
Some Design Patterns
Alexandre Bergel

abergel@dcc.uchile.cl
01/12/2011

Design Patterns: Elements of Reusable
Object-Oriented Software

Erich Gamma, Richard Helm, Ralph Johnson, John
M. Vlissides, 1994

Roadmap
1.Adapter Pattern

2.Proxy Pattern

3.Template Method Pattern

4.Composite Pattern

5.Singleton Pattern

6.Observer Pattern

7.Null Object Pattern

8.State Pattern

9.What Problems do Design Patterns solve?

Adapter Pattern

 How do you use a class that provide the right
features but the wrong interface?

 Introduce an adapter.

 An adapter converts the interface of a class into
another interface clients expect.

 The client and the adapted object remain independent.

 An adapter adds an extra level of indirection.

 Also known as Wrapper

Adapter Pattern

 Examples

 A WrappedStack adapts java.util.Stack, throwing an
AssertionException when top() or pop() are called on an
empty stack.

 An ActionListener converts a call to actionPerformed() to
the desired handler method.

 Consequences

 The client and the adapted object remain independent

 An adapter adds an extra level of indirection

Adapter Pattern Example

class LegacyRectangle implements Shape
{
 public void draw(int x, int y, int w, int h)
 {
 System.out.println("rectangle at (" + x + ',' + y + ") with width " + w
 + " and height " + h);
 }
}

class Rectangle implements Shape
{
 private LegacyRectangle adaptee = new LegacyRectangle();
 public void draw(int x1, int y1, int x2, int y2)
 {
 adaptee.draw(Math.min(x1, x2), Math.min(y1, y2), Math.abs(x2 - x1),
 Math.abs(y2 - y1));
 }
}

Proxy Pattern

 How do you hide the complexity of accessing objects
that require pre- or post-processing?

 Introduce a proxy to control access to the object

 Some services require special pre or post-processing.
Examples include objects that reside on a remote
machine, and those with security restrictions

 A proxy provides the same interface as the object
that it controls access to

Proxy Pattern - UML

Client
DoAction()

<<interface>>
Subject

DoAction()

Proxy
DoAction()

RealSubject

Client
DoAction()

<<interface>>
Image

DoAction()
ProxyImage

DoAction()
RealImage

delegate

Proxy Pattern - Example

public interface Image {
! public void displayImage();
}

Proxy Pattern - Example

public class ProxyImage implements Image {
private String filename;
private Image image;

! public ProxyImage(String filename){
! ! this.filename = filename;
! }
! public void displayImage() {
! ! if (image == null) {
! ! ! image = new RealImage(filename); //load only on demand
! ! }
! ! image.displayImage();
! }
}

delegate request
to real subject

Proxy Pattern - Example

public class RealImage implements Image {
! private String filename;

! public RealImage(String filename) {
! ! this.filename = filename;
! ! System.out.println("Loading "+filename);
! }

! public void displayImage() {
! ! ...
! }

}

Proxy Pattern - Example, the client

public class ProxyExample {
! public static void main(String[] args) {

! ! ArrayList<Image> images = new ArrayList<Image>();
! ! images.add(new ProxyImage("HiRes_10MB_Photo1"));
! ! images.add(new ProxyImage("HiRes_10MB_Photo2"));
! ! images.add(new ProxyImage("HiRes_10MB_Photo3"));

! ! images.get(0).displayImage();
! ! images.get(1).displayImage();
! ! images.get(0).displayImage(); // already loaded
! }

}

Proxies are used for remote object
access

 Example

 A Java “stub” for a remote object accessed by Remote Method
Invocation (RMI).

 Consequences

 A Proxy decouples clients from servers. A Proxy introduces a level
of indirection.

 Proxy differs from Adapter in that it does not change
the object’s interface

Proxy remove access example

Template Method Pattern

 How do you implement a generic algorithm, deferring
some parts to subclasses?

 Define it as a Template Method

 A Template Method factors out the common part of
similar algorithms, and delegates the rest to:

 hook methods that subclasses may extend, and

 abstract methods that subclasses must implement

Template Method Pattern

 Example

 TestCase.runBare() is a template method that calls the hook
method setUp()

 Consequences

 Template methods lead to an inverted control structure since a
parent classes calls the operations of a subclass and not the other
way around.

 Template Method is used in most frameworks to allow
application programmers to easily extend the
functionality of framework classes.

Template Method Pattern - UML

Defines the
skeleton of the
algorithm

Overrides the base
class methods

Hook methodsAbstractClass

primitiveOperation()
…
templateMethod()

ConcreteClass1

primitiveOperation()
…

ConcreteClass2

primitiveOperation()
..

Template Method Pattern - Example

 Subclasses of TestCase are expected to override
hook method setUp() and possibly tearDown()
and runTest()

public abstract class TestCase implements Test {
! ...
! public void runBare() throws Throwable {
! ! setUp();
! ! try { runTest(); }
! ! finally { tearDown(); }
! }
! protected void setUp() { }! ! ! // empty by default
! protected void tearDown() { }
! protected void runTest() throws Throwable { ... }
}

Composite Pattern

 How do you manage a part-whole hierarchy of
objects in a consistent way?

 Define a common interface that both parts and composites
implement

 Typically composite objects will implement their
behavior by delegating to their parts

Composite Pattern Example

 Composite allows you
to treat a single instance
of an object the same
way as a group of
objects.

 Consider a Tree. It
consists of Trees
(subtrees) and Leaf
objects.

Leaf

Tree

Composite Pattern Example

«interface»
Icomponent

addComponent()
removeComponent()
getChildren()

CompositeLeaf

+children

public interface IComponent {
 Collection getChildren();
 boolean addComponent(IComponent c);
 boolean removeComponent(IComponent c);!
}

public class Leaf implements IComponent {
 Collection getChildren(){ return null;}
 boolean addComponent(IComponent c){ return false;}
 boolean removeComponent(IComponent c) { return
false;}!
}

Composite Pattern Example

public class Composite implements IComponent {
! private String id;
! private ArrayList<IComponent> list = new ArrayList<IComponent> ();
! public boolean addComponent(IComponent c) {
! ! return list.add(c);
! }
! public Collection getChildren() {
! ! return list;
! }
! public boolean removeComponent(IComponent c) {
! ! return list.remove(c);
! }
! …
}

Composite Pattern Example - client
usage

public class CompositeClient {
! public static void main(String[] args) {

! ! Composite chile = new Composite("Chile");
! ! Leaf santiago = new Leaf("Santiago");
! ! Leaf serena = new Leaf("serena");
! ! chile.addComponent(santiago);
! ! chile.addComponent(serena);

! ! Composite southAmerica = new Composite("South America");
! ! southAmerica.addComponent(chile);

! ! System.out.println(southAmerica.toString());
! }
}

Singleton Pattern

 How do you can forbid the creation of more than one
instance?

 Define a static and unique instance, and set the constructor to
private

 The singleton class must forbid its instantiation by
setting its constructors to private

 A static method initializes a static field

Singleton Pattern - UML

- Singleton()
+ getInstance() : Singleton

-singleton : Singleton
Singleton

Single Pattern - code

public class Singleton {
 private static final Singleton INSTANCE = new Singleton();

 // Private constructor prevents instantiation from other
classes
 private Singleton() {}

 public static Singleton getInstance() {
 return INSTANCE;
 }
 }

Observer Pattern

 How can an object inform arbitrary clients when it
changes state?

 Clients implement a common Observer interface and register with
the “observable” object; the object notifies its observers when it
changes state

 An observable object publishes state change events
to its subscribers, who must implement a common
interface for receiving notification

Observer Pattern

 Example

 A Button expects its observers to implement the ActionListener
interface.
(see the Interface and Adapter examples)

 Consequences

 Notification can be slow if there are many observers for an
observable, or if observers are themselves observable!

Observer Pattern - UML

Null Object Pattern

 How do you avoid cluttering your code with tests for
null object pointers?

 Introduce a Null Object that implements the interface you expect,
but does nothing

 Null Objects may also be Singleton objects, since you
never need more than one instance

Null Object Pattern - UML

Client
request()
AbstractObject

request()
RealObject

request()
NullObject

uses

Do nothing

Null Object

 Examples

 NullOutputStream extends OutputStream with an empty write()
method

 Consequences

 Simplifies client code

 Not worthwhile if there are only few and localized tests for null
pointers

State Pattern

locked

closedopened awaiting
combination

close

open

lock

error

unlock

combination

Handling States

while ((line = in.readLine()) != null) {
! if (line.equals("open")){
! ! changeState(CLOSED, OPENED);
! }
! if (line.equals("close")){
! ! changeState(OPENED, CLOSED);
! }
! if (line.equals("lock")){
! ! changeState(CLOSED, LOCKED);
! }
! if (line.equals("unlock")){
! ! changeState(LOCKED, AWAITING_COMBINATION);
! }
! if (line.equals("combination")){
! ! changeState(AWAITING_COMBINATION, CLOSED);
! }
! if (line.equals("error")){
! ! changeState(AWAITING_COMBINATION, LOCKED);
! }
! this.prompt();
}

State Pattern - UML

handleEvent ()
setState (state : State)

Context

handleEventA()
handleEventB()
handleEventC()

<<abstract>>

State

handleEventA()
ConcreteState1

handleEvent() delegates to
one of the State object's

event handlers

setState() is called when a
State transition occurs

handleEventA()
handleEventB()

ConcreteState2

isInA

State Pattern Example

changeState (state : State)
Controller

close ()
combinationEntered ()
errorEntered ()
lock ()
open ()
startUnlock ()
enter (ctrl : Controller) : State

Controller

combinationEntered ()
errorEntered ()

AwaitingCombination
lock ()
open ()

Closed
startUnlock ()

Locked
close ()
Opened

Each state is a separate object

public class Opened extends State {
! private static Opened instance;
!
! private Opened(Controller controller){
! ! this.controller = controller;
! }
!
! public static State enter(Controller controller){
! ! if(instance == null) // lazy evaluation
! ! ! instance = new Opened(controller);
! ! return instance;
! }
!
! public void close(){
! ! controller.changeState(Closed.enter(controller));
! }
}

Some other Design Patterns...

 State

 The state pattern is a behavioral design pattern, also known as the
objects for states pattern. This pattern is used in to represent the
state of an object. This is a clean way for an object to partially
change its type at runtime

 Decorator

 that allows new/additional behaviour to be added to an existing
method of an object dynamically.

Some other Design Patterns...

 Visitor

 a way of separating an algorithm from an object structure. A
practical result of this separation is the ability to add new
operations to existing object structures without modifying those
structures.

What Problems do Design Patterns
solve?

 Patterns:

 document design experience

 enable widespread reuse of software architecture

 improve communication within and across software development
teams

 explicitly capture knowledge that experienced developers already
understand implicitly

 arise from practical experience

 help ease the transition to object-oriented technology

 facilitate training of new developers

 help to transcend “programming language-centric” viewpoints

 Doug Schmidt, CACM Oct 1995

What you should know!

 What’s wrong with long methods? How long should a
method be?

 What’s the difference between a pattern and an
idiom?

 When should you use delegation instead of
inheritance?

 How does a Proxy differ from an Adapter?

 How can a Template Method help to eliminate
duplicated code?

 When do I use a Composite Pattern? Do you know
any examples from the Frameworks you know?

Can you answer these questions?

 What idioms do you regularly use when you
program? What patterns do you use?

 What is the difference between an interface and an
abstract class?

 When should you use an Adapter instead of
modifying the interface that doesn’t fit?

 Is it good or bad that java.awt.Component is an
abstract class and not an interface?

 Why do the Java libraries use different interfaces for
the Observer pattern (java.util.Observer,
java.awt.event.ActionListener etc.)?

Attribution-ShareAlike 2.5
You are free:
• to copy, distribute, display, and perform the work
• to make derivative works
• to make commercial use of the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or licensor.

!
Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting
work only under a license identical to this one.

• For any reuse or distribution, you must make clear to others the license terms of this work.
• Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

http://creativecommons.org/licenses/by-sa/2.5

License

