
Lower Bound on External Sorting

Theorem 2 External sorting requires Ω(n logm n) I/Os in the comparison I/O model (comparisons
only allowed operations in internal memory).

Proof : We have N records to sort, therefore there are N ! possibilities for the correct ordering that
are consistent with the information we have from the start (which is none). The idea is now to see
how much we can narrow down this number using one input operation and whatever number of
comparisons we want, under the assumption that an adversary chooses the worst possible outcome
of the comparisons we perform. Needless to say, output operations cannot contribute to narrowing
down the possibilities because any information we can get after the output we could have obtained
before the output.

Consider an input of B records into internal memory. Assuming that we know the order of the
records already in internal memory, but not the order of the B newly read records, there are at
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The above was under the assumption that we did not know the order of the B records read into
internal memory. This is not the case if the B records have been together in internal memory
previously, because we always determine the order of the records in internal memory after an
input. The number of times we can read B records that have not previously been together in
internal memory cannot exceed N
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orderings consistent with the information obtained from the adversary.

We want to narrow the possible orderings down to 1, and the number of I/O-operations needed to
do this must therefore be the least t such that N !
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