
Presenting Data from Experiments inAlgorithmicsPeter Sanders1?Max-Planck-Institut f�ur InformatikSaarbr�ucken, Germanysanders@mpi-sb.mpg.deAbstract. Algorithmic experiments yield large amounts of data thatdepends on many parameters. This paper collects a number of rules forpresenting this data in concise, meaningful, understandable graphs thathave su�ciently high quality to be printed in scienti�c journals. Thefocus is on common sense rules that are frequently useful and can beeasily implemented using tools such as gnuplot1.1 IntroductionA paper in experimental algorithmics will often start by describing the problemand the experimental setup. Then a substantial part will be devoted to pre-senting the results together with their interpretation. Consequently, compilingthe measured data into graphs is a central part of writing such a paper. Thisproblem is often rather di�cult because several competing factors are involved.First, the measurements can depend on many parameters: problem size and otherquantities describing the problem instance; variables like number of processors,available memory describing the machine con�guration used; and the algorithmvariant together with tuning parameters such as the cooling rate in a simulatedannealing algorithm.Furthermore, many quantities can be measured such as solution quality, exe-cution time, memory consumption and other more abstract complexity measuressuch as the number of comparisons performed by a sorting algorithm. Mathe-matically speaking, we sample function values of a mapping f : A ! B wherethe domain A can be high-dimensional. We hope to uncover properties of f fromthe measurements, e.g., an estimate of the time complexity of an algorithm as afunction of the input size. Measurement errors may additionally complicate thistask.As a consequence of the the multitude of parameters, a meaningful exper-imental setup will often produce large amounts of data and still cover only atiny fraction of the possible measurements. This data has to be presented in? This work was partially supported by the Future and Emerging Technologies pro-gramme of the EU under contract number IST-1999-14186 (ALCOM-FT).1 www.gnuplot.org. The source codes of the examples in this paper can be found underhttp://www.mpi-sb.mpg.de/~sanders/gnuplot/

a way that clearly demonstrates the observed properties. The most importantpresentation usually takes place in conference proceedings or scienti�c journalswhere limited space and format restriction further complicate the task.This paper collects rules that have proven to be useful in designing goodgraphs. Although the examples are drawn from the work of the author, thispaper owes a lot to discussions with colleagues and detailed feedback from severalreferees. Sections 3{7 explains the rules. The stress is on Section 4 where two-dimensional �gures are discussed in detail.Instead of an abstract conclusion, Section 8 collects all the rules in a checklist that can possibly be used when looking for teaching and as a source of ideasfor improving graphs.Related WorkA number of papers on the methodology of experimental algorithmics have comeout recently [10, 8, 9, 6]. In particular, [6] explains some of the rules presentedhere.There are also entire books on presenting data graphically [5, 4, 17]. The roleof the present paper is to formulate domain speci�c rules, to adapt and specializemore abstract rules and to summarize less important rules. For example, themain emphasis of the above books is on approaches to visualize a limited set ofdata items in ways which discern structure. Tufte even reports that 75 % of thegraphics found in newspapers and magazines are time series | a species of graphsrather rare in algorithmics, where we often face a di�erent situation. We haveinstance generators which provide us with an unlimited supply of examples andwe have control over many parameters. Furthermore, we can repeat experimentsas often as we want and hence can often reduce measurement errors to quitesmall values. The di�culty is now to select the right measurements and displaya large amount of data in a compact way.Another active area of research is the visualization of large amounts of datausing three-dimensional, colored animations. Here we limit ourselves to simplegraphs suited for black-and-white printing that can be produced with o�-the-shelf tools like gnuplot. This paper should not be regarded as a research paperbut as a collection of \folklore" rules.2 The ProcessIn a simpli�ed model of experimental algorithmics a paper might be written us-ing a \waterfall model". The experimental design is followed by a description ofthe measurement which is in turn followed by an interpretation. In reality, thereare numerous feedbacks involved and some might even remain visible in a presen-tation. After an algorithm has been implemented, one typically builds a simpleyet
exible tool that allows many kinds of measurements. After some explorativemeasurements the researcher gets a basic idea of interesting parameter settings.2

Hypotheses are formed which are tested using more extensive measurements us-ing particular parameter ranges. This phase is the scienti�cally most productivephase and often leads to new insights which lead to algorithmic changes whichin
uence the entire setup.It should be noted that most algorithmic problems are so complex that onecannot expect to arrive at an ultimate set of measurements that answers allconceivable questions. Rather, one is constantly facing a list of interesting openquestions that require new measurements. The process of selecting the mea-surements that are actually performed is driven by risk and opportunity: Theresearcher will usually have a set of hypotheses that have some support frommeasurements but more measurements might be important to con�rm them.For example, the hypothesis might be \my algorithm is better than all the oth-ers" then a big risk might be that a promising other algorithm or importantclasses of problem instances have not been tried yet. A small risk might be thata tuning parameter has so far been set in an ad hoc fashion where it is clear thatit can only improve a precomputation phase that takes 20 % of the executiontime.An opportunity might be a new idea of the authors' that an algorithm mightbe useful for a new application where it was not originally designed for. In thatcase, one might consider to include problem instances from the new applicationinto the measurements.At some point, a group of researchers decides to cast the current state ofresults into a paper. The explorative phase is then stopped for a while. Tomake the presentation concise and convincing, alternative ways to display thedata are designed that are compact enough to meet space restrictions and makethe conclusions evident. This might also require additional measurements givingadditional support to the hypotheses studied.3 TablesTables are easier to produce than graphs and perhaps this advantage causes thatthey are often overused. Tables are more di�cult to interpret and too large forlarge data sets. A more detailed explanation why tables are often a bad ideahas been given by McGeoch and Moret [9]. Nevertheless, tables have their place.Tufte [17] gives the rule of thumb that \tables usually outperform a graph forsmall data sets of 20 numbers or less". Tables give very accurate values whichmake it easier to check whether some experiments can be reproduced. Further-more, one sometimes wants to present some quantities, e.g., solution quality, asa function of problem instances which cannot be meaningfully arranged on theaxis of a graph. In that case, a graph or bar chart may look nicer but does notadd utility compared to a more accurate and compact table. Often a paper willcontain small tables with particularly important results and graphs giving resultsin an abstract yet less accurate way. Furthermore, there may be an appendix ora link to a web page containing larger tables for more detailed documentationof the results. 3

4 Two-dimensional FiguresAs our standard example we will use the case that execution time should bedisplayed as a function of input size. The same rules will usually apply for manyother types of variables. Sometimes we mention special examples which shouldbe displayed di�erently.4.1 The x-AxisThe �rst question one can ask oneself is what unit one chooses for the x-axis. Forexample, assume we want to display the time it takes to broadcast a message oflength k in some network where transmitting k0 bytes of data from one processorto another takes time t0 + k0. Then it makes sense to plot the execution time asa function of k=t0 because for many implementations, the shape of the curve willthen become independent of t0. More generally, by choosing an appropriate unit,we can sometimes get rid of one degree of freedom. Figure 1 gives an example.

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

10 100 1000 10000 100000 1e+06

im
pr

ov
em

en
t m

in
(T

* 1,
T

* ∞
)/

T
* *

k/t0

P=64
P=1024
P=16384

Fig. 1. Improvement of the fractional tree broadcasting algorithm [15] over the bestof pipelined binary tree and sequential pipeline algorithm as a function of messagetransmission time k over startup overhead t0. P is the number of processors. (See alsoSection 4.3 and 4.5)The variable de�ning the x-axis can often vary over many orders of magni-tude. Therefore one should always consider whether a logarithmic scale is appro-priate for the x-axis. This is an accepted way to give a general idea of a function4

over a wide range of values. One will then choose measurement values such thatthey are about evenly spaced on the x-axis, e.g., powers of two or powers of p2.Figures 3, 5, and 6 all use powers of two. In this case, one should also choose ticmarks which are powers of two and not powers of ten. Figures 1 and 4 use the\default" base ten because there is no choice of input sizes involved here.Sometimes it is appropriate to give more measurements for small x-valuesbecause they are easily obtained and particularly important. Conversely, it is nota good idea to measures using constant o�sets (x 2 fx0 + i� : 0 � i < imaxg)as if one had a linear scale and then to display the values on a logarithmic scale.This looks awkward because points are crowded for large values. Often there willbe too few values for small x and one nevertheless wastes a lot of measurementtime for large inputs.A plain linear scale is adequate if the interesting range of x-values is relativelysmall, for example if the x-axis is the number of processors used and one measureson a small machine with only 8 processors. A linear scale is also good if onewants to point out periodic behavior, for example if one wants to demonstratethat slow-down due to cache con
icts get very large whenever the input size isa multiple of the cache size. However, one should resist the temptation to usea linear scale when x-values over many orders of magnitude are important butthe own results look particularly good for large inputs.Sometimes, transformations of the x-axis other than linear or logarithmicmake sense. For example, in queuing systems one is often interested in the delayof requests as the system load approaches the maximum performance of thesystem. Figure 2 gives an example. Assume we have a disk server with 64 disks.Data is placed randomly on these disks using a hash function. Assume thatretrieving a block from a disk takes one time unit and that there is a periodicstream of requests | one every (1+ �)=64 time units. Using queuing theory onecan show that the delay of a request is approximately proportional to 1=� if onlyone copy of every block is available. Therefore, it makes sense to use 1=� as thex-value. First, this transformation makes it easy to check whether the systemmeasured also shows this behavior linear in 1=�. Second, one gets high resolutionfor arrival rates near the saturation point of the system. Such high arrival ratesare often more interesting than low arrival rates because they correspond to verye�cient uses of the system.4.2 The y-AxisGiven that the x-axis often has a logarithmic scale, we often seem to be forcedto use a logarithmic scale also for the y-axis. For example, if the execution timeis approximately some power of the problem size, such a double-logarithmic plotwill yield a straight line.However, plots of the execution time can be quite boring. Often, we alreadyknow the general shape of the curve. For example, a theoretical analysis may tellus that the execution time is between T (n) =
(n) and T (n) = O(nPolylog(n)).A double-logarithmic plot will show something very close to a diagonal anddiscerns very little about the Polylog term we are really interested in. In such a5

1

2

3

4

5

6

7

8

2 4 6 8 10 12 14 16 18 20

av
er

ag
e

de
la

y

1/ε

nonredundant
mirror
ring shortest queue
ring with matching
shortest queue

1

1.2

1.4

1.6

1.8

2

2 4 6 8 10 12 14 16 18 20

av
er

ag
e

de
la

y

1/ε

shortest queue
hybrid
lazy sharing
matching

Fig. 2. Comparison of eight algorithms for scheduling accesses to parallel disks usingthe model described in the text (note that \shortest queue" appears in both �gures).Only the two algorithms \nonredundant" and \mirror" exhibit a linear behavior ofthe access delay predicted by queuing theory. The four best algorithms are based onrandom duplicate allocation | every block is available on two randomly chosen disksand a scheduling algorithm [13] decides which copy to retrieve. (See also Section 4.3)6

situation, we transform the y-axis so that a priori information is factored out.In our example above we could better display T (n)=n and then use a linearscale for the y-axis. A disadvantage of such transformations is that they maybe di�cult to explain. However, often this problem can be solved by �nding agood term describing the quantity displayed. For example, \time per element"when one divides by the input size, \competitive ratio" when one divides bya lower bound, or \e�ciency" when one displays the ratio between an upperperformance bound and the measured performance. Figure 3 gives an examplefor using such a ratio.

0

50

100

150

200

1024 4096 16384 65536 218 220 222 223

(t
im

e
pe

r
op

er
at

io
n)

/lo
g

N
 [

ns
]

N

bottom up binary heap
bottom up aligned 4-ary heap

sequence heap

Fig. 3. Comparison of three di�erent priority queue algorithms [16] on a MIPS R10000processor. N is the size of the queue. All algorithms use �(logN) key comparisonsper operation. The y-axis shows the total execution time for some particular operationsequence divided by the number of deletion/insertion pairs and logN . Hence the plottedvalue is proportional to the execution time per key comparison. This scaling was chosento expose cache e�ects which are now the main source of variation in the y-value. (Seealso Sections 4.1 and 4.3.)Another consideration is the range of y-values displayed. Assume ymin > 0is the minimal value observed and ymax is the maximal value observed. Thenone will usually choose [ymin; ymax] or (better) a somewhat larger interval as thedisplayed range. In this case, one should be careful however with overinterpret-ing the resulting picture. A change of the y-value by 1 % will look equal to achange of y-value of 400 %. If one wants to support claims such as \for large x7

the improvements due to the new algorithm become very large" using a graph,choosing the range [0; ymax] can be a more sound choice. (At least if ymax=ymin isnot too close to one. Some of the space \wasted" this way can often be used forplacing curve labels.) In Figure 2, using ymin = 1 is appropriate since no requestcan get an access delay below one in the model used.The choice of the the maximum y value displayed can also be nontrivial.In particular, it may be appropriate to clip extreme values if they correspondto measurement points which are clearly useless in practice. For example, inFigure 2 it is not very interesting to see the entire curve for the algorithm\nonredundant" since it is clearly outclassed for large 1=� anyway and since wehave a good theoretical understanding of this particular curve.A further degree of freedom is the vertical size of the graph. This parametercan be used to achieve the above goals and the rule of \banking to 45�": Theweighted average of the slants of the line segments in the �gure should be about45�.2 Refer to [5] for a detailed discussion. The weight of a segment is the x-interval bridged. There is good empirical and mathematical evidence that graphsusing this rule make changes in slope most easily visible.If banking to 45� does not yield a clear insight regarding the graph size, agood rule of thumb is to make the graph a bit wider than high [17]. A traditionalchoice is to use the golden ratio, i.e., a graph that is 1.62 times wider than high.4.3 Arranging Multiple CurvesAn important feature of two-dimensional graphs is that we can place severalcurves in a single graph as in Figures 1, 2, and 3. In this way we can obtain ahigh information density without the disadvantages of three-dimensional plots.However, one can easily overdo it resulting in a chaos of undecipherable pointsand lines. How many curves �t into one pictures depends on the informationdensity. When curves are very smooth, and have few points where they crosseach other, as in Figure 2, up to seven curves may �t in one �gure. If curves arevery complicated, even three curves may be too much. Often one will start witha straight-forward graph that turns out to be too ugly for publication. Then onecan use a number of techniques to improve it:{ Remove unnecessary curves. For example, Figure 2 from [13] compares onlyeight algorithms out of eleven studied in this paper. The remaining threeare clearly outclassed or equivalent to other algorithms for the measurementconsidered.{ If several curves are too close together in an important range of x-values,consider using another y range or scale. If the small di�erences persist andare important, consider to use a separate graph with a magni�cation. Forexample, in Figure 2 the four fastest algorithms were put into a separateplot to show the di�erences between them.2 This is one of the few things described here which are are not easy to do with gnuplot.But even keeping the principle of banking to 45� in mind is helpful.8

{ Check whether several curves can be combined into one curve. For example,assume we want to compare a new improved algorithm with several inferiorold algorithms for input sizes on the x-axis. Then it might be su�cient toplot the speedup of the new algorithm over the best of the old algorithms;perhaps labeling the sections of the speedup curve so that the best of theold algorithms can be identi�ed for all x-values. Figure 1 gives an examplewhere the speeup of one algorithm over two other algorithms is shown.{ Decrease noise in the data as described in Section 4.6.{ Once noise is small, replace error bars with speci�cations of the accuracy inthe caption as in Figure 6.{ Connect points belonging to the same curves using straight lines.{ Choose di�erent point styles and line styles for di�erent curves.{ Arrange labels explaining point and line styles in the \same order"3 as theyappear in the graph. Sometimes one can also place the labels directly at thecurves. But even then the labels should not obscure the curves. Unfortu-nately, gnuplot does not have this feature so that we could not use it in thispaper.{ Choose the x-range and the density of x-values appropriately.Sometimes we need so many curves that they cannot �t into one �gure. Forexample, when the cross-product of several parameter ranges de�nes the set ofcurves needed. Then we may �nally decide to use several �gures. In this case, thesame y-ranges should usually be chosen so that the results remain comparable.Also one should choose the same point styles and line styles for related curvesin di�erent �gures, e.g., for curves belonging to the same algorithm as for the\shortest queue" algorithm in Figure 2. Note that tools such as gnuplot cannotdo that automatically.The explanations of point and line styles should avoid cryptic abbreviationswhenever possible and at the same time avoid overlapping the curves. Bothrequirements can be reconciled by placing the explanations appropriately. Forexample, in computer science, curves often go from the lower left corner to theupper right corner. In that case, the best place for the de�nition of line andpoint styles is the upper left corner.4.4 Arranging InstancesIf measurements like execution time for a small set of problem instances are tobe displayed, a bar chart is an appropriate tool. If other parameters such as thealgorithm used, or the time consumed by di�erent parts of the algorithm shouldbe di�erentiated, the bars can be augmented to encode this. For example, severalbars can be stacked in depth using three-dimensional e�ects or di�erent piecesof a bar can get di�erent shadings.43 For example, one could use the order of the y-values at the larges x-value as inFigure 3.4 Sophisticated �ll styles give us additional opportunities for diversi�cation but Tuftenotes that they are often too distracting [17].9

If there are so many instances that bar charts consume too much space, ascatter plot can be useful. The x-axis stands for a parameter like problem size andwe plot one point for every problem instance. Figure 4 gives a simple example.Point styles and colors can be used to di�erentiate di�erent types of instancesor variations of other parameters such as the algorithm used. Sometimes thesepoints are falsely connected by lines. This should be avoided. It not only looksconfusing but also wrongly suggests a relation between the data points that doesnot exist.

1

10

100

1000

1 10 100 1000

n
/ a

ct
iv

e
se

t s
iz

e

n/mFig. 4. Each point gives the ratio between total problem size and \core" problem sizein a fast algorithm for solving set covering problems from air line crew scheduling[1]. The larger this ratio, the larger the possible speedup for a new algorithm. Thex-axis is the ratio between the number of variables and number of constraints. Thisscale was chosen to show that there is a correlation between these two ratios that ishelpful in understanding when the new algorithm is particularly useful. The deviatingpoints at n=m = 10 are arti�cial problems rather di�erent from typical crew schedulingproblems. (See also Section 4.1.)4.5 How to Connect MeasurementsTools such as gnuplot allow us to associate a measured value with a symbol likea cross or a star that clearly speci�es that point and encodes some additionalinformation about the measurement. For example, one will usually choose onepoint symbol for each displayed curve. Additionally, points belonging to thesame curve can be connected by a straight line. Such lines should usually not beviewed as a claim that they present a good interpolation of the curve but just10

as a visual aid to �nd points that belong together. In this case, it is importantthat the points are large enough to stand out against the connecting lines. Analternative is to plot measurements points plus curves stemming from an analyticmodel as in Figure 5.The situation is di�erent if only lines and no points are plotted as in Fig-ure 1. In this case, it is often impossible to tell which points have been measured.Hence such a lines-only plot implies the very strong claim that the points wherewe measured are irrelevant and the plotted curve is an accurate representation ofthe true behavior for the entire x-range. This only makes sense if very dense mea-surements have been performed and they indeed form a smooth line. Sometimesone sees smooth lines that are weighted averages over a neighborhood in the x-coordinates. Then one often uses very small points for the actual measurementsthat form a cloud around this curve.A related approach is connecting measured points with interpolated curvessuch as splines which are more smooth than lines. Such curves should only beused if we actually conjecture that the interpolation used is close to the truth.4.6 Measurement ErrorsTools allow us to generalize measured points to ranges which are usually a pointplus an error bar specifying positive and negative deviations from the y-value.5The main question from the point of view of designing graphs is what kind ofdeviations should be displayed or how one can avoid the necessity for error barsentirely.Let us start with the well behaved case that we are simulating a randomizedalgorithm or work with randomly generated problem instances. In this case,the results from repeated runs are independent identically distributed randomvariables. In this case, powerful methods from statistics can be invoked. Forexample, the point itself may be the average of the measured values and the errorbar could be the standard deviation or the standard error [11]. Figure 5 gives anexample. Note that the latter less well known quantity is a better estimate for thedi�erence between the average and the actual mean. By monitoring the standarderror during the simulation, we can even repeat the measurement su�cientlyoften so that this error measure is below some prespeci�ed value. In this case,no error bars are needed and it su�ces to state the bound on the error in thecaption of the graph. Figure 6 gives an example.The situation is more complicated for measurements of actual running timesof deterministic algorithms, since this involves errors which are not of a statisticalnature. Rather, the errors can stem from hidden variables such as operatingsystem interrupts, which we cannot fully control. In this case, points and errorbars based on order statistics might be more robust. For example, the y valuecould be the median of the measured values and the error bar could de�ne theminimum and the maximum value measured or values exceeded in less than 55 Uncertainties in both x and y-values can also be speci�ed but this case seems to berare in Algorithmics. 11

0

5

10

15

20

32 1024 32768
n

Measurement
log n + log ln n + 1
log n

Fig. 5. Number of iterations that the dynamic load balancing algorithm random pollingspends in its warmup phase until all processors are busy. Hypothesized upper bound,lower bound and measured averages with standard deviation [12, 14]. (See also Sec-tions 4.1 and 4.5.)% of the measurements. The caption should explain how many measurementshave been performed.5 Grids and TicksTools for drawing graphs give us a lot of control over how axes are decoratedwith numbers, tick marks and grid lines. The general rule that is often achievedautomatically is to use a few round numbers on each axis and perhaps additionaltick marks without numbers. The density of these numbers should not be toohigh. Not only should they appear well separated but they also should be farfrom dominating the visual appearance of the graph. When a very large rangeof values is displayed, we sometimes have to force the system to use exponentialnotation on a part of the axis before numbers get too long. Figure 6 gives anexample for the particularly important case of base two scales. Sometimes wemay decide that reading o� values is so important in a particular graph thatgrid lines should be added, i.e., horizontal and vertical lines that span the entirerange of the graph. Care must be taken that such grid lines to not dilute thevisual impression of the data points. Hence, grid lines should be avoided or at12

0

0.5

1

1.5

2

2.5

3

16 64 256 1024 212 214 216 218 220 222 224

m
ax

 L
oa

d
-

m
/n

m

n=65536
n=256
n=16

n=4

Fig. 6. m Balls are placed into n bins using balanced random allocation [2, 3]. Thedi�erence between maximal and average load is plotted for di�erent values of m and n.The experiments have been repeated at least su�ciently often to reduce the standarderror (�=prepetitions [11]) below one percent. In order to minimize artifacts of therandom number generator, we have used a generator with good reputation and verylong period (219937�1) [7]. In addition, some experiments were repeated with the Unixgenerator srand48 leading to almost identical results. (See also Section 4.3.)least made thin or, even better, light gray. Sometimes grid lines can be avoidedby plotting the values corresponding to some particularly important data pointsalso on the axes.A principle behind many of the above considerations is called Data-Ink Max-imization by Tufte [17]. In particular, one should reduce non-data ink and re-dundant data ink from the graph. The ratio of data ink to total ink used shouldbe close to one. This principle also explains more obvious sins like pseudo-3Dbar charts, complex �ll styles, etc.6 Three-dimensional FiguresOn the �rst glance, three-dimensional �gures are attractive because they looksophisticated and promise to present large amounts of data in a compact way.However there are many drawbacks. 13

{ It is almost impossible to read absolute values from the two-dimensionalprojection of a function.{ In complicated functions interesting parts may be hidden from view.{ If several functions are to be compared, one is tempted to use a correspondingnumber of three-dimensional �gures. But in this case, it is more di�cult tointerpret di�erences than in two-dimensional �gures with cross-sections ofall the functions.It seems that three-dimensional �gures only make sense if we want to presentthe general shape of a single function. Perhaps three-dimensional �gures becomemore interesting using advanced interactive media where the user is free to chooseviewpoints, read o� precise values, view subsets of curves, etc.7 The CaptionGraphs are usually put into \
oating �gures" which are placed by the text for-matter so that page breaks are taken into account. These �gures have a captiontext at their bottom which makes the �gure su�ciently self contained. The cap-tions explains what is displayed and how the measurements have been obtained.This includes the instances measured, the algorithms and their parameters used,and, if relevant the system con�guration (hardware, compiler, : : :). One shouldkeep in mind that experiments in a scienti�c paper should be reproducible, i.e.,the information available should su�ce to repeat a similar experiment with sim-ilar results. Since the caption should not become too long it usually containsexplicit or implicit references to surrounding text, literature or web resources.

14

8 A Check ListIn the following we summarize the rules discussed above. This list has the ad-ditional bene�cial e�ect to serve as a check list one can refer to for preparinggraphs and for teaching. The Section numbers containing a more detailed dis-cussion are appended in brackets. The order of the rules has been chosen so thatin most cases they can be applied in the order given.{ Should the experimental setup from the exploratory phase be redesigned toincrease conciseness or accuracy? (2){ What parameters should be varied? What variables should be measured?How are parameters chosen that cannot be varied? (2){ Can tables be converted into curves, bar charts, scatter plots or any otheruseful graphics? (3, 4.4){ Should tables be added in an appendix or on a web page? (3){ Should a 3D-plot be replaced by collections of 2D-curves? (6){ Can we reduce the number of curves to be displayed? (4.3){ How many �gures are needed? (4.3){ Scale the x-axis to make y-values independent of some parameters? (4.1){ Should the x-axis have a logarithmic scale? If so, do the x-values used formeasuring have the same basis as the tick marks? (4.1){ Should the x-axis be transformed to magnify interesting subranges? (4.1){ Is the range of x-values adequate? (4.1){ Do we have measurements for the right x-values, i.e., nowhere too dense ortoo sparse? (4.1){ Should the y-axis be transformed to make the interesting part of the datamore visible? (4.2){ Should the y-axis have a logarithmic scale? (4.2){ Is it be misleading to start the y-range at the smallest measured value? (4.2){ Clip the range of y-values to exclude useless parts of curves? (4.2){ Can we use banking to 45�? (4.2){ Are all curves su�ciently well separated? (4.3){ Can noise be reduced using more accurate measurements? (4.3){ Are error bars needed? If so, what should they indicate? Remember thatmeasurement errors are usually not random variables. (4.6, 4.3){ Use points to indicate for which x-values actual data is available. (4.5){ Connect points belonging to the same curve. (4.3,4.5){ Only use splines for connecting points if interpolation is sensible. (4.3,4.5){ Do not connect points belonging to unrelated problem instances. (4.5){ Use di�erent point and line styles for di�erent curves. (4.3){ Use the same styles for corresponding curves in di�erent graphs. (4.3){ Place labels de�ning point and line styles in the right order and withoutconcealing the curves. (4.3){ Captions should make �gures self contained. (7){ Give enough information to make experiments reproducible. (7)15

References1. P. Alefragis, P. Sanders, T. Takkula, and D. Wedelin. Parallel integer optimizationfor crew scheduling. Annals of Operations Research, 99(1):141{166, 2000.2. Y. Azar, A. Z. Broder, A. R. Karlin, and Eli Upfal. Balanced allocations. SIAMJournal on Computing, 29(1):180{200, February 2000.3. P. Berenbrink, A. Czumaj, A. Steger, and B. V�ocking. Balanced allocations: Theheavily loaded case. In 32th Annual ACM Symposium on Theory of Computing,2000.4. J. M. Chambers, W. S. Cleveland, b. Kleiner, and P. A. Tukey. Graphical Methodsfor Data Analysis. Duxbury Press, Boston, 1983.5. W. S. Cleveland. Elements of Graphing Data. Wadsworth, Monterey, Ca, 2ndedition, 1994.6. D. S. Johnson. A theoretician's guide to the experimental analysis of algorithms.In M. Goldwasser, D. S. Johnson, and C. C. McGeoch, editors, Proceedings of the5th and 6th DIMACS Implementation Challenges. American Mathematical Society,2002.7. M. Matsumoto and T. Nishimura. Mersenne twister: A 623-dimensionally equidis-tributed uniform pseudo-random number generator. ACMTMCS: ACM Trans-actions on Modeling and Computer Simulation, 8:3{30, 1998. http://www.math.keio.ac.jp/~matumoto/emt.html.8. C. C. McGeoch, D. Precup, and P. R. Cohen. How to �nd big-oh in your dataset (and how not to). In Advances in Intelligent Data Analysis, number 1280 inLNCS, pages 41{52, 1997.9. C.C. McGeoch and B. M. E. Moret. How to present a paper on experimental workwith algorithms. SIGACT News, 30(4):85{90, 1999.10. B. M. E. Moret. Towards a discipline of experimental algorithmics. In 5th DIMACSChallenge, DIMACS Monograph Series, 2000. to appear.11. W. H. Press, S.A. Teukolsky, W. T. Vetterling, and B. P. Flannery. NumericalRecipes in C. Cambridge University Press, 2nd edition, 1992.12. P. Sanders. Lastverteilungsalgorithmen f�ur parallele Tiefensuche. Number 463 inFortschrittsberichte, Reihe 10. VDI Verlag, 1997.13. P. Sanders. Asynchronous scheduling of redundant disk arrays. In 12th ACMSymposium on Parallel Algorithms and Architectures, pages 89{98, 2000.14. P. Sanders and R. Fleischer. Asymptotic complexity from experiments? a casestudy for randomized algorithms. In Workshop on Algorithm Engineering, number1982 in LNCS, pages 135{146, 2000.15. P. Sanders and J. Sibeyn. A bandwidth latency tradeo� for broadcast and reduc-tion. In 6th Euro-Par, number 1900 in LNCS, pages 918{926, 2000.16. Peter Sanders. Fast priority queues for cached memory. ACM Journal of Experi-mental Algorithmics, 5, 2000.17. Edward R. Tufte. The Visual Display of Quantitative Information. Graphics Press,Cheshire, Connecticut, U.S.A., 1983.
16

