes: ArrayedCollection withAllSubclasses.
view shape arrowedLine.
view

6 Mondrian

edges: ArrayedCollection withAllSubclasses from: #yourself toAll: #referencedClasses.
view circleLayout

The obtained visualization is given in Figure 1.2.

Figure 1.2: Direct references between classes.

String and CompiledMethod clearly shows up. These two classes contains
many references to other classes. We also see that text: makes a shape contain
a text.

Mondrian provides a whole bunch of utility methods to easily create ele-
ments. Consider the expression:

view edgesFrom: #superclass

edgesFrom: is equivalent to edges:from:to: :

view edges: Collection withAllSubclasses from: #yourself to: #superclass.

1.5 Colored shapes 7

itself equivalent to

view
edges: Collection withAllSubclasses
from: [:each | each superclass]
to: [:each | each yourself].

1.5 Colored shapes

A shape may be colored in various different way. Node shapes understand
the message fillColor:, textColor:, borderColor:. Line shapes understands color:.
Let’s color the visualization of the collection hierarchy:

view shape rectangle
size: 10;
borderColor: [:cls | ('*Array*' match: cls name)

ifTrue: [Color blue]
ifFalse: [Color black]];

fillColor: [:cls | cls isAbstractClass ifTrue: [Color lightGray] ifFalse: [Color white]].
view nodes: Collection withAllSubclasses.
view edgesFrom: #superclass.
view treeLayout.

The produced visualization is given in Figure 1.3. It easily help identi-
fying abstract classes that are not named as “Abstract” and the one that are
abstract without having an abstract method.

Figure 1.3: Abstract classes are in gray and classes with the word “Abstract”
in their name are in blue.

Similarly than with height: and width:, messages to defines color either
takes a symbol, a block or a constant value as argument. The argument is
evaluated against the domain object represented by the graphical element
(a double dispatch sends the message moValue: to the argument). The use of
ifTrue:ifFalse: is not really practicable. Utilities methods are provided for that
purpose to easily pick a color from a particular condition. The definition of
the shape can simply be:

8 Mondrian

view shape rectangle
size: 10;
if: [:cls | ('*Array*' match: cls name)] borderColor: Color blue;
if: [:cls | cls isAbstractClass] fillColor: Color lightGray.

...

The method isAbstractClass is defined on Behavior and Metaclass in Pharo.
By sending the isAbstractClass to a class return a boolean value telling us
whether the class is abstract or not. We recall that an abstract class in
Smalltalk is a class that defines or inherits at least one abstract method (i.e.,
which contain self subclassResponsibility).

1.6 More on colors

Colors are pretty useful to designate a property (e.g., gray if the class is ab-
stract). They may also be employed to represent a continuous distribution.
For example, the color intensity may indicate the result of a metric. Consider
the previous script in which the node color intensity tells about the number
of lines of code:

view interaction action: #browse.
view shape rectangle

width: [:each | each instVarNames size * 3];
height: [:each | each methods size];
linearFillColor: #numberOfLinesOfCode within: Collection withAllSubclasses.

view nodes: Collection withAllSubclasses.
view edgesFrom: #superclass.
view treeLayout.

Figure 1.4 shows the resulting picture. The message linearFillColor:within:
takes as first argument a block function that return a numerical value. The
second argument is a group of elements that is used to scale the intensity of
each node. The block function is applied to each element of the group. The
fading scales from white (0 line of code) to black (the maximum lines of code).
The maximum intensity is given by the maximum #numberOfLinesOfCode can
take for all the subclasses of Collection. Variants of linearFillColor:within: are
linearXXXFillColor:within:, where XXX is one among Blue, Green, Red, Yellow.

The visualization1 you now obtain put in relation for each class the num-
ber of methods, the number of instance variables and the number of lines of
code. Differences in size between classes might suggest some maintenance
activities.

1This visualization is named ’System complexity’, if you wish to know more about it, you
can refer to ’Polymetric Views—A Lightweight Visual Approach to Reverse Engineering’ (Trans-
actions on Software Engineering, 2003).

1.7 Popup view 9

Figure 1.4: The system complexity visualization: nodes are classes; height is
the number of lines of methods; width the number of variables; color tells
about the number of lines of code.

A color may be assigned to an object identity using identityFillColorOf:. The
argument is either a block or a symbol, evaluated against the domain object.
A color is associate to the result of the argument.

1.7 Popup view

Let’s jump back on the abstract class example. The following script indicates
abstract classes and how many abstract methods they define:

view shape rectangle
size: [:cls | (cls methods select: #isAbstract) size * 5] ;
if: #isAbstractClass fillColor: Color lightRed;
if: [:cls | cls methods anySatisfy: #isAbstract] fillColor: Color red.

view nodes: Collection withAllSubclasses.
view edgesFrom: #superclass.

10 Mondrian

view treeLayout.

Figure 1.5: Boxes are classes and links are inheritance relationships. The
amount of abstract method is indicated by the size of the class. A red class de-
fines abstract methods and a pink class inherits from an abstract class solely.

Figure 1.5 indicate classes that are abstract either by inheritance or by
defining abstract methods. Class size indicates the amount of abstract
method defined.

The popup message can be enhanced to list abstract methods. Putting the
mouse above a class does not only give its name, but also the list of abstract
methods defined in the class. The following piece of code has to be added at
the beginning:

view interaction popupText: [:aClass |
| stream |
stream := WriteStream on: String new.
(aClass methods select: #isAbstract thenCollect: #selector)
do: [:sel | stream nextPutAll: sel; nextPut: $; cr].

aClass name printString, ' => ', stream contents].
...

So far, we have seen that an element has a shape to describe its graphical
representation. It also contains an interaction that contains event handlers.
The message popupText: takes a block as argument. This block is evaluated
with the domain object as argument. The block has to return the popup text
content. In our case, it is simply a list of the methods.

In addition to a textual content, Mondrian allows a view to be popped
up. We will enhance the previous example to illustrate this point. When the
mouse enters a node, a new view is defined and displayed next to the node.

view interaction popupView: [:element :secondView |
secondView node: element forIt: [

secondView shape rectangle
if: #isAbstract fillColor: Color red;
size: 10.

secondView nodes: (element methods sortedAs: #isAbstract).
secondView gridLayout gapSize: 2

]].

1.8 Subviews 11

view shape rectangle
size: [:cls | (cls methods select: #isAbstract) size * 5] ;
if: #isAbstractClass fillColor: Color lightRed;
if: [:cls | cls methods anySatisfy: #isAbstract] fillColor: Color red.

view nodes: Collection withAllSubclasses.
view edgesFrom: #superclass.
view treeLayout.

The argument of popupView: is a two argument block. The first parameter
of the block is the element represented by the node located below the mouse.
The second argument is a new view that will be opened.

In the example, we used sortedAs: to order the nodes representing meth-
ods. This method is defined on Collection and belongs to Mondrian. To see
example usages of sortedAs:, browse its corresponding unit test:

ToolSet browse: MOViewRendererTest selector: #testSortedAs

This last example uses the message node:forIt: in the popup view to define
a subview.

1.8 Subviews

A node is a view in itself. This allows for a graph to be embedded in any
node. The embedded view is physically bounded by the encapsulating node.
The embedding is realized via the keywords nodes:forEach: and node:forIt:.

The following example approximates the dependencies between meth-
ods by linking methods that may call each other. A method m1 is connected
to a method m2 if m1 contains a reference to the selector #m2. This is a simple
but effective way to see the dependencies between methods. Consider:

view nodes: Collection withAllSubclasses forEach: [:cls |
view nodes: cls methods.
view edges: cls methods from: #yourself toAll: [:cm | cls methods select: [:rcm | cm

messages anySatisfy: [:s | rcm selector == s]]].
view treeLayout

].
view interaction action: #browse.
view edgesFrom: #superclass.
view treeLayout.

A subview contains its own layout. Interactions and shapes defined in a
subview are not accessible from a nesting node (Figure 1.6).

12 Mondrian

Figure 1.6: Large boxes are classes. Inner boxes are methods. Edges shows a
possible invocation between the two.

1.9 Forwarding events

Method of the visualization given in the previous section may be moved by
a simple drag and drop. However, it may be wished that the methods have
a fixed position, and only the classes can be drag-and-dropped. In that case,
the message forward has to be sent to the interaction. Consider:

view nodes: MOShape withAllSubclasses forEach: [:cls |
view interaction forward.
view shape rectangle

size: #numberOfLinesOfCode.
view nodes: cls methods.
view edges: cls methods from: #yourself toAll: [:cm | cls methods select: [:rcm | cm

messages anySatisfy: [:s | rcm selector == s]]].
view treeLayout

].
view interaction action: #browse.
view edgesFrom: #superclass.
view treeLayout.

Moving a method will move the class instead. It is often convenient to
drag and drop more than one element. As most operating systems, Mon-
drian offers multiple selection using the Ctrl or Cmd key. This default be-
havior is available for every nodes. Multiple selection allows for a group of
node to be moved.

1.10 Events 13

1.10 Events

Each mouse movement, click and keyboard keystroke corresponds to a par-
ticular event. Mondrian offers a rich hierarchy of events. The root of the
hierarchy is MOEvent. To associate a particular action to an event, an han-
dler has to be defined on the object interaction. On the following example,
double clicking on a class opens a code browser:

view shape rectangle
width: [:each | each instVarNames size * 5];
height: [:each | each methods size];
if: #isAbstractClass fillColor: Color lightRed;
if: [:cls | cls methods anySatisfy: #isAbstract] fillColor: Color red.

view interaction on: MOMouseDouble do: [:ann |
ann modelElement browse

].
view nodes: Collection withAllSubclasses.
view edgesFrom: #superclass.
view treeLayout.

The block handler accepts one argument: the event generated. The ob-
ject that triggered the event is obtained by sending modelElement to the event
object.

1.11 Interaction

Mondrian offers a number of contextual interaction mechanisms. The inter-
action object contains a number of keywords for that purpose. The message
highlightWhenOver: takes a block as argument. This block returns a list of the
nodes to highlight when the mouse enters a node. Consider the example:

view interaction
highlightWhenOver: [:v | {v - 1 . v + 1. v + 4 . v - 4}].

view shape rectangle
width: 40;
height: 30;
withText.

view nodes: (1 to: 16).
view gridLayout gapSize: 2.

Entering the node 5 highlights the nodes 4, 6, 1 and 9. This mechanism is
quite efficient to not overload with connecting edges. Only the information
is shown for the node of interest.

14 Mondrian

A more compelling application of highlightWhenOver: is with the following
example. A hierarchy of class is displayed on the left hand side. On the right
hand size a hierarchy of unit tests is displayed. Locating the mouse pointer
above a unit test highlights the classes that are referenced by one of the unit
test method. Consider the (rather long) script:

"System complexity of the collection classes"
view shape rectangle
width: [:each | each instVarNames size * 5];
height: [:each | each methods size];
linearFillColor: #numberOfLinesOfCode within: Collection withAllSubclasses.

view nodes: Collection withAllSubclasses.
view edgesFrom: #superclass.
view treeLayout.

"Unit tests of the package CollectionsTest"
view shape rectangle withoutBorder.
view node: 'compound' forIt: [
view shape label.
view node: 'Collection tests'.

view node: 'Collection tests' forIt: [
| testClasses |
testClasses := (PackageInfo named: 'CollectionsTests') classes reject: #isTrait.
view shape rectangle

width: [:cls | (cls methods inject: 0 into: [:sumLiterals :mtd | sumLiterals + mtd
allLiterals size]) / 100];

height: [:cls | cls numberOfLinesOfCode / 50].
view interaction

highlightWhenOver: [:cls | ((cls methods inject: #()
into: [:sum :el | sum , el allLiterals]) select: [:v | v isKindOf: Association]

thenCollect: #value) asSet].
view nodes: testClasses.
view edgesFrom: #superclass.
view treeLayout].

view verticalLineLayout alignLeft
].

The script contains two parts. The first part is the ubiquitous system com-
plexity of the collection framework. The second part renders the tests con-
tained in the CollectionsTests. The width of a class is the number of literals
contained in it. The height is the number of lines of code. Since the collec-
tion tests makes a great use of traits to reuse code, these metrics have to be
scaled down. When the mouse is put over a test unit, then all the classes of
the collection framework referenced in this class are highlighted.

1.12 Conclusion 15

Figure 1.7: Interactive system complexity.

1.12 Conclusion

Mondrian enables any graph of objects to be visualized. This chapter has
reviewed the main features of Mondrian:

• The most common way to define nodes is with nodes: and edges with
edgesFrom:, edges:from:to: and edges:from:toAll:.

• A whole range of layout is offered. The most common layouts are ac-
cessible by sending circleLayout, treeLayout, gridLayout to a view.

• A shape defines the graphical aspect of an element. Height and width
are commonly set with height: and width:, respectively.

• A shape is colored with borderColor: and fillColor:.

• Information may be popped up with popupText: and popupView:.

• A subview is defined with nodes:forEach: and node:forIt:.

• Events of a sub node is forwarded to its parent with forward and forward:.

16 Mondrian

• Highlighting is available with highlightWhenOver:, which takes a one-arg
block that has to return the list of nodes to highlight.

	Mondrian
	Installation and first visualization
	Visualizing the collection framework
	Reshaping nodes
	Multiple edges
	Colored shapes
	More on colors
	Popup view
	Subviews
	Forwarding events
	Events
	Interaction
	Conclusion

