
Jerarquía de Caches sobre

Motores de Búsqueda Web

Inverted File

Search

Broker

Search

Nodes

(WSE

Cores)

Projection Lists: Ia→b and Ib→a that share the same document IDs in the intersection set, but

keep data from a and b respectively that are used to score the documents.

LFU = Least Frequently Used

LRU = Least Recently Used

SDC = LFU (80%) + LRU (20%)

LFU-RCache we use cost =

frequency · log(L) · n

SDC = LFU (80%) + LRU (20%)

RCACHE

frequency · log(L) · n

where L is the sum of the lengths of the posting lists

associated with the query terms and n the number of

processors used to get the global top-R results for the query.

Broker

LCache

Proposal: keep a tiny cache

indicating processor Ids

producing the top-K results

for frequent queries.

Search

Nodes

(WSE

Cores)

Estatico

frequency · log(L) · (P/n) where L is the sum of the lengths of the posting lists.

Gives higher priority to the frequent queries that require fewer processors

Estatico

Dinamico

¿Is it in the LCache?

Brokergato perro

¿Is it in the LCache?

No

yes

Incoming

query

Brokergato perro

Semantic analysis

Trafico de consultas alto

Term

Partitioned

Inverted

File

R
e

p
li

ca
ti

o
n

(main

Memory)

Document

Partitioned

Inverted File
P columns (partitions)

D rows (replicas)

R
e

p
li

ca
ti

o
n

Search engines are divided into a collection of services.

Each service is deployed in a set of processing nodes.

A key goal is optimizing throughput but making sure that query

response time is below a given upper bound.

MEMCACHED

Free & open source, high-performance,

distributed memory object caching system

http://memcached.org/

distributed memory object caching system

Simple Key/Value Store

The server does not care what your data looks like. Items are made up of a key, an

expiration time, optional flags, and raw data.

It does not understand data structures; you must upload data that is pre-serialized.

Baseline

There are four operations performed by the CS nodes: (a) search for a query,

(b) insert a query, (c) update a query priority and (d) delete a cache entry

Consistencia: enviar un mensaje a cada nodo replica de la particion.

NO ESCALABLE

when a partition A is selected by the FS for a query q, we apply a second hash

function over the query terms to select one replica from A

we balance the CS partitions workload by increasing/decreasing the range of each

partition on the fly and according to their utilization

RADIC is based on rollback-recovery techniques applying a pessimistic event-log

approach. It is based on two kinds of components: Protectors and Observers.

Each CS node has a Protector and an Observer

1. Every X units of time all Observers send their checkpoint to the corresponding

Protector.

TOLERANCIA A FALLOS

2. If node m belonging to partition P fails, all requirements send to m are re-directed to

its Protector allocated at the same partition P.

3. The Protector of m process its own queries and queries of m

Resultados Aproximados

Q
u

e
ry

cl
u

st
e

r
Document cluster

Ranking del query cluster

con BM25

