

FISICO-QUIMICA METALURGICA

TERMODINÁMICA DE SOLUCIONES COMPLEJAS Clase 08

Prof. Dr. Leandro Voisin A.

- ✓ Las propiedades de estado Standard solo son aplicables a elementos y compuestos puros.
- ✓ En las operaciones de extracción y refino el objetivo es producir metales con alta pureza, sin embargo, en las primeras etapas de los procesos los metales generados desde los minerales usualmente son muy impuros y muchos otros elementos se encuentran disueltos en el metal base.
- ✓ La pureza aumenta en las etapas subsiguientes y es cercano al 100% en el refino.
- ✓ Las escorias generadas en el proceso pirometalúrgico siempre contienen numerosos componentes.
- ✓ Para comprender el comportamiento de estas soluciones complejas es necesario estudiar relaciones termodinámicas adicionales.

La energía libre total, G', de una solución multicomponente contiene n_A , n_B , n_C ,..., n_i moles de componentes A, B, C, etc. Puede expresarse como:

$$G' = f(P,T,n_A,n_B,n_C...n_i) \quad ec. 1$$

Si una pequeña cantidad, ∂n_A de un componente A es agregada al sistema a P^o y T^o constantes, la energía libre total cambiará una cantidad $\partial G'$. La razón de estas dos cantidades se denomina energía libre molar parcial del componente A en la solución, (\overline{G}_A)

$$\overline{G}_{A} = \left[\frac{\partial G'}{\partial n_{A}}\right]_{(T,P,n_{B},n_{C}...n_{i})} ec. 2$$

Esta cantidad también es llamada "Potencial químico de Gibbs" y se representa por el símbolo μ_A .

a P^o y T^o constantes, la energía libre total del sistema será igual producto entre el número de moles y la energía libre molar parcial para cada componente.

$$G' = \sum n_i \overline{G}_i \quad ec. \ 3$$

y la energía libre por mol del sistema será:

$$G = \sum N_i \overline{G}_i \quad ec. \ 4$$

donde N_i es la fracción molar del componente i y G es la energía libre molar integral del sistema.

Luego si a la ec. (2) se resta a la derivada de la ec. (3) y luego se divide todo por $(n_A + n_B + ... + n_i)$, se obtiene la ec. de Gibbs-Duhen

$$N_A dG_A + N_B dG_B + \dots + N_i dG_i = 0 \quad ec. 5$$

Fugacidad

Un gas ideal se define como aquel que obedece la ecuación de estado PV=RT, donde R representa la constante de los gases (8.3143 J/Kmol) Esta relación es usada en la determinación de la energía libre de los gases.

Consideremos un sistema en el cual solo ocurre trabajo mecánico reversible.

dG = VdP - SdT

Si el trabajo es hecho de manera isotérmica por la expansión de un mol de un gas ideal:

$dG = VdP = RTdP / P = RTd \ln P$

Sin embargo, los gases reales no obedecen la relación de los gases ideales en todo rango de temperaturas y presiones y por lo tanto resulta necesario incorporar algún parámetro de medida de dicha no-idealidad.

Fugacidad

Bajo toda condición de T^o y P^o definiremos entonces una cantidad llamada fugacidad talque fV = RT, y por lo tanto:

 $dG = RTd \ln f$

Luego integrando la ecuación anterior a temperatura constante, tendremos que:

 $G = RT \ln f + A$

donde: A- constante de integración.

El cambio de la energía libre que acompaña la expansión de un gas desde la presión estándar de 1 atm a cualquier otra presión es igual al cambio de la energía libre molar parcial de ese gas, luego considerando los 2 limites de integración se obtiene:

$$\Delta \overline{G} = \left(\overline{G} - G^o\right) = RT \ln \left[\frac{f}{f^o}\right]$$

- ✓ Toda sustancia condensada tiene una presión de vapor de equilibrio que cambia con las variaciones de T^o, P^o y composición.
- ✓ De manera similar como cuando comparamos la conducta de un gas real con aquella conducta de un gas ideal, será útil considerar el comportamiento de un componente en una solución relativa a la manera en que se comportaría en una solución ideal.
- ✓ Es conveniente hacer esta comparación en términos de la presión de vapor de la sustancia.
- ✓ Siendo que el vapor es un gas que puede no exhibir la conducta ideal, la comparación debe ser hecha en términos de la fugacidad del vapor.

Actividad

Un líquido ideal o solución sólida se define como aquel en el cual la fugacidad del vapor de cada sustancia es directamente proporcional a la concentración (fracción molar o atómica) de esa sustancia:

$$f_A = f_A^{o} N_A$$

donde:

 f_A^{o} - fugacidad de la sustancia pura a la temperatura considerada (Ley de Raoult).

 f_A / f_A^o - actividad (a_A) de la sustancia A.

Para soluciones ideales se tendrá que:

$$a_A = N_A$$

Actividad

En soluciones reales, la fugacidad del vapor y por lo tanto la actividad de un componente puede ser mayor ó menor que aquella para una solución ideal, y se dirá que presenta una desviación positiva ó negativa, respectivamente de la idealidad.

Una medida de la desviación de la idealidad o bien una medida de la no-idealidad puede entonces ser representada a través del coeficiente de actividad (χ), el cual se define como:

 $\chi_A = a_A / N_A$

de lo anterior, para una solución ideal tendremos que $\chi = 1$, mientras que $\chi > 1$ para una desviación positiva y $\chi < 1$ para una desviación negativa respecto de la idealidad.

Ambos parámetros a y χ pueden ser considerados como factores de corrección que relacionan la conducta real respecto de aquella ideal de una especie en solución.

Conocidos los parámetros anteriores, tendremos que:

$$\Delta \overline{G}_A = \left(\overline{G}_A - G_A^o\right) = RT \ln a_A$$

En soluciones reales, la fugacidad del vapor y por lo tanto la actividad de un componente puede ser mayor ó menor que aquella para una solución ideal, y se dirá que presenta una desviación positiva ó negativa, respectivamente de la idealidad.

La ecuación relaciona la energía libre molar parcial con la actividad y puede observarse que para una sustancia pura A, $\overline{G}_A = \overline{G}_A^o$ y por lo tanto la actividad será 1 cuando la componente se encuentre presente en su estado Standard

$$\Delta \overline{G}_A = \left(\overline{G}_A - G_A^o\right) = RT \ln a_A$$

El primer termino (izquierda) de la ecuación es llamado energía libre molar parcial de mezcla, ó energía libre molar parcial relativa del componente y lo designaremos como:

 \overline{G}_A^M

Luego, la energía libre molar integral de mezcla para una solución binaria de componentes A y B será:

$$G^{M} = \overline{G}_{A}^{M} N_{A} + \overline{G}_{B}^{M} N_{B}$$
$$= \left(\overline{G}_{A} N_{A} + \overline{G}_{B} N_{B}\right) - \left(G_{A}^{o} N_{A} + G_{B}^{o} N_{B}\right)$$

 $2M + O_2 = 2MO$

Los cambios de energía para la formación de un óxido puro, MO, desde un metal puro, M, y oxígeno gaseoso puro a una presión de 1 atm. Pueden ser cuantificados como:

 $\Delta G^{\circ} = 2G^{\circ}_{MO} - 2G^{\circ}_{M} - G^{\circ}_{O_2}$

Puesto que todos los constituyentes están presentes en su estado standard. Si el metal y el óxido no fuesen puros ó si estuviesen disueltos en otros metales y óxidos ó si la presión de oxígeno no fuese unitaria, entonces los cambios de la energía libre quedan representados por:

$$\Delta G = 2G_{MO} - 2G_M - G_{O_2}$$

Luego restando las ecuaciones anteriores y considerando que $\Delta G = 0$ en el equilibrio.

$$-\Delta G^{\circ} = 2\left(\overline{G}_{MO} - G^{\circ}_{MO}\right) - 2\left(\overline{G}_{M} - G^{\circ}_{M}\right) - \left(\overline{G}_{O_2} - G^{\circ}_{O_2}\right)$$

Luego, incorporando el concepto de actividad:

$$-\Delta G^{o} = RT \ln \left(\frac{a_{MO}^{2}}{a_{M}^{2} \cdot f_{O_{2}}}\right) = RT \ln \left(\frac{a_{MO}^{2}}{a_{M}^{2} \cdot p_{O_{2}}}\right)$$

Sabemos que ΔG° tiene un valor numérico específico a determinada presión y temperatura y por lo tanto el término entre paréntesis también será constante y describirá las actividades y fugacidades, ó bien las presiones parciales para los gases ideales de los constituyentes de la reacción.

De lo anterior dicho valor constante lo conoceremos como la constante de equilibrio, K.

 $\Delta G^{\circ} = -RT \ln K$

K, es dependiente de la temperatura, luego a presión y temperatura constante tendremos que:

$$\left(\frac{\Delta G^{o}}{\partial T}\right)_{P} = -\Delta S^{o}$$

y siendo que $G^o = H^o$ - TS^o , tendremos que:

$$\Delta G^{\circ} = \Delta H^{\circ} + T \left(\frac{\partial \Delta G^{\circ}}{\partial T} \right)_{P}$$

Dividiendo todo por $1/T^2$ y reordenando tendremos que:

Utilizando el concepto de constante de equilibrio y combinando:

 $\Delta G^{\circ} = -RT \ln K$

 ΔH° usualmente no varia rápidamente con la temperatura y por ello, en un pequeño rango, será adecuado asumir que es independiente de la temperatura:

$$\left(\frac{\partial \ln K}{\partial T}\right)_{P} = \frac{\Delta H^{o}}{RT^{2}}$$

$$\Rightarrow ln\left(\frac{K_{T_1}}{K_{T_2}}\right) = \frac{\Delta H_T^o}{R} \left(\frac{1}{T_2} - \frac{1}{T_1}\right)$$

$$\Rightarrow \Delta H_T^o = \frac{RT_1T_2(\ln K_{T_1} - \ln K_{T_2})}{T_1 - T_2}$$

Ecuación modificada de Van`t Hoff Isochore

Diagrama de Ellingham para Oxidos

(Presión parcial de Oxigeno)

∆ G*= RT in KO₂ kJ.mof¹

FIGURE 2.8. The oxygen potential diagram for the formation of oxides. M and B indicate the melting and boiling points, with capital symbols for the metals and lower-case symbols for the oxides.

FIGURE 2.8. The oxygen potential diagram for the formation of oxides. M and B indicate the melting and boiling points, with capital symbols for the metals and lower-case symbols for the oxides. 21

 Cu_2S -FeS phase diagram (Schlegel and Schuller, 1952). Actual matte melting temperatures are lower than the liquidus line temperature due to impurities in the matte.

Diagrama ternario de fase del sistema Cu-Fe-S a 1473 K

23

Diagrama de potencial oxígeno-azufre para el sistema Cu-Fe-S-O-SiO₂ a 1473 K

La mayoría de los procesos no-ferrosos de fusión son llevados a cabo entre (1423 - 1523 K)

L₁: liquid copper-rich alloy with very small iron and carbon

L₂: liquid iron-rich alloy with considerably small copper

Escorias asociadas a procesos pirometalurgicos

Company name	Annual	Furnace Type	Тет р. ⁰ С	PO ₂ atm	Slag analysis %			
	Prod. (t/y)				Cu	Fe	CaO	SiO ₂
Mitsubishi Matariala Co	222000	Mitsubish	1250	10-8.5	0.7	39.7	4.6	36.2
Materials Co		Stag Cleaning						
Hobi kyodo	283660	Flash	1250	10-9	0.86	37.6	2.7	34.2
Smelting Co		Smerung						
Codelco	364655	Teniente	1250	10-7-8	10	39.3	0.85	27.5
(caletones)		Converter						
Outokumpu		Direct Blister	1300	10-5	6-10	20	CaO/	SiO ₂ =1
(Project)		Copper						
		Smelting						
Codelco			1250				CaO/SiO ₂ =1	
(Project)		Direct Blister						

FeO-Fe₂O₃ Diagrama de Fases

30

Liquidus surface in the FeO-Fe₂O₃-SiO₂ system at 1200°C and 1250°C (Muan, 1955). Copper smelting processes typically operate near magnetite saturation (line CD).

Effect of temperature and composition on the viscosity of FeO, Fe₂O₃, SiO₂ slags, g/m·s (Vartiainen, 1998). Viscosity is seen to increase with increasing % SiO₂. For viscosity in kg/m·s, divide by 1000.

Homogeneous liquid region of FeO_X-CaO-SiO₂ slag at 1300 °C

Phase diagram of Fe_3O_4 -CaO-SiO₂ slag from 1300 to 1400 °C and pO_2 of 10⁻⁶ atm (stable iron oxide: Fe_3O_4).

Liquidus in the "FeO" corner of FeO-CaO-SiO₂ slag at 1300 °C (stable iron oxide: "FeO").

Application in Teniente Converter and Slag Cleaning

. %Cu in industrial smelting furnace slag (before slag cleaning) as a function of %Cu in matte, 1999-2001. The increase in %Cu-in-slag above 60% Cu-in-matte is notable.

<u>Ejemplo 5:</u>

Calcule la presión parcial de oxígeno presente en la reacción de molibdeno con su oxido a 1600 °C cuando a) ambos sólidos se encuentran en su estado puro y b) la actividad del óxido es 0.5.

Ejemplo 5, Solución:

La energía libre Standard para la formación del óxido, MoO_2 será:

$$Mo_{(S)} + O_{2(g)} = MoO_{2(s)}$$

 $\Delta G^{\circ} = -578200 + 166.5T \quad J (298 - 2273 K)$

 $\Delta G^{\circ} = -266300 \quad J(1873 \, \text{K})$

Presión parcial

Ejemplo 5, Solución:

$$Mo_{(S)} + O_{2(g)} = MoO_{2(s)}$$

La constante de equilibrio para la reacción de oxidación será:

$$\Delta G^{\circ} = -RT \ln K = -19.15T \log K$$

 $log K = [266300 / (19.15 \cdot 1873)] = 7.43$

$$K = \left[\frac{a_{MoO_2}}{a_{Mo}p_{O_2}}\right] = 2.66 \cdot 10^7$$

Ejemplo 5, Solución:

(a) Cuando tanto el molibdeno metálico como su óxido son puros, ambos sólidos estarán en sus estados Standard y por lo tanto sus actividades serán iguales a 1. Entonces:

$$p_{O_2} = \frac{1}{2.66 \cdot 10^7} = 3.7 \cdot 10^{-8}$$

(b) Cuando la actividad del óxido es 0.5, tendremos que:

$$p_{O_2} = \frac{0.5}{2.66 \cdot 10^7} = 1.88 \cdot 10^{-8}$$

<u>Ejemplo 6:</u>

En un proceso de reducción con C e H_2 se tiene una mezcla volumétrica de gases: 40% CO, 10% CO₂, 30% H_2 y 20 N_2 . La mezcla es calentada a 1000 °C y a una presión de 1 atm. La composición de la mezcla cambiará debido a la generación de vapor de agua. Encontrar dicha composición de equilibrio.

Ejemplo 6, Solución:
$$J(298 - 2273 K)$$

- $C + O_2 = CO_2$: $\Delta G^o = -394800 0.83 \cdot T$ (1)
- $C + \frac{1}{2}O_2 = CO:$ $\Delta G^o = -112900 86.51 \cdot T$ (2)
- $H_2 + \frac{1}{2}O_2 = H_2O: \qquad \Delta G^o = -247000 + 55.85 \cdot T$ (3)

Restando las ecuaciones (2) y (3) de (1), tendremos que:

Ejemplo 6, Solución:

J (298 – 2273 K)

 $CO + H_2O = CO_2 + H_2$: $\Delta G^o = -34500 + 29.83 \cdot T$

Asumiendo comportamiento ideal de los gases, la constante de equilibrio de esta reacción será:

$$K = \left[\frac{p_{CO_2} \cdot p_{H_2}}{p_{CO} \cdot p_{H_2O}}\right] = 0.721 \quad (1273K) \quad (4)$$

En el problema tenemos 4 incógnitas (presiones) y por lo tanto necesitamos otras 3 ecuaciones para resolver el sistema.

La presión total de la mezcla gaseosa es 1 atm. y sabemos que hay 20% volumétrico de N_2 . Luego:

Ejemplo 6, Solución:

$$p_{CO} + p_{CO_2} + p_{H_2} + p_{H_2O} = 0.8$$
 (5)

También sabemos que debe existir conservación de los moles de cada elemento (n_i) , en cada uno de los compuestos y dichas cantidades pueden ser evaluadas desde la composición inicial de la mezcla gaseosa, es decir:

$$n_{C} : n_{CO} + n_{CO_{2}} = 0.5$$

$$n_{H} : 2n_{H_{2}} + 2n_{H_{2}O} = 0.6$$

$$n_{O} : n_{CO} + 2n_{CO_{2}} + n_{H_{2}O} = 0.6$$

$$\Rightarrow \qquad n_{C} = \frac{5}{6}n_{H} \qquad n_{H} = n_{O}$$

Ejemplo 6, Solución:

Por lo tanto:
$$(n_{CO} + n_{CO_2}) = 1.67 \cdot (n_{H_2} + n_{H_2O})$$

 $(n_{CO} + 2n_{CO_2} + n_{H_2O}) = 2 \cdot (n_{H_2} + n_{H_2O})$
Sabemos que las presiones parciales de un gas $p_i = \left[\frac{n_i}{n_T}\right] p_T$

$$(p_{CO} + p_{CO_2}) = 1.67 \cdot (p_{H_2} + p_{H_2O})$$
(6)
$$(p_{CO} + 2p_{CO_2} + p_{H_2O}) = 2 \cdot (p_{H_2} + p_{H_2O})$$
(7)

Luego se tienen las ecuaciones (4), (5), (6) y (7) que resuelven el sistema para las 4 incógnitas.

Presión parcial

Ejemplo 6, Solución:

por ejemplo, restando la ecuación (6) de (5) obtendremos:

 $2.67 p_{H_2} + 2.67 p_{H_2O} = 0.8$ $\implies p_{H_2} = 0.3 - p_{H_2O} \quad (8)$

Similarmente, restando (7) y (8) desde (5) tendremos que:

$$\Rightarrow \qquad p_{CO_2} = 0.1 - p_{H_2O} \qquad (9)$$

y combinando (5), (8) *y* (9):

$$\Rightarrow \qquad p_{CO} = 0.4 - p_{H_2O} \quad (10)$$

Presión parcial

Ejemplo 6, Solución:

Finalmente sustituyendo (8), (9) y (10) en (4):

$$K = \left[\frac{\left(0.1 - p_{H_2O}\right) \cdot \left(0.3 - p_{H_2O}\right)}{\left(0.4 - p_{H_2O}\right) \cdot p_{H_2O}}\right] = 0.721 \quad (1273K)$$

$$\Rightarrow \qquad 0.28 p_{H_{20}}^2 - 0.69 p_{H_{20}} - 0.03 = 0$$

Resolviendo:

$$p_{H_2O} = 0.04$$
 $p_{H_2} = 0.26$
 $p_{CO_2} = 0.06$ $p_{CO} = 0.44$

ERROR: syntaxerror OFFENDING COMMAND: --nostringval--STACK: /Title () /Subject (D:20110328100254-04'00') /ModDate () /Keywords (PDFCreator Version 0.9.5) /Creator (D:20110328100254-04'00') /Creator (D:20110328100254-04'00') /CreationDate (Leandro Voisin A.) /Author -mark-