How to Present a Paper on Experimental Work with
Algorithms

Catherine C. McGeoch* Bernard M.E. Moret!

September 2, 1999

Abstract

Inspired by Ian Parberry’s “How to present a paper in theoretical computer science,”
(SIGACT News 19, 2 (1988), pp. 42-47), we provide some advice on how to present
results from experimental and empirical research on algorithms.

1 Introduction

This note is written primarily for researchers in algorithms who find themselves called
upon to present the results of computational experiments. While there has been much
recent growth in the amount and quality of experimental research on algorithms, there is
still some uncertainty about how to describe the research and present the conclusions.

For general advice on presenting papers in theoretical computer science, read lan Par-
berry’s excellent paper [6]. Here we focus on aspects directly relevant to experimentation
and data analysis.

Of course, the quality of the talk depends on the quality of the research. For advice on
conducting respectable experimental research on algorithms, read McGeoch [5], or Barr et
al. [1], or the articles on methodology to appear in [4] and available on-line.

2 What to Say

State the problem clearly and give your rationale for using an experimental
approach. A crucial part of the description of the problem is your motivation for con-
ducting experiments. Presumably, the problem does not lend itself to a precise analytical
characterization—why? Is it due to properties of the data (as in an application)? of the
platform (as in a study of caching effects or consistency across platforms)? or to the very
complex nature of your algorithm (as is common in optimization heuristics)? Not every
problem is best approached experimentally, so justify your choice.

Provide context for the research—has the algorithm been studied previously? Has it
been implemented and tested? What have others done? If your problem is entirely new,
what are you trying to achieve through experimentation? What have you done to enable
you to go beyond “it runs fairly fast and returns pretty good solutions”?

*Department of Mathematics and Computer Science, Ambherst College, Amherst, MA 01002,
ccm@cs. amherst.edu

tDepartment of Computer Science, University of New Mexico, Albuquerque, NM 87131,
moret@cs.unm.edu



If you have been working on an application, describe the input data. What makes it
different from what could be randomly generated? How has it been collected? What steps
have you taken to ensure good sampling?

Describe and motivate the specifics of the experiments. The audience should now
have a clear idea of why you are doing experiments; you must also explain what specific
experiments you have conducted and why. Describe the general experimental environment;
give the range of problem sizes and the names and ranges of other parameters; indicate
and justify the number of random trials per test. The audience should be able to see the
relevance of the experimental design to the questions you are investigating. Why these
input classes? Why did you measure this quantity and not that one? Are these problem
sizes typical in practice? Why did you use only five trials per data point?

Mention enough details of the experiments. If runtime statistics are important,
mention the machine, environment, compiler version and optimization level, maybe even
memory sizes. Even if you do not report running times, you should say how much total
CPU time went into the experiments and approximately how long the largest problems took
to run. If your experiments are specifically targeted at characterizing platform effects, go
into more detail about the attributes of these platforms and how your measurements might
capture some of these effects; discuss possible artifacts caused by your instrumentation.

If the experiments are being used to make analytical conjectures, mention what steps
you took to avoid machine dependence in the results. Address any fears that the random
generator, machine precision, caching effects, or other environmental problems (particularly
if you ran your code on a shared machine) might have skewed your results. Describe the
validation experiments you performed with an alternative backup implementation.

As a service to future experimenters mention any difficulties or unusual aspects of the
experiment, and what you did about them.

But do not mention too many details! Do not slap code up on the slide; if something
in the code is crucial, show the relevant snippet. Do not pile on environment and machine
characteristics unless they are directly relevant. Do not list every parameter setting you
tested. Do not present every last data value you gathered—instead, select for presenta-
tion the data that most clearly illustrates your claims; but make a full disclosure of any
discordance and attempt to explain it.

In most cases you will want to discuss briefly the algorithms you developed or im-
plemented (with proper attribution). Please realize that the emphasis should be on the
experimental work: there is not enough time both to describe the algorithms at the level of
detail usually seen in theory talks and to discuss adequately the experiments and results,
so cut back on the algorithmic description.

The appropriate level of algorithmic detail depends on the focus of the research. If
you are presenting a new algorithm, spend a little more time on it—the experiments will
probably be exploratory. If you conducted a comparison of several algorithms, give a two-
sentence explanation of the properties of each; the data will be complex and rich, so spend
a lot of time on the tests and their results. If you worked on an application, spend more
time discussing the nature of the application as it affects the structure of the input data.



Draw conclusions and support them. You cannot just present a graph or table of
numbers and call it “the results.” (In fact, you cannot present a table of numbers at all—see
below.) It is your responsibility to draw conclusions, identify relationships, and describe
patterns that you have discovered; graphs should be used to support your observations.
The supporting presentation should therefore be directly relevant to the observation—do
not make your audience do mental gyrations to compare the data to your claim. If you
say A is generally 7 times better than B, do not show a graph with 20 scores for each
and expect the audience to do the arithmetic; instead present the ratios to show the factor
directly. Match the scale of the illustration to the assertion: if “Algorithm A is about twice
as fast as algorithm B on these inputs,” then the supporting picture should be scaled to
show “about twice.”

The point is not to overwhelm the audience with numbing lists of values and details,
but to highlight your main findings or contributions. You can take advantage of two pro-
jectors here by showing the conclusions on one and various supporting data on the other.
Also think about creative ways to use slides, with overlays and such; with a computer
projection system, you can use multiple windows, text overlays, moving highlights, and
semi-transparent graphs for the same purpose.

But make sure that the support is real! Do not overgeneralize. (For instance, do
not extend your observations on planar graphs to claims about other kinds of graph fam-
ilies; do not extend your runtime observations to other computational environments.) Be
particularly cautious about extending your results to larger problem sizes—the literature
is full of asymptotic conjectures based on experimental results that were later invalidated
by other experimental results or by analysis.

Whenever possible, use statistical analysis to estimate the significance of your results.
In addition to averages, present information about level of significance, confidence intervals,
variance, outliers, and extreme points, as appropriate.

A graph is worth a thousand table entries. It is a matter of experimental integrity
to present, as much as possible, all of your data, not just summary statistics. Of course,
it is rarely possible to show every single datum, but make every effort to show the whole
picture, including variation from the mean, outliers, and data points that do not support
your claims. Graphs, especially scatter plots, make it possible for the audience to assimilate
the mass of information you collected.

We hereby ban the use of large tables of numbers from all presentations of computational
experiments on algorithms (yes, even in proceedings). If you have more than four data
points to present, use a graph. (If you really have only four data points, in which case
a graph may be misleading, you should question whether you have enough experimental
evidence to draw any kind of conclusions.) Tables are not readable in an oral presentation
and are very hard to interpret even in print. Graphs provide the best way for the audience
to see trends, ratios, and patterns in data. If someone in the audience simply has to have
the actual numbers, you can make them available on the web.

Scatter plots are extremely helpful in understanding the distribution of the data and
showing outliers: plot the data against the predicted or extrapolated behavior; or normalize
it and allow the audience to evaluate deviations from the horizontal; or superimpose the
prediction on the observations.

With additional time investment, you can use a laptop and projection system to show



an animation of the data. While animations acre often the best means for conveying your
results, the lack of proper tools for building animations currently makes this approach too
time-consuming, so you may want to resort to multiple snapshots in a succession of slides.

Explain what are we seeing. What do those points represent—is that solution quality
or runtime? Seconds or microseconds? Is it a ratio or a difference? For each graph, state
the quantities depicted and their units and scale (linear, logarithmic, etc.) on abscissa
and ordinate. Keep units and values simple, through normalization if necessary. If you
are showing means, indicate the number of trials as part of the legend and try to include
variance brackets or some indication of the deviation from the mean.

When you are presenting comparisons of several algorithms or implementation strate-
gies, clearly tie a name to each strategy and clearly label each on the graph (color can be
very useful here). For a complicated or sophisticated graphic you may want to start with
a simple example of how the graphic works, and then move to the real data.

3 Organizing the Talk

Overview. Introduce the problem, the data, the algorithms. State the open questions,
which ones are addressed in this talk, and your general conclusions.

Introduction. Present more about each algorithm or implementation strategy, so the
audience can distinguish which is which and understand what is known already from the
literature; but definitely refrain from giving a detailed description of the algorithms.

The setup. Describe the experiments in general. What questions are you addressing?
(Write down the questions on a slide.) How much total time did the experiments take?
Clearly show which algorithm or property tested goes by which name. Give an overview
of the environment or any aspects of the research that are held constant throughout the
individual experiments.

The experiments.
e Introduce each experiment. What question is being investigated?

e What parameters are you using and what values are you choosing for them? What
data are used and how were they collected or generated?

e How do measured values relate to analytical values?

e Present the conclusions, observations, claims, as declarative sentences written down.
Show relevant supporting data in a clean graphical representation.

e Point out surprises or anomalies. Address any unusual data that does not support
your conclusion or stands in contrast to the general trends—foresee possible substan-
tive questions and address them first!

e What are the limitations this experiment? Under what circumstances would your
results be significant? irrelevant?



Conclusions. Summarize your main observations. Put them in the context of previous
research (showing what new information have you learned) and in the context of future
research (suggesting what should be done next). Describe what is missing, what is still
unresolved, and how the experiments could be extended.

Variations on the theme.

Algorithm engineering: If you fine-tuned an existing algorithm for a library or for utmost
performance, you may want to give a very sequential presentation: address each
modification you tried and its results, leading to the next modification.

Application: Distinguish between a “real” application (in which your implementation ac-
tually gets used) from a “model” application (in which simulated data and a simplified
model are used). In a model application, spend a fair amount of time discussing data
characterization and generation.

Characterizing platform effects: You could be doing this in order to develop robust library
modules—in which case you need to state your specific goals and trade-offs (e.g., how
much slower your module is than a tailored, one-shot implementation)—or in order
to develop a model for the analysis and design of platform-aware (for instance, cache-
aware) algorithms, in which case you need to state what aspects of the platforms you
are considering, how common these parameters are, and so forth.

Algorithm design: If you are presenting a more traditional “new algorithm” or “improved
analysis” talk (with just some preliminary experimentation to establish feasibility,
suggest the right ballpark for parameter values, or indicate extensions to the analysis),
make this clear right away. You need not present experimental details or specific
results—simply weave your findings in the description of the algorithm design or
analysis, emphasizing the interaction between your experiments and your theoretical
developments.

Choosing the best algorithm or implementation: Since few algorithms are truly general-
purpose, be sure to define your intended coverage (sparse graphs, or disjoint objects,
or small alphabets, etc.) and to discuss how you achieved this coverage with your
test data.

Human experiments: If you conducted experiments with human subjects (e.g., to identify
which optimization criteria lead to the most understandable graph drawings or to
estimate the contribution that a “man-in-the-loop” can make to an optimization pro-
cess), spend a lot of time describing the methodology and assume that your audience
is mostly unfamiliar with it. Be as quantitative as possible.

4 Nuts and Bolts
Review the article of Parberry [6].

Time management. As a general rule, plan to spend no more than half the time de-
scribing the problem, the open questions, and the experimental setup. Leave plenty of time
for presenting the results, their implications, and your conclusions. Experimental work



also tends to generate more questions from the audience than more traditional talks on
algorithm design.

Write down the main points. People need to have a visual memory of the most im-
portant points. Help them by listing the major questions addressed in your research. Help
them remember which algorithm is which by providing a list matching names to properties.
Help them remember your important conclusions by writing them on a slide—do not rely
on your commentary. One should be able to get the important points just by looking at
your slides.

Learn about graphical presentation. Read a good book, such as Cleveland [3] or
Chambers et al. [2]. Think about font size: do not show tiny labels, points that disappear
in the graph, overlapping symbol blobs, or 50 lines of tiny code. Use color: even if you
have a black-and-white printer, you can use a color marker to highlight some data points
or interesting values. Ask what means of information display will be available (one or more
overhead projectors? a computer projection system? closed-circuit TV?) and plan your
presentation to take advantage of all available means.

Take advantage of technology. Most conferences now provide a computer projection
system. With a laptop, you can use a large range of colors, multiple windows, animated
overlays, flexible highlighting, or even full-fledged animations (including brief demos of a
part of your work), etc. Keep in mind that screens are biased horizontally, unlike the tra-
ditional use of a page—use landscape mode in order to take advantage of the screen. Be
mindful of limitations; for instance, hue and saturation are highly variable among projec-
tion systems, so use only easily distinguishable colors and ensure that backgrounds and
foregrounds offer sufficient contrast.

References

[1] R.S. Barr, B.L. Golden, J.P. Kelly, M.G.C. Resende, and W.R. Stewart, “De-
signing and reporting on computational experiments with heuristic methods,” J.
Heuristics 1, 1 (1995), pp. 9-32.

[2] J.M. Chambers, W.S. Cleveland, B. Kleiner, and P.A. Tukey. Graphical Methods
for Data Analysis. Duxbury Press, Boston (1983).

[3] W.S. Cleveland. Elements of Graphing Data. Wadsworth, Monterey, CA (1985).

[4] D.S. Johnson and C.C. McGeoch, eds. Proc. 5th DIMACS Challenge, AMS Society
Press, to appear (2000). Draft methodology papers are available at the website
www.cs.amherst.edu/~dsj/methday.html.

[6] C.C. McGeoch, “Toward an experimental method for algorithm simulation,” IN-
FORMS J. Comput. 1, 1 (1996), pp. 1-15.

[6] I.M. Parberry, “How to present a paper in theoretical computer science: a
speaker’s guide for students,” SIGACT News 19, 2 (1988), pp. 42-47. Also avail-
able at hercule.csci.unt.edu/ian/guides/speaker.html.



