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Projection Lists: Ia→b and Ib→a that share the same document IDs in the intersection set, but 

keep data from a and b respectively that are used to score the documents.



LFU = Least Frequently Used

LRU = Least Recently Used

SDC = LFU (80%) + LRU (20%)





LFU-RCache we use cost = 

frequency · log(L) · n 

SDC = LFU (80%) + LRU (20%)

RCACHE

frequency · log(L) · n 

where L is the sum of the lengths of the posting lists 

associated with the query terms and n the number of 

processors used to get the global top-R results for the query.
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Proposal: keep a tiny cache

indicating processor Ids

producing the top-K results
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Estatico

frequency · log(L) · (P/n)  where L is the sum of the lengths of the posting lists. 

Gives higher priority to the frequent queries that require fewer processors 
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Brokergato perro

Semantic analysis

Trafico de consultas alto
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Search engines are divided into a collection of services.

Each service is deployed in a set of processing nodes.

A key goal is optimizing throughput but making sure that query 

response time is below a given upper bound.





MEMCACHED 

Free & open source, high-performance, 

distributed memory object caching system

http://memcached.org/

distributed memory object caching system

Simple Key/Value Store

The server does not care what your data looks like. Items are made up of a key, an 

expiration time, optional flags, and raw data. 

It does not understand data structures; you must upload data that is pre-serialized. 



Baseline

There are four operations performed by the CS nodes: (a) search for a query, 

(b) insert a query, (c) update a query priority and (d) delete a cache entry

Consistencia: enviar un mensaje a cada nodo replica de la particion. 

NO ESCALABLE





when a partition A is selected by the FS for a query q, we apply a second hash 

function over the query terms to select one replica from A

we balance the CS partitions workload by increasing/decreasing the range of each 

partition on the fly and according to their utilization



RADIC is based on rollback-recovery techniques applying a pessimistic event-log 

approach. It is based on two kinds of components: Protectors and Observers.

Each CS node has a Protector and an Observer

1. Every X units of time all Observers send their checkpoint to the corresponding

Protector.

TOLERANCIA A FALLOS

2. If node m belonging to partition P fails, all requirements send to m are re-directed to 

its Protector allocated at the same partition P. 

3. The Protector of m process its own queries and queries of m
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