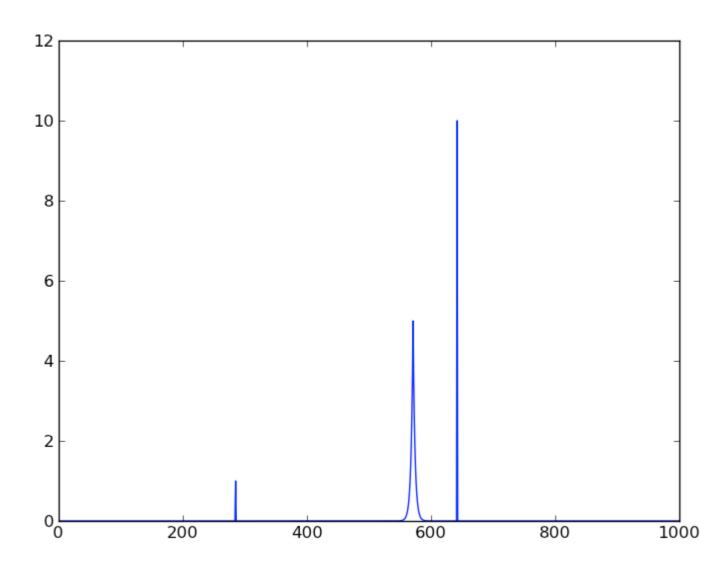
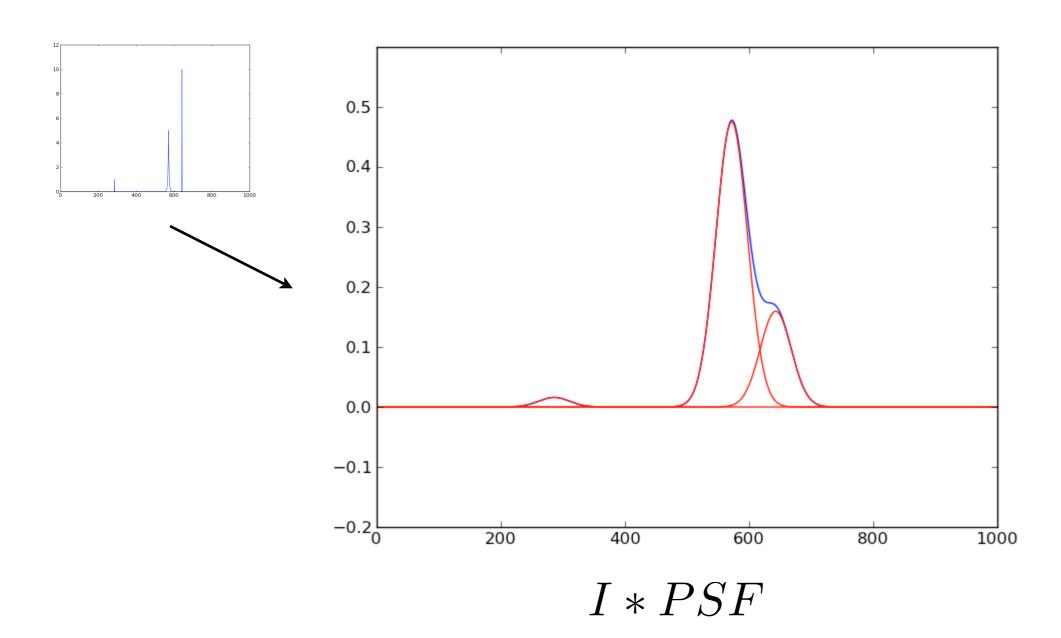

AS4501-CC4501 Detección de Objetos

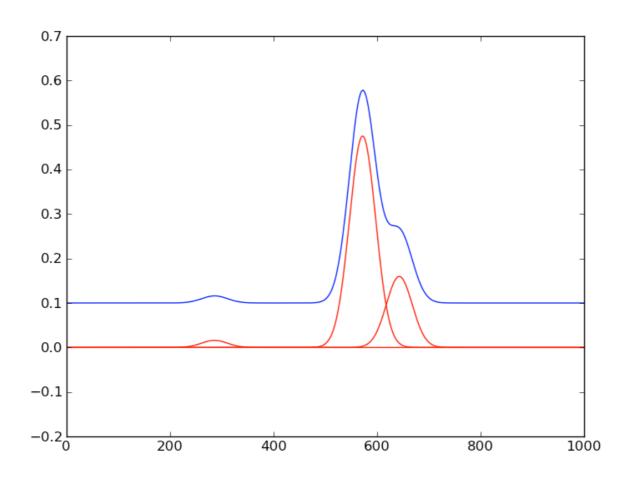
Guillermo Cabrera (AURA-CTIO / CMM, University of Chile),


Introducción

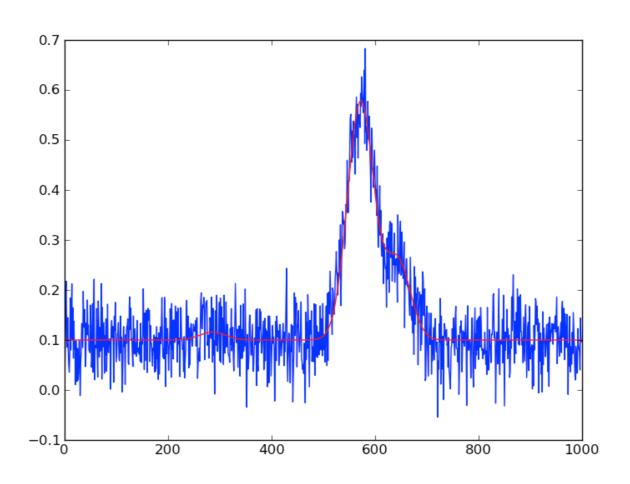
- La detección de objetos en imágenes astronómicas no es trivial
 - Background
 - Convolución con la PSF
 - Ruido
 - Deblending


$$D_i = (I * PSF)_i + b_i + \eta_i$$

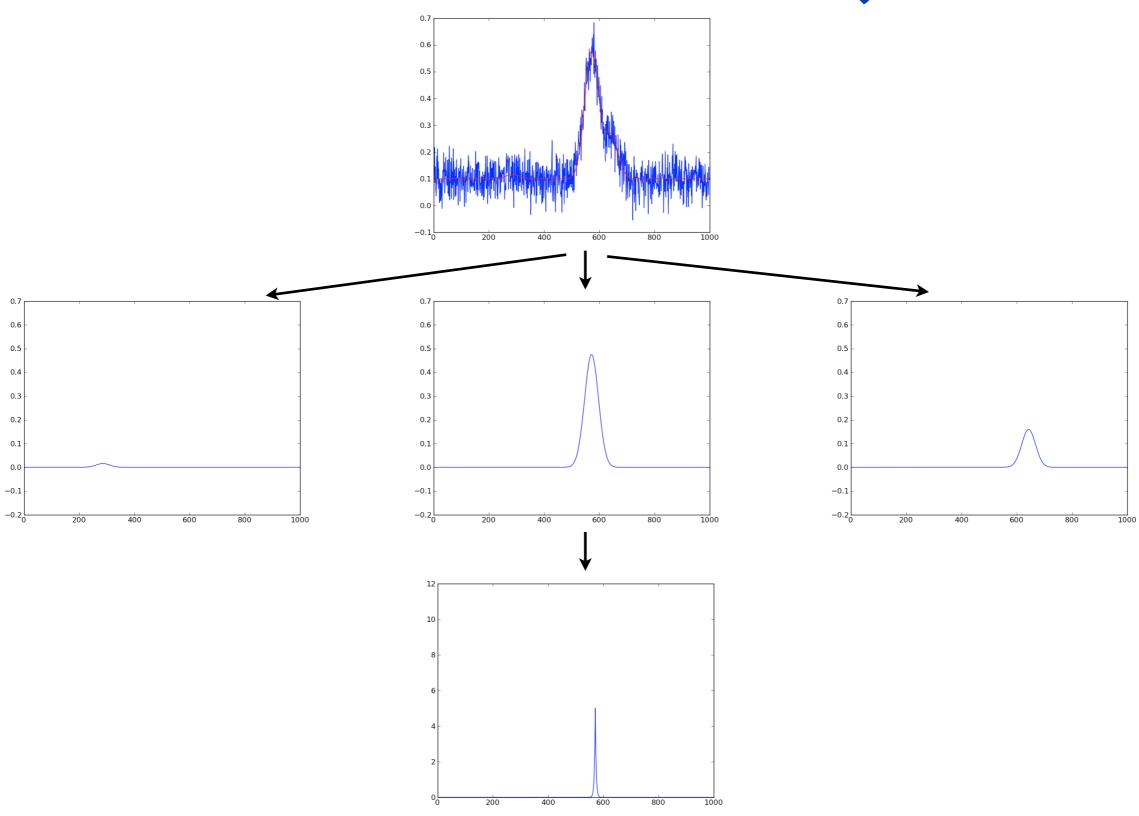
Luz


Convolución con PSF

• Aberración debido a atmosfera e instrumento.


Background

 Producido por fuentes luminicas cercanas (luna, contaminacion luminica, estrellas brillantes, etc.)


$$I * PSF + b$$

Ruido

$$I*PSF+b+\eta$$

Deteccion de Objetos

Algo de Historia

- 70's: placas fotográficas comenzaron a ser escaneadas.
- 1970: charge-coupled device (CCD)
- 1974: primer arreglo de CCDs comercial (fairchild)
- 1979: primera cámara CCD instalada en un telescopio (telescopio de Imetro en Kitt Peak National Observatory)

DETECCION ESTELAR Y FOTOMETRÍA

- •RICHFELD (Tody, 1981)
- •ROMAFOT (Buonanno et al., 1983)
- •WOLF (Lupton & Gunn, 1986)
- •STARMAN (Penny & Dickens, 1986)
- •DAOPHOT (Stetson, 1987).

CATALOGO DE GALAXIAS

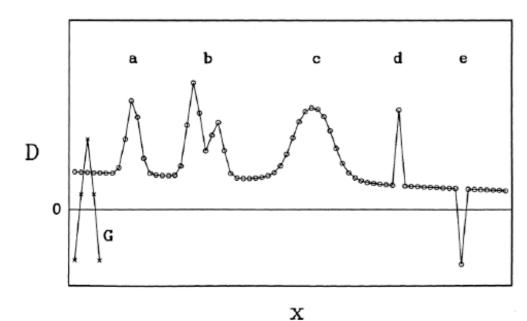
- •FOCAS (Jarvis & Tyson, 1981)
- •APM (Maddox et al., 1990)
- •COSMOS system (Beard et al., 1990)
- •PPP package (Yee, 1991)
- •Source Extractor (SE) (Bertin & Arnouts, 1996)
- Multiscale Vision Model (MVM)(Bijaoui & Rue, 1995)

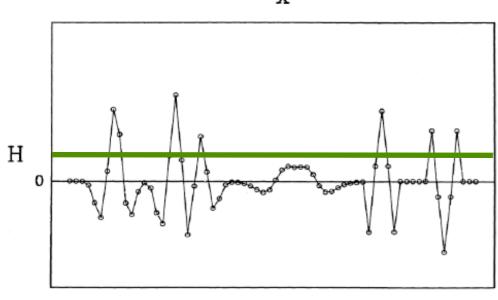
Introducción

- DAOPHOT (Stetson, 1987)
- Source Extractor (Bertin & Arnouts, 1996)
- Multiscale Vision Model (Bijaoui & Rue, 1995)

- Creado para la deteccion de estrellas.
- Ajusta una PSF Gaussiana centrada en cada pixel.

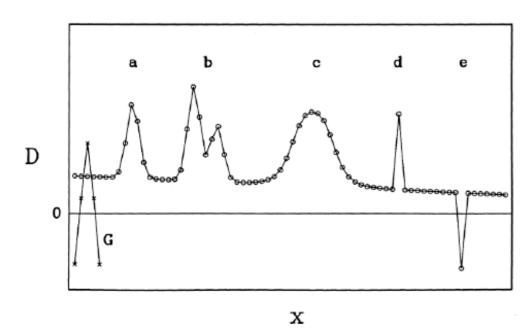
$$D_{i,j} = H_{i_0,j_0}G(i-i_0,j-j_0;\sigma) + b, \quad G(\Delta i, \Delta j;\sigma) = e^{-(\Delta i^2 + \Delta j^2)/2\sigma^2}.$$

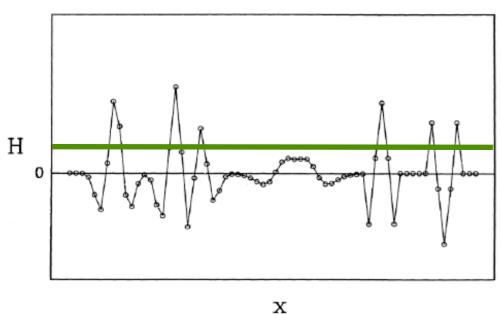

$$H_{i_0,j_0} = \frac{\sum_{i,j} (G_{i,j}D_{i,j}) - (\sum_{i,j} G_{i,j})(\sum_{i,j} D_{i,j})/n}{\sum_{i,j} (G_{i,j}^2) - (\sum_{i,j} G_{i,j})^2/n}$$


$$G_{i,j} = G(i - i_0, j - j_0; \sigma)$$

$$H_{i_0,j_0} = \sum_{i,j} (W_{i-i_0,j-j_0}D_{i,j})$$

$$W_{\Delta i,\Delta j} = rac{G(\Delta i,\Delta j;\sigma) - (\Sigma G)/n}{\Sigma (G^2) - (\Sigma G)^2/n}$$
 $\Sigma W \equiv 0$


- Creado para la deteccion de estrellas.
- Ajusta una PSF Gaussiana centrada en cada pixel.



 \mathbf{x}

- Comparacion ID entre D y H para
 - (a) estrella,
 - (b) blended estrellas,
 - (c) galaxia,
 - (d) rayo cosmico,
 - (e) bad value pixel
- DAOPHOT encuentra maximos locales en H.
- Sobre estos maximos se utiliza un "threshold".

- Ventajas de trabajar en el espacio H (segun Stetson, 1987)
 - Busqueda optimizada para objetos del tamaño de las estrellas.

$$\sigma = \frac{\text{FWHM}}{2\sqrt{2\ln 2}}$$

- Pendientes suaves se cancelan (incluyendo el background).
- Peaks en H son mas delgados, lo cual ayuda con la detección de estrellas.
- Threshold en H calculable a partir del ruido S_1

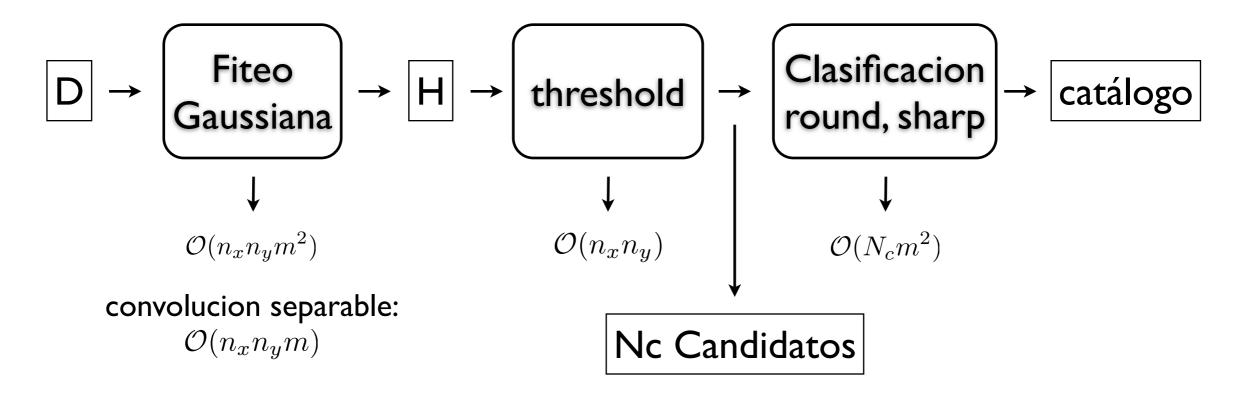
$$s_H^2 = \frac{s_1^2}{\Sigma(G^2) - (\Sigma G)^2/n}$$

• Pixeles malos y/o mascaras.

- Clasificacion

• sharpness
$$d_{i_0,j_0} \equiv \frac{D_{i_0,j_0}}{< D_{i,j}>},$$
 $sharp \equiv \frac{d_{i_0,j_0}}{H_{i_0,j_0}},$

round


$$round \equiv 2\left(\frac{h_y - h_x}{h_y + h_x}\right)$$

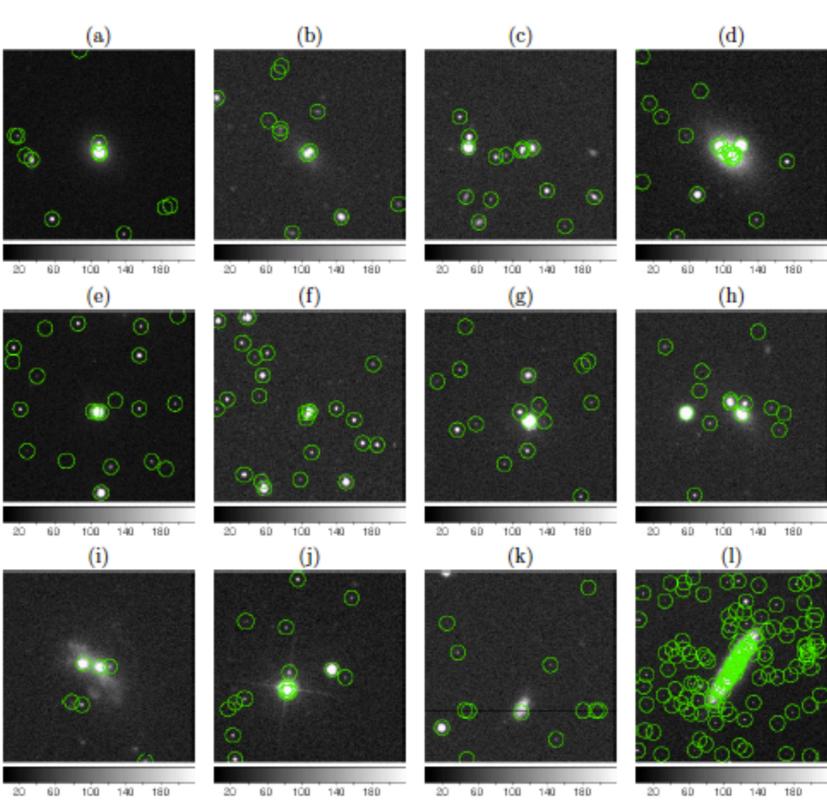
 DAOPHOT mantiene objetos con 0.2<sharp<1 y -I < round < I

Resumen

Complejidad

en espacio de frecuencias (Fourier):

$$\mathcal{O}(n_x n_y (\log n_x + \log n_y) + (n_x + n_y) m \log m)$$


Complejidad Total:
$$\mathcal{O}(n_x n_y m + N_C m^2)$$

Parametros

- daofind:
 - 18 parametros
 - 2 influyen el output
- datapars:
 - 19 parametros
- findpars:
 - 9 parametros
 - 8 influyen el output

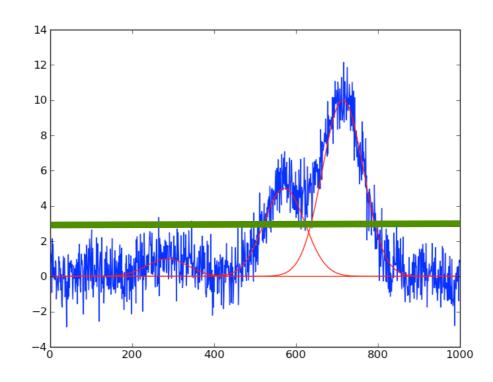
Más de 49 parametros, 10 de los cuales influyen en el resultado obtenido.

Ejemplos

Ejemplos

Image	Filter	PSF FWHM	PSF Radius	Read-Noise	Sky	$\sigma_{\rm SKY}$	datamin	k
(a)	I	2.23	8.02	6.25	1241	8.06	1208.76	4
(b)	R	5.21	29.28	1.82	1172	6.34	1146.64	3.5
(c)	I	2.59	21.86	7.84	1220	7.20	1191.19	4
(d)	I	2.60	31.36	7.84	1255	8.47	1221.11	4.2
(e)	I	2.37	11.87	4.62	1227	7.70	1196.20	3.8
(f)	I	2.79	13.15	5.06	1300	8.30	1266.81	4.2
(g)	I	2.22	17.4	4.62	1234	8.13	1201.48	4.3
(h)	I	3.19	15.58	6.25	1176	6.39	1150.45	3.95
(i)	\mathbf{G}	4.07	19	1.44	1071	4.44	1053.23	5
(j)	I	2.74	20.78	5.06	1217	7.05	1188.81	4.2
(k)	R	2.74	30.03	0.9	1116	5.08	1095.69	4
(1)	I	1.38	58.42	2.53	1180	1.61	1173.58	5.5

Source Extractor


- Background y ruido
- Detección
- Deblending
- Fotometría
- Clasificación

SExtractor Background y Ruido

- Estimación del Background
 - Calcula desviación estandard dentro de una ventana de tamaño fijo que corre a través de la imagen.
 - Iterativamente corta valores hasta que todos los valores estén dentro de $\pm 3\sigma$
 - El valor del Background es calculado como $c_1 \times \text{median} c_2 \times \text{mean}$.
 - Se realiza una interpolación de splines bi-cubicas sobre los valores del background en cada ventana.

SExtractor Detección

- SExtractor usa thresholding $T_{i,j} = b_{i,j} + k\sigma$,
- más 8-conectividad.

SExtractor Deblending

Deblending

- En el caso de tener 2 objetos muy cercanos, serán detectados como uno solo.
- n_D niveles de threshold exponenciales para crear una estructura de árbol.
- Separar objetos si:
 - la intensidad de una rama es mayor que una fracción $\delta_{\rm C}$ de la luminosidad total del objeto compuesto,
 - Hay al menos otra rama de este objeto que satisfaga la condición anterior.

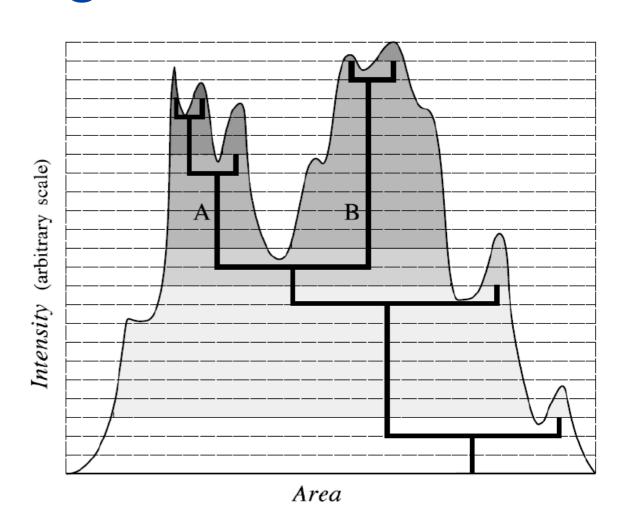
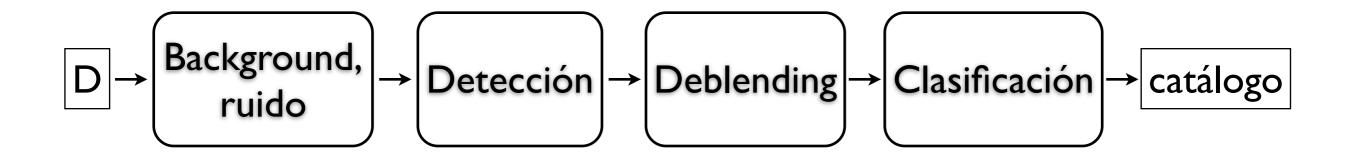
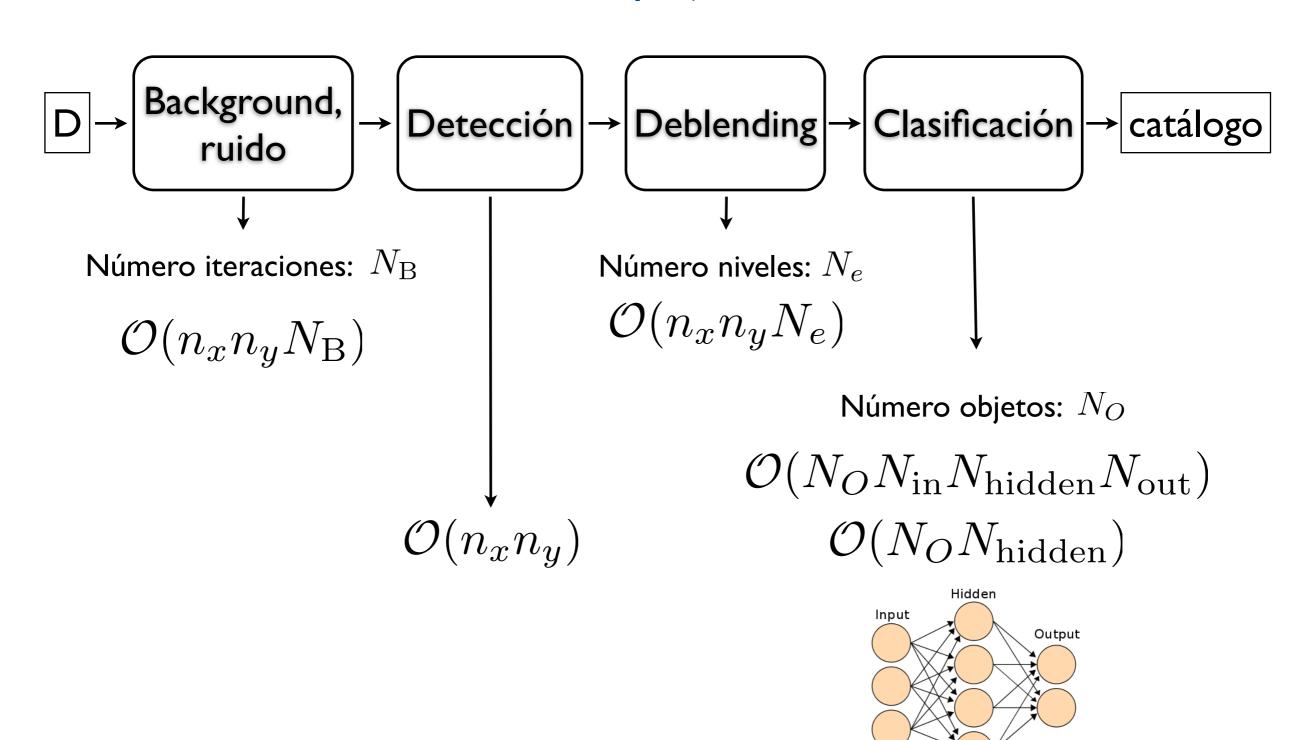


Figura obtenida de Bertin and Arnouts (1996)

Clasificación


Clasificacion mediante una red neuronal usando:

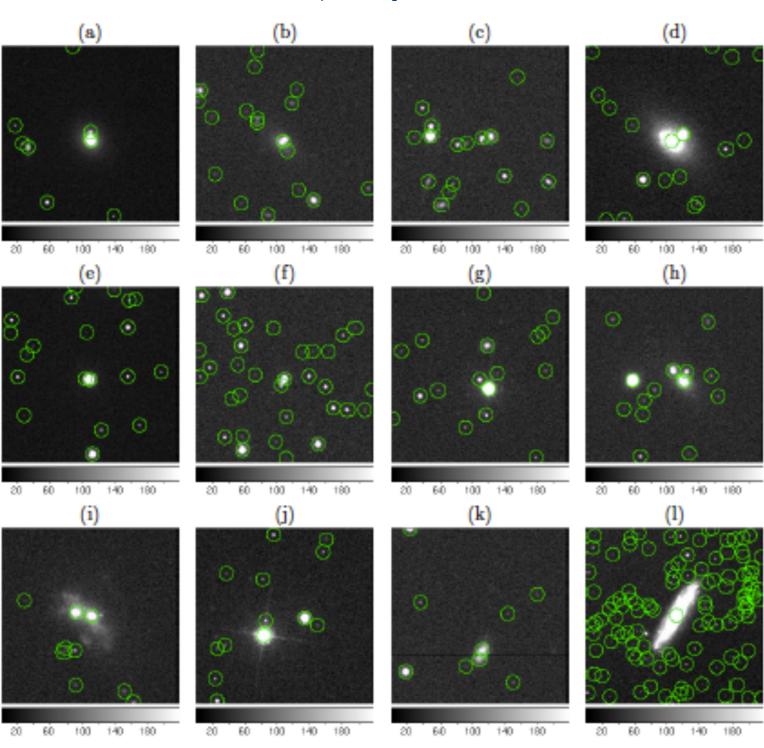
Input


Output

- áreas de 8 isophotas
- I intensidad central
- PSF
- Esta red neuronal ha sido entrenada con imágenes sintéticas.

Resumen

Complejidad

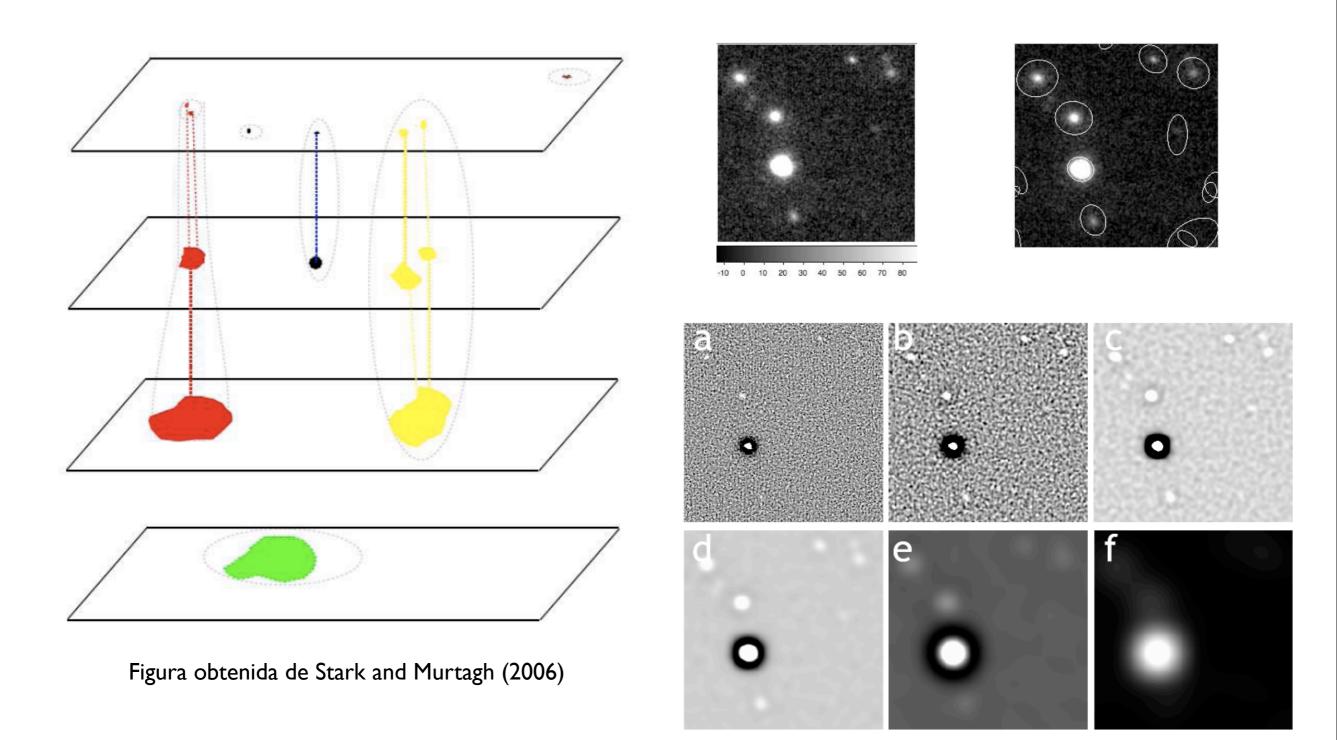

Parámetros

- Extracción:
 - 13 parametros
 - II influyen resultado
- Peso:
 - 4 parámetros
 - 2 influyen resultado
- Flaging:
 - 2 parámetros
- Photometría:
 - 13 parámetros
- Separación Estrella-Galaxia:
 - I set de parámetros (pesos red neuronal)
- Background:
 - 7 parámetros
 - 5 influyen resultado

- Check Image:
 - 2 sets of parámetros
- Memory:
 - 3 parámetros
- Association:
 - 6 parámetros
- Miscellaneous:
 - 9 parámetros

Aproximadamente 60 parámetros, 19 de los cuales influyen en los resultados.

Ejemplos


Ejemplos

	Obta	ined from	Data	Chosen by the User						
Example	Filter	SEEING FWHM	GAIN	BACK VALUE	DETECT THRESH	DETECT MINAREA	DEBLEND NTHRESH	DEBLEND MINCONT		
(n)	I	0.883	4.885	32	3	5	32	0.01		
(b)	R.	2.063	4.710	32	1.5	3	64	0		
(c)	I	1.024	4.640	32	1.5	5	32	0.01		
(d)	I	1.030	5.165	32	1.1	5	32	0.01		
(e)	I	0.940	4.860	32	1.8	5	32	0		
(f)	I	1.106	4.760	32	1.3	5	32	0.01		
(g)	I	0.879	4.860	32	1.5	5	32	0.01		
(h)	I	1.263	4.885	32	1.5	5	32	0.01		
(I)	G	1.612	3.855	64	1.5	5	64	0.01		
(j)	I	1.087	4.760	32	2	5	64	0		
(k)	R.	1.085	4.895	32	2	3	32	0.01		
(1)	I	1.096	4.760	32	1.3	3	32	0.01		

• MVM obtiene una decomposición espacio-frecuencia usando wavelets

$$w(a,b) = \frac{1}{\sqrt{a}} \int_{-\infty}^{+\infty} f(x) \psi^* \left(\frac{x-b}{a}\right) dx,$$

- La imagen se decompone en I escalas.
- Se utiliza thresholding en cada escala para la detección.
- Si se detecta estructuras en la misma posicion a diferentes escalas, se identifica un objeto.

Decomposición espacio-frecuencia

$$w(a,b) = \frac{1}{\sqrt{a}} \int_{-\infty}^{+\infty} f(x)\psi^* \left(\frac{x-b}{a}\right) dx$$

 En Mallat (1986) se explica que la manera correcta de muestrear a es exponecialmente.

$$a=2^i$$

$$c(i,k) = \frac{1}{2^i} \left\langle f(x), \phi\left(\frac{x-k}{2^i}\right) \right\rangle,$$
$$= \frac{1}{2^i} \int_{-\infty}^{+\infty} f(x)\phi^*\left(\frac{x-k}{2^i}\right) dx.$$

• <>: Producto escalar de f(x) con la funcion $\phi(x)$ escalada y dilatada. Esta última debe cumplir la ecuación de dilatación:

$$\frac{1}{2}\phi\left(\frac{x}{2}\right) = \sum h(n)\phi(x-n)$$

Decomposición espacio-frecuencia

de donde se obtiene

$$c(i,k) = \sum_{n} h(n)c(i-1,k+2^{i-1}n)$$

• El espacio de wavelets se genera escogiendo una función $\psi(x)$ apropiada que satisfaga la ecuación de dilatación:

$$\frac{1}{2}\psi\left(\frac{x}{2}\right) = \sum_{n} g(n)\phi(x-n)$$

Los coeficientes wavelets pueden ser entonces calculados como:

$$w(i,k) = \sum_{n} g(n)c(i-1,k+2^{i-1}n)$$

Algoritmo á trous

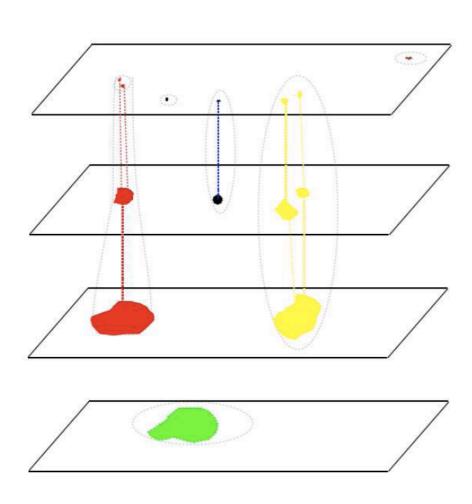
- Definir $\phi(x)$
- Calcular el valor inicial del producto interno

$$c(0,k) = \langle f(x), \phi(x-k) \rangle$$

- Para cada escala i:
 - Calcular $c(i,k) = \sum_{n} h(n)c(i-1,k+2^{i-1}n)$
 - Escoger g(n) tal que w(i,k) = c(i,k) c(i-1,k)

$$c(0, k) = c(I, k) + \sum_{i=1}^{I} w(i, k)$$

Ejemplo: función triangular


$$\phi(x) = \begin{cases} 1 - |x| & \text{if } x \in [-1, 1] \\ 0 & \text{if } x \notin [-1, 1] \end{cases}$$

$$h(0) = 1/2,$$

 $h(-1) = h(1) = 1/4.$

Ejemplo: B3-spline

$$\phi(x) = B_3(x) = \frac{1}{12}(|x-2|^3 - 4|x-1|^3 + 6|x|^3 - 4|x+1|^3 + |x+2|^3)$$

$$h(0) = 3/8,$$

 $h(-1) = h(1) = 1/4,$
 $h(-2) = h(2) = 1/16.$

- 36 parámetros
- 9 influyen en los resultados

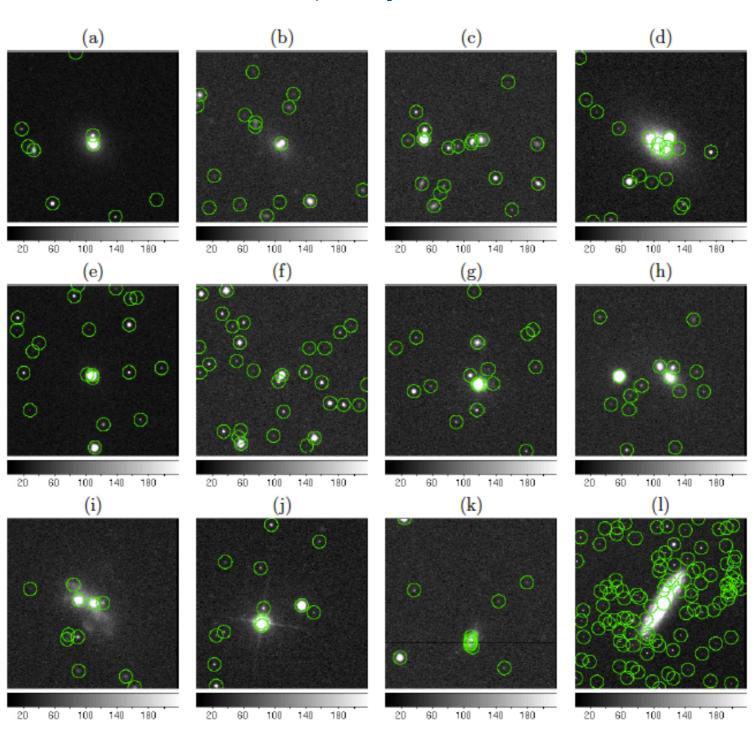

Los más importantes: threshold para cada escala y número de escalas a utilizar.

Figura obtenida de Stark and Murtagh (2006)

Complejidad

TAREA

Ejemplos

Ejemplos

	(a)	(b) 3 3.5	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(j)	(k)	(l)
n	2	3	3	3	3	3	3	4	3	3	3	4
k	4	3.5	4	4	4.5	4.5	4.5	4.5	4.5	7.2	4	5

Software para Detección

	Parameters	Influential	
DAOPHOT	49	10	
SExtractor	60	19	
MVM	36	9	

Todos utilizan un threshold definido por el usuario

Conclusiones

Métodos existentes necesitan gran cantidad de input de parte del usuario.

La dependencia de los resultados con respecto a estos parámetros permite otener diferentes resultados sobre el mismo conjunto de datos.

Sería muy beneficioso un algoritmo de extracción de fuentes astronómicas que requiera una interacción mínima con el usuario.

Referencias

P. B. Stetson. DAOPHOT: A computer program for crowded-field stellar photometry. Pub. A. S. P., (99):191–222, 1987.

E. Bertin and S. Arnouts. SExtractor: Software for source extraction. A & AS, (117): 393–404, 1996.

A. Bijaoui and F. Rué. A multiscale vision model adapted to the astronomical images. Signal Processing, (46):345–2362, 1995.