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To my students

. . . Progress in design of new structures seems to be unlimited.

Last sentence of article: “The Use of the Electronic
Computer in Structural Analysis,” by K. J. Bathe
(undergraduate student), published in Impact, Journal of
the University of Cape Town Engineering Society, pp. 57—
61, 1967.
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Preface

Finite element procedures are now an important and frequently indispensable part of
engineering analysis and design. Finite element computer programs are now widely used in
practically all branches of engineering for the analysis of structures, solids, and fluids.

My objective in writing this book was to provide a text for upper-level undergraduate
and graduate courses on finite element analysis and to provide a book for self-study by
engineers and scientists.

With this objective in mind, I have developed this book from my earlier publication
Finite Element Procedures in Engineering Analysis (Prentice-Hall, 1982). I have kept the
same mode of presentation but have consolidated, updated, and strengthened the earlier
writing to the current state of finite element developments. Also, I have added new sections,
both to cover some important additional topics for completeness of the presentation and to
facilitate (through exercises) the teaching of the material discussed in the book.

This text does not present a survey of finite element methods. For such an endeavor,
anumber of volumes would be needed. Instead, this book concentrates only on certain finite
element procedures, namely, on techniques that I consider very useful in engineering
practice and that will probably be employed for many years to come. Also, these methods
are introduced in such a way that they can be taught effectively—and in an exciting
manner—to students.

An important aspect of a finite element procedure is its reliability, so that the method
can be used in a confident manner in computer-aided design. This book emphasizes this
point throughout the presentations and concentrates on finite element procedures that are
general and reliable for engineering analysis.

Hence, this book is clearly biased in that it presents only certain finite element
procedures and in that it presents these procedures in a certain manner. In this regard, the
book reflects my philosophy toward the teaching and the use of finite element methods.



xiv Preface

While the basic topics of this book focus on mathematical methods, an exciting and
thorough understanding of finite element procedures for engineering applications is
achieved only if sufficient attention is given to both the physical and mathematical charac-
teristics of the procedures. The combined physical and mathematical understanding greatly
enriches our confident use and further development of finite element methods and is there-
fore emphasized in this text.

These thoughts also indicate that a collaborauon between engineers and mathemati-
cians to deepen our understanding of finite element methods and to further advance in the
fields of research can be of great benefit. Indeed, I am thankful to the mathematician Franco
Brezzi for our research collaboration in this spirit, and for his valuable suggestions regard-
ing this book.

I consider it one of the greatest achievements for an educator to write a valuable book.
In these times, all fields of engineering are rapidly changing, and new books for students are
needed in practically all areas of engineering. I am therefore grateful that the Mechanical
Engineering Department of M.I.T. has provided me with an excellent environment in which.
to pursue my interests in teaching, research, and scholarly writing. While it required an
immense effort on my part to write this book, I wanted to accomplish this task as a
commitment to my past and future students, to any educators and researchers who might
have an interest in the work, and, of course, to improve upon my teaching at M.I.T.

I have been truly fortunate to work with many outstanding students at M.I.T., for
which I am very thankful. It has been a great privilege to be their teacher and work with
them. Of much value has also been that I have been intimately involved, at my company
ADINA R & D, Inc., in the development of finite element methods for industry. This
involvement has been very beneficial in my teaching and research, and in my writing of this
book.

A text of significant depth and breadth on a subject that came to life only a few decades
ago and that has experienced tremendous advances, can be written only by an author who
has had the benefit of interacting with many people in the field. I would like to thank all my
students and friends who contributed—and will continue to contribute—to my knowledge
and understanding of finite element methods. My interaction with them has given me great
joy and satisfaction.

1 also would like to thank my secretary, Kristan Raymond, for her special efforts in
typing the manuscript of this text.

Finally, truly unbounded thanks are due to my wife, Zorka, and children, Ingrid and
Mark, who, with their love and their understanding of my efforts, supported me in writing
this book.

K. J. Bathe



Il CHAPTER ONE I

An Introduction
to the Use of Finite
Element Procedures

1.1 INTRODUCTION

Finite element procedures are at present very widely used in engineering analysis, and we
can expect this use to increase significantly in the years to come. The procedures are
employed extensively in the analysis of solids and structures and of heat transfer and fluids,
and indeed, finite element methods are useful in virtually every field of engineering analysis.
The development of finite element methods for the solution of practical engineering
problems began with the advent of the digital computer. That is, the essence of a finite
element solution of an engineering problem is that a set of governing algebraic equations is
established and solved, and it was only through the use of the digital computer that this
process could be rendered effective and given general applicability. These two properties—
effectiveness and general applicability in engineering analysis—are inherent in the theory
used and have been developed to a high degree for practical computations, so that finite
element methods have found wide appeal in engineering practice.
’ As is often the case with original developments, it is rather difficult to quote an exact
“date of invention,” but the roots of the finite element method can be traced back to three
separate research groups: applied mathematicians—see R. Courant [A]; physicists—see
J. L. Synge [A]; and engineers—see J. H. Argyris and S. Kelsey [A)]. Although in principle
published already, the finite element method obtained its real impetus from the develop-
ments of engineers. The original contributions appeared in the papers by J. H. Argyris and
S. Kelsey [A]; M. J. Turner, R. W. Clough, H. C. Martin, and L. J. Topp [A]; and R. W.
Clough [A]. The name “finite element” was coined in the paper by R. W. Clough [Al].
Important early contributions were those of J. H. Argyris [A] and O. C. Zienkiewicz and
Y. K. Cheung [A]. Since the early 1960s, a large amount of research has been devoted to
the technique, and a very large number of publications on the finite element method is

1



2 An Introduction to the Use of Finite Element Procedures Chap. 1

available (see, for example, the compilation of references by A. K. Noor [A] and the Finite
Element Handbook edited by H. Kardestuncer and D. H. Norrie [A)]).

The finite element method in engineering was initially developed on a physical basis
for the analysis of problems in structural mechanics. However, it was soon recognized that
the technique could be applied equally well to the solution of many other classes of
problems. The objective of this book is to present finite element procedures comprehen-
sively and in a broad context for solids and structures, field problems (specifically heat
transfer), and fluid flows.

To introduce the topics of this book we consider three important items in the following
sections of this chapter. First, we discuss the important point that in any analysis we always
select a mathematical model of a physical problem, and then we solve that model. The finite
element method is employed to solve very complex mathematical models, but it is important
to realize that the finite element solution can never give more information than that-
contained in the mathematical model.

Then we discuss the importance of finite element analysis in the complete process of
computer-aided design (CAD). This is where finite element analysis procedures have their
greatest utility and where an engineer is most likely to encounter the use of finite element
methods.

In the last section of this chapter we address the question of how to study finite element
methods. Since a voluminous amount of information has been published on these tech-
niques, it can be rather difficult for an engineer to identify and concentrate on the most
important principles and procedures. Our aim in this section is to give the reader some
guidance in studying finite element analysis procedures and of course also in studying the
various topics discussed in this book.

1.2 PHYSICAL PROBLEMS, MATHEMATICAL MODELS,
AND THE FINITE ELEMENT SOLUTION

The finite element method is used to solve physical problems in engineering analysis and
design. Figure 1.1 summarizes the process of finite element analysis. The physical problem
typically involves an actual structure or structural component subjected to certain loads.
The idealization of the physical problem to a mathematical model requires certain assump-
tions that together lead to differential equations governing the mathematical model (see
Chapter 3). The finite element analysis solves this mathematical model. Since the finite
element solution technique is a numerical procedure, it is necessary to assess the solution
accuracy. If the accuracy criteria are not met, the numerical (i.e., finite element) solution
has to be repeated with refined solution parameters (such as finer meshes) until a sufficient
accuracy is reached.

It is clear that the finite element solution will solve only the selected mathematical
model and that all assumptions in this model will be reflected in the predicted response. We
cannot expect any more information in the prediction of physical phenomena than the
information contained in the mathematical model. Hence the choice of an appropriate
mathematical model is crucial and completely determines the insight into the actual physical
problem that we can obtain by the analysis.
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Figure 1.1 The process of finite element analysis

Let us emphasize that, by our analysis, we can of course only obtain insight into the
physical problem considered: we cannot predict the response of the physical problem
exactly because it is impossible to reproduce even in the most refined mathematical model
all the information that is present in nature and therefore contained in the physical problem.

Once a mathematical model has been solved accurately and the results have been
interpreted; we may well decide to consider next a refined mathematical model in order to
increase our insight into the response of the physical problem. Furthermore, a change in the
physical problem may be necessary, and this in turn will also lead to additional mathemat-
ical models and finite element solutions (see Fig. 1.1).

The key step in engineering analysis is therefore choosing appropriate mathematical
models. These models will clearly be selected depending on what phenomena are to be
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predicted, and it is most important to select mathematical models that are reliable and
effective in predicting the quantities sought.

To define the reliability and effectiveness of a chosen model we think of a very-
comprehensive mathematical model of the physical problem and measure the response of
our chosen model against the response of the comprehensive model. In general, the very-
comprehensive mathematical model is a fully three-dimensional description that also in-
cludes nonlinear effects.

Effectiveness of a mathematical model
The most effective mathematical model for the analysis is surely that one which yields
the required response to a sufficient accuracy and at least cost.

Reliability of a mathematical model
The chosen mathematical model is reliable if the required response is known to be
predicted within a selected level of accuracy measured on the response of the very-
comprehensive mathematical model.

Hence to assess the results obtained by the solution of a chosen mathematical model,
it may be necessary to also solve higher-order mathematical models, and we may well think
of (but of course not necessarily solve) a sequence of mathematical models that include
increasingly more complex effects. For example, a beam structure (using engineering termi-
nology) may first be analyzed using Bernoulli beam theory, then Timoshenko beam theory,
then two-dimensional plane stress theory, and finally using a fully three-dimensional
continuum model, and in each case nonlinear effects may be included. Such a sequence of
models is referred to as a hierarchy of models (see K. J. Bathe, N. S. Lee, and M. L. Bucalem
[A]). Clearly, with these hierarchical models the analysis will include ever more complex
response effects but will also lead to increasingly more costly solutions. As is well known,
a fully three-dimensional analysis is about an order of magnitude more expensive (in
computer resources and engineering time used) than a two-dimensional solution.

Let us consider a simple example to illustrate these ideas.

Figure 1.2(a) shows a bracket used to support a vertical load. For the analysis, we need
to choose a mathematical model. This choice must clearly depend on what phenomena are
to be predicted and on the geometry, material properties, loading, and support conditions
of the bracket.

We have indicated in Fig. 1.2(a) that the bracket is fastened to a very thick steel
column. The description “very thick” is of course relative to the thickness 7 and the height
h of the bracket. We translate this statement into the assumption that the bracket is fastened
to a (practically) rigid column. Hence we can focus our attention on the bracket by applying
a “rigid column boundary condition” to it. (Of course, at a later time, an analysis of the
column may be required, and then the loads carried by the two bolts, as a consequence of
the load W, will need to be applied to the column.)

We also assume that the load W is applied very slowly. The condition of time “very
slowly” is relative to the largest natural period of the bracket; that is, the time span over
which the load W is increased from zero to its full value is much longer than the fundamen-
tal period of the bracket. We translate this statement into requiring a static analysis (and not
a dynamic analysis).
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With these preliminary considerations we can now establish"an appropriate mathe-
matical model for the analysis of the bracket—depending on what phenomena are to be
predicted. Let us assume, in the first instance, that only the total bending moment at section
AA in the bracket and the deflection at the load application are sought. To predict these
quantities, we consider a beam mathematical model including shear deformations [see
Fig. 1.2(b)] and obtain

M= WL
1.1
= 27,500 N cm .1
_IWIL+ )P | WL+ 1)
Sluwav = 3 =—Fr * Ttac
° (12)
= 0.053 cm
7/
Uniform
thickness t W= 1000 N
@4 Two bolts L =27.6cm
k: A rv=05¢em
L E =2x 107 N/cm?
A v =03
h h =6.0cm
v t =04cm
n
— L . Pin
® A * w
I— Very thick steel column
%
(a) Physical problem of steel bracket
! A
—>~ == ry=05cm
, |
2 : W= 1000 N
1 | }
1 1 h=6cm Y
X —-— - — - —y—-
1 1
4— ' s
|
4: t :jl
]
|

L+ ry=28cm
(b) Beam model

Figure 1.2 Bracket to be analyzed and two mathematical models
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Equilibrium equations (see Example 4.2)
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% in domain of bracket
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7 = 0, T, = 0 on surfaces except at point B
and at imposed zero displacements

Stress-strain relation (see Table 4.3):
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E = Young’s modulus, v = Poisson’s ratio
Strain-displacement relations (see Section 4.2):

ou dv ou dv
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(c) Plene stress model

Figure 1.2 (continued)

where L and ry are given in Fig. 1.2(a), E is the Young’s modulus of the steel used, G is the
shear modulus, 7 is the moment of inertia of the bracket arm (/ = s54%), A is the cross-
sectional area (A = ht), and the factor £ is a shear correction factor (see Section 5.4.1).

Of course, the relations in (1.1) and (1.2) assume linear elastic infinitesimal displace-
ment conditions, and hence the load must not be so large as to cause yielding of the material
and/or large displacements.

Let us now ask whether the mathematical model used in Fig. 1.2(b) was reliable and
effective. To answer this question, strictly, we should consider a very-comprehensive math-
ematical model, which in this case would be a fully three-dimensional representation of the



Sec. 1.2 Physical Problems, Mathematical Models, the Finite Element Solution 7

full bracket. This model should include the two bolts fastening the bracket to the (assumed
rigid) column as well as the pin through which the load W is applied. The three-dimensional
solution of this model using the appropriate geometry and material data would give the
numbers against which we would compare the answers given in (1.1) and (1.2). Note that
this three-dimensional mathematical model contains contact conditions (the contact is
between the bolts, the bracket, and the column, and between the pin carrying the load and
the bracket) and stress concentrations in the fillets and at the holes. Also, if the stresses
are high, nonlinear material conditions should be incluped in the model. Of course, an
analytical solution of this mathematical model is not available, and all we can obtain is a
numerical solution. We describe in this book how such solutions can be calculated using
finite element procedures, but we may note here already that the solution would be rela-
tively expensive in terms of computer resources and engineering time used.

Since the three-dimensional comprehensive mathematical model is very likely too
comprehensive a model (for the analysis questions we have posed), we instead may consider
alinear elastic two-dimensional plane stress model as shown in Fig. 1.2(c). This mathemat-
ical model represents the geometry of the bracket more accurately than the beam model and
assumes a two-dimensional stress situation in the bracket (see Section 4.2). The bending
moment at section AA and deflection under the load calculated with this model can be
expected to be quite close to those calculated with the very-comprehensive three-
dimensional model, and certainly this two-dimensional model represents a higher-order
model against which we can measure the adequacy of the results given in (1.1) and (1.2).
Of course, an analytical solution of the model is not available, and a numerical solution must
be sought.

Figures 1.3(a) to (¢) show the geometry and the finite element discretization used in
the solution of the plane stress mathematical model and some stress and displacement
results obtained with this discretization. Let us note the various assumptions of this math-
ematical model when compared to the more comprehensive three-dimensional model dis-
cussed earlier. Since a plane stress condition is assumed, the only nonzero stresses are 7,
Tyy, and 7xy. Hence we assume that the stresses 7., 7y, and 7, are zero. Also, the actual bolt
fastening and contact conditions between the steel column and the bracket are not included

O

O

(a) Geometry of bracket as obtained from a CAD program

Figure 1.3 Plane stress analysis of bracket in Fig. 1.2. AutoCAD was used to create the
geometry, and ADINA was used for the finite element analysis.



{b) Mesh of nine-node elements used in finite element dis-
cretization

{c) Deflected shape. Deflections are drawn with a magnifi-
cation factor of 100 together with the original configura-
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has been obtained (see Section 4.3.6)

Figure 1.3 (continued)
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in the model, and the pin carrying the load into the bracket is not modeled. However, since
our objective is only to predict the bending moment at section AA and the deflection at point
B, these assumptions are deemed reasonable and of relatively little influence.

Let us assume that the results obtained in the finite element solution of the mathemat-
ical model are sufficiently accurate that we can refer to the solution given in Fig. 1.3. as the
solution of the plane stress mathematical model.

Figure 1.3(c) shows the calculated deformed configuration. The deflection at the point
of load application B as predicted in the plane stress solution is

8atiosaw = 0.064 cm (1.3)
Also, the total bending moment predicted at section AA is
M|.—o = 27,500 N cm (1.4)

Whereas the same magnitude of bending moment at section AA is predicted by the
beam model and the plane stress model,’ the deflection of the beam model is considerably
less than that predicted by the plane stress model [because of the assumption that the beam
in Fig. 1.2(b) is supported rigidly at its left end, which neglects any deformation between
the beam end and the bolts].

Considering these results, we can say that the beam mathematical model in Fig. 1.2(b)
is reliable if the required bending moment is to be predicted within 1 percent and the
deflection is to be predicted only within 20 precent accuracy. The beam model is of course
also effective because the calculations are performed with very little effort.

On the other hand, if we next ask for the maximum stress in the bracket, then the
simple mathematical beam model in Fig. 1.2(b) will not yield a sufficiently accurate answer.
Specifically, the beam model totally neglects the stress increase due to the fillets.”> Hence a
plane stress solution including the fillets is necessary.

The important points to note here are the following.

1. The selection of the mathematical model must depend on the response to be predicted
(i.e., on the questions asked of nature).

2. The most effective mathematical model is that one which delivers the answers to the
questions in a reliable manner (i.e., within an acceptable error) with the least amount
of effort.

3. A finite element solution can solve accurately only the chosen mathematical model
(e.g., the beam model or the plane stress model in Fig. 1.2) and cannot predict any
more information than that contained in the model.

4. The notion of reliability of the mathematical model hinges upon an accuracy assess-
ment of the results obtained with the chosen mathematical model (in response to the
questions asked) against the results obtained with the very-comprehensive mathemat-
ical model. However, in practice the very-comprehensive mathematical model is

' The bending moment at section AA in the plane stress model is calculated here froin the finite element
nodal point forces, and for this statically determinate analysis problem the internal resisting moment must be equal
to the externally applied moment (see Example 4.9).

20f course, the effect of the fillets could be estimated by the use of stress concentration factors that have
been established from plane stress solutions.
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usually not solved, and instead engineering experience is used, or a more refined
mathematical model is solved, to judge whether the mathematical model used was
adequate (i.e., reliable) for the response to be predicted.

Finally, there is one further important general point. The chosen mathematical model
may contain extremely high stresses because of sharp corners, concentrated loads, or other
effects. These high stresses may be due solely to the simplifications used in the model when
compared with the very-comprehensive mathematical model (or with nature). For example,
the concentrated load in the plane stress model in Fig. 1.2(c) is an idealization of a pressure
load over a small area. (This pressure would in nature be transmitted by the pin carrying
the load into the bracket.) The exact solution of the mathematical model in Fig. 1.2(c) gives
an infinite stress at the point of load application, and we must therefore expect a very large
stress at point B as the finite element mesh is refined. Of course, this very large stress is an
artifice of the chosen model, and the concentrated load should be replaced by a pressure
load over a small area when a very fine discretization is used (see further discussion).
Furthermore, if the model then still predicts a very high stress, a nonlinear mathematical
model would be appropriate.

Note that the concentrated load in the beam model in Fig. 1.2(b) does not introduce
any solution difficulties. Also, the right-angled sharp corners at the support of the beam
model, of course, do not introduce any solution difficulties, whereas such corners in a plane
stress model would introduce infinite stresses. Hence, for the plane stress model, the corners
have to be rounded to more accurately represent the geometry of the actual physical bracket.

We thus realize that the solution of a mathematical model may result in artificial
difficulties that are easily removed by an appropriate change in the mathematical model to
more closely represent the actual physical situation. Furthermore, the choice of a more
encompassing mathematical model may result, in such cases, in a decrease in the required
solution effort.

While these observations are of a general nature, let us consider once again,
specifically, the use of concentrated loads. This idealization of load application is exten-
sively used in engineering practice. We now realize that in many mathematical models (and
therefore also in the finite element solutions of these models), such loads create stresses of
infinite value. Hence, we may ask under what conditions in engineering practice solution
difficulties may arise. We find that in practice solution difficulties usually arise only when
the finite element discretization is very fine, and for this reason the matter of infinite stresses
under concentrated loads is frequently ignored. As an example, Fig. 1.4 gives finite element
results obtained in the analysis of a cantilever, modeled as a plane stress problem. The
cantilever is subjected to a concentrated tip load. In practice, the 6 X 1 mesh is usually
considered sufficiently fine, and clearly, a much finer discretization would have to be used
to accurately show the effects of the stress singularities at the point of load application and
at the support. As already pointed out, if such a solution is pursued, it is necessary to change -
the mathematical model to more accurately represent the actual physical situation of the
structure. This change in the mathematical model may be important in self-adaptive finite
element analyses because in such analyses new meshes are generated automatically and
artificial stress singularities cause—artificially—extremely fine discretizations.

We refer to these considerations in Section 4.3.4 when we state the general elasticity
problem considered for finite element solution.
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(a) Geometry, boundary conditions, and material data.
Bernoulli beam theory results: § = 0.16, Tmax = 120
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(b) Typical finite element discretization,

6 x 1 mesh of 9-node elements;
results are: 8 = 0.16, Tyax = 116

Figure 1.4 Analysis of a cantilever as a plane stress problem

In summary, we should keep firmly in mind that the crucial step in any finite element
analysis is always choosing an appropriate mathematical model since a finite element
solution solves only this model. Furthermore, the mathematical model must depend on the
analysis questions asked and should be reliable and effective (as defined earlier). In the
process of analysis, the engineer has to judge whether the chosen mathematical model has
been solved to a sufficient accuracy and whether the chosen mathematical model was
appropriate (i.e., reliable) for the questions asked. Choosing the mathematical model,
solving the model by appropriate finite element procedures, and judging the results are the
fundamental ingredients of an engineering analysis using finite element methods.

1.3 FINITE ELEMENT ANALYSIS AS AN INTEGRAL PART
OF COMPUTER-AIDED DESIGN

Although a most exciting field of activity, engineering analysis is clearly only a support
activity in the larger field of engineering design. The analysis process helps to identify good
new designs and can be used to improve a design with respect to performance and cost.

In the early use of finite element methods, only specific structures were analyzed,
mainly in the aerospace and civil engineering industries. However, once the full potential
of finite element methods was realized and the use of computers increased in engineering
design environments, emphasis in research and development was placed upon making the
use of finite element methods an integral part of the design process in mechanical, civil, and
aeronautical engineering.
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Figure 1.5 The field of CAD/CAM viewed schematically

Figure 1.5 gives an overview of the steps in a typical computer-aided design process.
Finite element analysis is only a small part of the complete process, but it is an important
part.

We note that the first step in Figure 1.5 is the creation of a geometric representation
of the design part. Many different computer programs can be employed (e.g., a typical and
popular program is AutoCAD). In this step, the material properties, the applied loading and
boundary conditions on the geometry also need to be defined. Given this information, a
finite element analysis may proceed. Since the geometry and other data of the actual
physical part may be quite complex, it is usually necessary to simplify the geometry and
loading in order to reach a tractable mathematical model. Of course, the mathematical
model should be reliable and effective for the analysis questions posed, as discussed in the
preceding section. The finite element analysis solves the chosen mathematical model, which
may be changed and evolve depending on the purpose of the analysis (see Fig. 1.1).

Considering this process—which generally is and should be performed by engineer-
ing designers and not only specialists in analysis—we recognize that the finite element
methods must be very reliable and robust. By reliability of the finite element methods we
now’ mean that in the solution of a well-posed mathematical model, the finite element
procedures should always for a reasonable finite element mesh give a reasonable solution,

3 Note that this meaning of “reliability of finite element methods” is different from that of “reliability of a
mathematical model” defined in the previous section.
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and if the mesh is reasonably fine, an accurate solution should always be obtained. By
robustness of the finite element methods we mean that the performance of the finite element
procedures should not be unduly sensitive to the material data, the boundary conditions,
and the loading conditions used. Therefore, finite element procedures that are not robust
will also not be reliable.

For example, assume that in the plane stress solution of the mathematical model in
Fig. 1.2(c), any reasonable finite element discretization using a certain element type is
employed. Then the solution obtained from any such analysis should not be hugely in error,
that is, an order of magnitude larger (or smaller) than the exact solution. Using an unreliable
finite element for the discretization would typically lead to good solutions for some mesh
topologies, whereas with other mesh topologies it would lead to bad solutions. Elements
based on reduced integration with spurious zero energy modes can show this unreliable
behavior (see Section 5.5.6).

Similarly, assume that a certain finite element discretization of a mathematical model
gives accurate results for one set of material parameters and that a small change in the
parameters corresponds to a small change in the exact solution of the mathematical model.
Then the same finite element discretization should also give accurate results for the math-
ematical mode] with the small change in material parameters and not yield results that are
very much in error.

These considerations regarding effective finite element discretizations are very im-
portant and are discussed in the presentation of finite element discretizations and their
stability and convergence properties (see Chapters 4 to 7). For use in engineering design,
it is of utmost importance that the finite element methods be reliable, robust, and of course
efficient. Reliability and robustness are important because a designer has relatively little
time for the process of analysis and must be able to obtain an accurate solution of the chosen
mathematical model quickly and without “trial and error.” The use of unreliable finite
element methods is simply unacceptable in engineering practice.

An important ingredient of a finite element analysis is the calculation of error esti-
mates, that is, estimates of how closely the finite element solution approximates the exact
solution of the mathematical model (see Section 4.3.6). These estimates indicate whether a
specific finite element discretization has indeed yielded an accurate response prediction, and
a designer can then rationally decide whether the given results should be used. In the case
that unacceptable results have been obtained using unreliable finite element methods, the
difficulty is of course how to obtain accurate resuits.

Finally, we venture to comment on the future of finite element methods in computer-
aided design. Surely, many engineering designers do not have time to study finite element
methods in depth or finite element procedures in general. Their sole objective is to use these
techniques to enhance the design product. Hence the integrated use of finite element meth-
ods in CAD in the future will probably involve to an increasingly smaller degree the scrutiny
of finite element meshes during the analysis process. Instead, we expect that in linear elastic
static analysis the finite element solution process will be automatized such that, given a
mathematical model to be solved, the finite element meshes will be automatically created,
the solution will be calculated with error estimates, and depending on the estimated errors
and the desired solution accuracy, the finite element discretization will be automatically
refined (without the analyst or the designer ever seeing a finite element mesh) until the
required solution accuracy has been attained. In this automatic analysis process—in which
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of course the engineer must still choose the appropriate mathematical model for analysis—
the engineer can concentrate on the design aspects while using analysis tools with great
efficiency and benefit. While this design and analysis environment will be commonly
available for linear elastic static analysis, the dynamic or nonlinear analysis of structures
and fluids will probably still require from the engineer a greater degree of involvement and
expertise in finite element methods for many years to come.

With these remarks we do not wish to suggest overconfidence but to express a realistic
outlook with respect to the valuable and exciting future use of finite element procedures. For
some remarks on overconfidence in regard to finite element methods (which are still
pertinent after almost two decades), see the article “A Commentary on Computational
Mechanics” by J. T. Oden and K. J. Bathe [A].

1.4 A PROPOSAL ON HOW TO STUDY FINITE ELEMENT METHODS

With a voluminous number of publications available on the use and development of finite
element procedures, it may be rather difficult for a student or teacher to identify an effective
plan of study. Of course, such a plan must depend on the objectives of the study and the time
available.

In very general terms, there are two different objectives:

1. To learn the proper use of finite element methods for the solution of complex prob-
lems, and

2. To understand finite element methods in depth so as to be able to pursue research on
finite element methods.

This book has been written to serve students with either objective, recognizing that
the population of students with objective 1 is the much larger one and that frequently a
student may first study finite element methods with objective 1 and then develop an increas-
ing interest in the methods and also pursue objective 2. While a student with objective 2will
need to delve still much deeper into the subject matter than we do in this book, it is hoped
that this book will provide a strong basis for such further study and that the “philosophy”
of this text (see Section 1.3) with respect to the use of and research into finite element
methods will be valued.

Since this book has not been written to provide a broad survey of finite element
methods—indeed, for a survey, a much more comprehensive volume would be necessary—
it is clearly biased toward a particular way of introducing finite element procedures and
toward only certain finite element procedures.

The finite element methods that we concentrate on in this text are deemed to be
effective techniques that can be used (and indeed are abundantly used) in engineering
practice. The methods are also considered basic and important and will probably be em-
ployed for a long time to come.

The issue of what methods should be used, and can be best used in engineering
practice, is important in that only reliable techniques should be employed (see Section 1.3),
and this book concentrates on the discussion of only such methods.
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In introducing finite element procedures we endeavor to explain the basic concepts
and equations with emphasis on physical explanations. Also, short examples are given to
demonstrate the basic concepts used, and exercises are provided for hand calculations and
the use of a finite element computer program.

The preceding thoughts lead to our proposal for the study of finite element procedures.
If objective 1 is being pursued, the reader will be mostly interested in the basic formulations,
the properties of the finite elements and solution algorithms, and issues of convergence and
efficiency.

An important point to keep in mind is that numerical finite element procedures are
used to solve a mathematical model (with some reasonably small solution errors) (see
Section 1.2). Hence, it is important for the user of a finite element computer program to
always be able to judge the quality of the finite element results obtained in a solution. We
demonstrate in this book how such judging is properly performed.

However, if objective 2 is being pursued, much more depth in the formulations and
numerical algorithms must be acquired. This text provides a broad basis for such study (but
of course does not give all details of derivations and implementations).

In either case, we believe that for a study of finite element methods, it is effective to
use a finite element computer program while learning about the theory and numerical
procedures. Then, at the same time as the theoretical concepts are being studied on paper,
it will be possible to test and demonstrate these concepts on a computer.

Based on this book, various courses can be taught depending on the aim of the
instruction. A first course would be “Introduction to Finite Element Analysis,” which could
be based on Sections 1.1t0 1.4,2.1t02.3,3.1t03.4,4.1t104.3,5.1t05.3, and 8.1 t0 8.2.2.

A more advanced course would be “Finite Element Procedures,” based on Sec-
tions 1.1. to 1.4, 3.1, 3.3, 4.1 to 4.4, 5.1 to 5.6, and 8.1 to 8.3.

A course on finite element methods for dynamic analysis would be “Computer Meth-
ods in Dynamics” and could be based on Sections 1.1 to 1.4, 2.1 t0 2.7, 3.1, 3.3, 4.1, 4.2,
5.1t053,8.1t0822,9.1t094,10.1, 10.2, 11.1, 11.2.1, 11.3.1, and 11.6.

A course emphasizing the continuum mechanics principles for linear and nonlinear
finite element analysis would be “Theory and Practice of Continuum Mechanics,” which
could be based on Sections 1.1t0 1.4,3.1,3.3,4.1,4.2.1,4.2.2,5.1,5.2,5.3.1,5.3.3,5.3.5,
6.1, 6.2, 6.3.1,6.3.2, 6 4.1, 6.6, 7.1, and 7.4.

A course on the analysis of field problems and fluid flows would be “Finite Element
Analysis of Heat Transfer, Field Problems, and Fluid Flows,” based on Sections 1.1 to 1.4,
3.1,3.3,7.1t0 7.4, 5.3, 5.5, and 4.5.1 to 4.5.6. Note that the presentation in this course
would first provide the finite element formulations (Sections 7.1 to 7.4) and then numerical
procedures and mathematical results.

A -course on nonlinear finite element analysis of solids and structures would be
“Nonlinear Analysis of Solids and Structures” and could be based on Sections 1.1 to 1.4,
6.110 6.8, 8.1, and 8.4.

A course on the numerical methods used in finite element analysis would be
“Numerical Methods in Finite Element Analysis,” which could be based on Sections 1.1 to
14,2.1102.7,4.1,4.2.1,5.1,5.3,5.5,8.1t0 8.4,9.1 10 9.6, 10.1 t0 10.3,and 11.1 to 11.6.

And, finally, a course on more theoretical aspects of finite element analysis could be
offered, entitled “Theoretical Concepts of Finite Element Analysis,” based on Sections 1.1
to 1.4,4.1t04.5,and 5.1 t0 5.5.
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In addition, in most of these courses, the material in Chapter 12 would be useful.

In general, such courses are best taught with homework that includes problem solu-
tions, as suggested in the exercise sections of this book, as well as the completion of a
project in which a finite element computer program is used.

Various projects are proposed in the exercise sections of this book. One type of project
requires the student to use the program STAP and to modify this program for certain new
capabilities as suggested in Section 12.5. Such a project would be of value to students
interested in learning about the actual detailed implementation of finite element methods.

The other type of project is based on the use of a standard (commercial) finite element
program—as it might be employed in engineering practice—to analyze an interesting
physical problem. A valuable way to then proceed is to first solve a mathematical model for
which an analytical exact solution is known and then introduce complicating features in the
mathematical model that require a numerical solution. In this way, studies using different
finite element discretizations and solution procedures in which the results are evaluated
against a known exact solution can first be performed, which establishes confidence in the
use of the methods. The required expertise and confidence then become valuable assets in
the finite element solution of more complicated mathematical models. -

It is of particular importance during the study of finite element procedures that good
judgment be developed and exercised concerning the quality of any finite element solution
and of any mathematical model considered. Of course, exercising such judgments requires
that the analyst be sufficiently familiar with possible mathematical models and available
finite element procedures, and this aspect stimulates learning about mathematical models
and methods of solution. The value of using a finite element computer code—the program
STAP or a commercial finite element program as previously mentioned—is clearly in
stimulating the process of learning and in reinforcing the understanding of what has been
learned in class and from homework problem solutions. Using a powerful analysis program,
in particular, also adds to the excitement of actually solving complicated analysis problems
that heretofore could not be tackled.



Il CHAPTER TWO I

Vectors, Matrices,
and Tensors

2.1 INTRODUCTION

The use of vectors, matrices, and tensors is of fundamental importance in engineering
analysis because it is only with the use of these quantities that the complete solution process
can be expressed in a compact and elegant manner. The objective of this chapter is to
present the fundamentals of matrices and tensors, with emphasis on those aspects that are
important in finite element analysis.

From a simplistic point of view, matrices can simply be taken as ordered arrays of
numbers that are subjected to specific rules of addition, multiplication, and so on. It is of
course important to be thoroughly familiar with these rules, and we review them in this
chapter.

However, by far more interesting aspects of matrices and matrix algebra are recog-
nized when we study how the elements of matrices are derived in the analysis of a physical
problem and why the rules of matrix algebra are actually applicable. In this context, the use
of tensors and their matrix representations are important and provide a most interesting
subject of study.

Of course, only a rather limited discussion of matrices and tensors is given here, but
we hope that the focused practical treatment will provide a strong basis for understanding
the finite element formulations given later.

17
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2.2 INTRODUCTION TO MATRICES

The effectiveness of using matrices in practical calculations is readily realized by consider-
ing the solution of a set of linear simultaneous equations such as

S5x; — 4x; + x3 = (
—4x; +6x2 —4xs+ x4 =1
X; —4x; + 6x3 —4x4 =0

2.1

X2 —4x3 + Sx4 =0

where the unknowns are x;, xz, x3, and x4. Using matrix notation, this set of equations is
written as

(2.2)
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where it is noted that, rather logically, the coefficients of the unknowns (5, —4, 1, etc.) are
grouped together in one array; the left-hand-side unknowns (x, x2, x3, and x4) and the
right-hand-side known quantities are each grouped together in additional arrays. Although
written differently, the relation (2.2) still reads the same way as (2.1). However, using
matrix symbols to represent the arrays in (2.2), we can now write the set of simultaneous
equations as

Ax =b (2.3)

where A is the matrix of the coefficients in the set of linear equations, x is the matrix of
unknowns, and b is the matrix of known quantities; i.e.,-

s <4 1 0 x 0
~4 6 -4 1 e |

A=l 1 -4 6 - *T|uf PTo @4)
0 1 -4 5 x4 0

The following formal definition of a matrix now seems apparent.

Definition: A matrix is an array of ordered numbers. A general matrix consists of mn numbers
arranged in m rows and n columns, giving the following array:

Ay Gz Gin

A G2 G 2.5
A= " : 2.5)

Ani Qm2 '  QOmn

We say that this matrix has order m X n (m by n). When we have only one row (m = 1) or
one column (n = 1), we also call A a vector. Matrices are represented in this book by
boldface letters, usually uppercase letters when they are not vectors. On the other hand,
vectors can be uppercase or lowercase boldface.
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We therefore see that the following are matrices:

B
I
where the first and the last matrices are also column and row vectors, respectively.

A typical element in the ith row and jth column of A is identified as a;; e.g., in the
first matrix in (2.4), a;; = 5 and a;2 = —4. Considering the elements a;; in (2.5), we note
that the subscript i runs from 1 to m and the subscript j runs from 1 to n. A comma between
subscripts will be used when there is any risk of confusion, e.g., ay+r, j+s, Or to denote
differentiation (see Chapter 6).

In general, the utility of matrices in practice arises from the fact that we can identify
and manipulate an array of many numbers by use of a single symbol. We shall use matrices
in this way extensively in this book.

1 4 =53]
[3 N ] [61 22 3] (2.6)

Symmetric, Diagonal, and Banded Matrices; A Storage Scheme

Whenever the elements of a matrix obey a certain law, we can consider the matrix to be of
special form. A real matrix is a matrix whose elements are all real. A complex matrix has
elements that may be complex. We shall deal only with real matrices. In addition, the matrix
will often be symmetric.

Definition: The transpose of the m X n matrix A, written as A, is obtained by interchanging
the rows and columns in A. If A = A7, it follows that the number of rows and columns in A are
equal and that a; = ay. Because m = n, we say that A is a square matrix of order n, and because
ay = ajz, we say that A is a symmetric matrix. Note that symmetry impiies that A is square, but
not vice versa; i.e., a square matrix need not be symmetric.

For example, the coefficient matrix A in (2.2) is a symmetric matrix of order 4. We
can verify that AT = A by simply checking thata; = g, fori,j = 1,...,4.

Another special matrix is the identity (or unit) matrix L,, which is a square matrix of
order n with only zero elements except for its diagonal entries, which are unity. For
example, the identity matrix of order 3 is

13 = (27)

O O =
[= R )
-0 O

In practical calculations the order of an identity matrix is often implied and the subscript
is not written. In analogy with the identity matrix, we also use identity (or unit) vectors of
order n, defined as e;, where the subscript i indicates that the vector is the ith column of an
identity matrix.

We shall work abundantly with symmetric banded matrices. Bandedness means that
all elements beyond the bandwidth of the matrix are zero. Because A is symmetric, we can
state this condition as

a; =0 forj>i+ ma (2.8)
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where 2my + 1 is the bandwidth of A. As an example, the following matrix is a symmetric
banded matrix of order 5. The half-bandwidth m, is 2:

3 2 0

0
1
6 2.9)
7

'S
_ N U A=
- O

2

1
01
0 4 3

If the half-bandwidth of a matrix is zero, we have nonzero elements only on the
diagonal of the matrix and denote it as a diagonal matrix. For example, the identity matrix
is a diagonal matrix.

In computer calculations with matrices, we need to use a scheme of storing the
elements of the matrices in high-speed storage. An obvious way of storing the elements of
a matrix A of order m X n is simply to dimension in the FORTRAN program an array
AM, N), where M = m and N = n, and store each matrix element a; in the storage
location A(l, J). However, in many calculations we store in this way unnecessarily many
zero elements of A, which are never needed in the calculations. Also, if A is symmetric, we
should probably take advantage of it and store only the upper half of the matrix, including
the diagonal elements. In general, only a restricted number of high-speed storage locations
are available, and it is necessary to use an effective storage scheme in order to be able to take
into high-speed core the maximum matrix size possible. If the matrix is too large to be
contained in high-speed storage, the solution process will involve reading and writing on
secondary storage, which can add significantly to the solution cost. Fortunately, in finite
element analysis, the system matrices are symmetric and banded. Therefore, with an effec-
tive storage scheme, rather large-order matrices can be kept in high-speed core.

Let us denote by A(I) the Ith element in the one-dimensional storage array A. A
diagonal matrix of order n would simply be stored as shown in Fig. 2.1(a):

Al = au; I=i=1,...,n (2.10)

Consider a banded matrix as shown in Fig. 2.1(b). We will see later that zero elements
within the “skyline” of the matrix may be changed to nonzero elements in the solution
process; for example, a;; may be a zero element but becomes nonzero during the solution
process (see Section 8.2.3). Therefore we allocate storage locations to zero elements within
the skyline but do not need to store zero elements that are outside the skyline. The storage
scheme that will be used in the finite element solution process is indicated in Fig. 2.1 and
is explained further in Chapter 12.

Matrix Equality, Addition, and Multiplication by a Scalar

We have defined matrices to be ordered arrays of numbers and identified them by single
symbols. In order to be able to deal with them as we deal with ordinary numbers, it is
necessary to define rules corresponding to those which govern equality, addition, subtrac-
tion, multiplication, and division of ordinary numbers. We shall simply state the matrix
rules and not provide motivation for them. The rationale for these rules will appear later,
as it will turn out that these are precisely the rules that are needed to use matrices in the
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: ]
1 Elements not
a2 shown are zeros
as3
844 A1) = a71, A(2) = 899, A(3) = ag3
. A(4)=844,-..,A(N)=8nn
ann
(a) Diagonal matrix
» matl1=4 -~  Skyline
an_| ro__lifhs I \/
822 a3 0 ax %\\ A1) = a1, A(2) = a9,
a3 8 as AN A(3) = a33, A(4) = az3,
e N A(5) = a3, A(6) = aqs,
Qa4 845  Aup A(7) = 834, Al8) = 8ss,
355\356 A(9) = a45, A(10) = ass,
symmetric 865 At {(11) = az5, A(12) = agg,
. etc.

(b) Banded matrix, ma=3
Figure 2.1 Storage of matrix A in a orie-dimensional array
solution of practical problems. For matrix equality, matrix addition, and matrix multiplica-
tion by a scalar, we provide the following definitions.
Definition: The matrices A and B are equal if and only if

1. A and B have the same number of rows and columns.
2. All corresponding elements are equal; i.e. ay = by for all i and j.

Definition: Two matrices A and B can be added if and only if they have the same number of
rows and columns. The addition of the matrices is performed by adding all corresponding
elements; i.e., if a; and b; denote general elements of A and B, respectively, then c; = ay + by
denotes a general element of C, where C = A + B. It follows that C has the same number of
rows and columns as A and B.

EXAMPLE 2.1: Calculate C = A + B, where
2 11 3
A_[0.5 3 o]’ B"[z

Here we have C==A+B=[
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It should be noted that the order in which the matrices are added is not important. The
subtraction of matrices is defined in an analogous way.

EXAMPLE 2.2: Calculate, C = A — B, where A and B are given in Example 2.1. Here we

have
-1 0 -1
C [—1.5 -1 —1]

From the definition of the subtraction of matrices, it follows that the subtraction of a
matrix from itself results in a matrix with zero elements only. Such a matrix is defined to
be a null matrix 0. We turn now to the multiplication of a matrix by a scalar.

Definition: A matrix is multiplied by a scalar by multiplying each matrix element by the
scalar; i.e., C = kA means that c; = kay.

The following example demonstrates this definition.

EXAMPLE 2.3: Calculate C = kA, where

2 11
A"[0.5 3 o]’ k=2

‘We have C=kA = [4 2 2]

1 6 0

It should be noted that so far all definitions are completely analogous to those used in
the calculation with ordinary numbers. Furthermore, to add (or subtract) two general
matrices of order n X m requires nm addition (subtraction) operations, and to multiply a
general matrix of order n X m by a scalar requires nm multiplications. Therefore, when the
matrices are of special form, such as symmetric and banded, we should take advantage of
the situation by evaluating only the elements below the skyline of the matrix C because all
other elements are zero.

Multiplication of Matrices

We consider two matrices A and B and want to find the matrix product C = AB.

Definition: Two matrices A and B can be multiplied to obtain C = AB if and only if the
number of columns in A is equal to the number of rows in B. Assume that A is of orderp X m
and B is of order m X q. Then for each element in C we have

¢ = 2 avby @.11)
r=1
where C is of order p X q; i.e., the indices i and j in (2.11) vary from 1 to p and 1 to g,
respectively.

Therefore, to calculate the (i, j)th element in C, we multiply the elements in the ith
row of A by the elements in the jth column of B and add all individual products. By taking
the product of each row in A and each column in B, it follows that C must be of orderp X q.
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EXAMPLE 2.4: Calculate the matrix product C = AB, where

53 1 15

A=| 46 2, B=|2 4

10 3 4 32

We have en = (5)1) + (3)2) + (1) = 14

e = @)(1) + (6)(2) + )(3) =22
e = (10)(1) + (3)(2) + 4)(3) = 28 etc.
14 39

Hence we obtain C=]22 48
28 70

As can readily be verified, the number of multiplications required in this matrix
multiplication is p X ¢ X m. When we deal with matrices in practice, however, we can
often reduce the number of operations by taking advantage of zero elements within the

matrices.

EXAMPLE 2.5: Calculate the matrix product ¢ = Ab, where

2 -1 0 0 4

P | 0 1

A mmetri 2 -y . 2
¥ ¢ 1 3

Here we can take advantage of the fact that the bandwidth of A is 3; i.e., my = 1. Thus,
taking into account only the elements within the band of A, we have

a=0Q@+ D) =7

2= (=@ + @) + (D) = -4
s =(=D1) + Q)Q) + (-1)B3) =0
ce = (=12 + (1HB) =1

H cC=
ence 0

As is well known, the multiplication of ordinary numbers is commutative; i.e.,
ab = ba. We need to investigate if the same holds for matrix multiplication. If we consider

the matrices

A= B] B=[3 4] (2.12)

we have AB = [2 g] BA = [11] 2.13)
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Therefore, the products AB and BA are not the same, and it follows that matrix multiplica-
tion is not commutative. Indeed, depending on the orders of A and B, the orders of the two
product matrices AB and BA can be different, and the product AB may be defined, whereas
the product BA may not be calculable.

To distinguish the order of multiplication of matrices, we say that in the product AB, -
the matrix A premultiplies B, or the matrix B postmultiplies A. Although AB # BA in
general, it may happen that AB = BA for special A and B, in which case we say that A and
B commute.

Although the commutative law does not hold in matrix multiplication, the distributive
law and associative law are both valid. The distributive law states that

E= (A +B)C = AC + BC (2.14)

In other words, we may first add A and B and then multiply by C, or we may first multiply
A and B by C and then do the addition. Note that considering the number of operations, the
evaluation of E by adding A and B first is much more economical, which is important to
remember in the design of an analysis program.

The distributive law is proved using (2.11); that is, using

€; = 2 (a,-, + b;,)c,,- (215)

r=1

we obtain ey = > aicy + > bycy (2.16)
r=1 r=1

The associative law states that
G = (AB)C = A(BC) = ABC 2.17)

in other words, that the order of multiplication is immaterial. The proof is carried out by
using the definition of matrix multiplication in (2.11) and calculating in either way a general
element of G.

Since the associative law holds, in practice, a string of matrix multiplications can be
carried out in an arbitrary sequence, and by a clever choice of the sequence, many opera-
tions can frequently be saved. The only point that must be remembered when manipulating
the matrices is that brackets can be removed or inserted and that powers can be combined,
but that the order of multiplication must be preserved.

Consider the following examples to demonstrate the use of the associative and distribu-
tive laws in order to simplify a string of matrix multiplications.

2 1
A"[l 3]
One way of evaluating A* is to simply calculate
2 12 1
2 = =
St F

5 5112 1
3 == A2A =
Hence A A’A [5 10][1 3]

EXAMPLE 2.6: Calculate A*, where

[2 1(5)]

[15 20]
20 35
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15 202 1 50 75
4 = 3 = =
and AT= AR [20 35][1 3] [75 125]

Alternatively, we may use

5 515 5§ 50 75
4 = 2A2 = =
AT=AA [5 10][5 10] [75 125]
and save one matrix multiplication.

EXAMPLE 2.7: Evaluate the product v’Av, where

3 21 1
A=|2 4 2} v = 2
1 26 -1

The formal procedure would be to calculate x = Av; i.e.,

3 21 1 6
Xx=Av=]2 4 2 21 = 8
1 2 6| -1 -1
and then calculate v’X to obtain
6

viAv=[1 2 —-1]] 8} =23
-1

However, it is more effective to calculate the required product in the following way. First,
we write

A=U+D+ U

where U is a lower triangular matrix and D is a diagonal matrix,

0 00 300
U=1]2 0 0}; D=|0 4 0
1 20 0 0 6
Hence we have vAy = vI(U + D + UT)v

vIAv = v7Uv + v'Dv + vUv
However, v7Uy is a single number and hence vU”v = v'Uy, and it follows that
vTAv = 2v7Uv + v'Dv (a)

The higher efficiency in the matrix multiplication is obtained by taking advantage of the fact that
U is a lower triangular and D is a diagonal matrix. Let x = Uv; then we have

Xy = 0
x2 = (2)(1) = 2
x = 1)1+ @)@2) =5
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0
Hence x=1]2
5

Next, we obtain
vIUv = vix = (2)(2) + (=1)(5) = -1
Also viDv = (1)(1)(3) + (2(2)(@) + (—1)(—1)(6)
= 25

Hence using (a) we have vTAv = 23, as before.

Apart from the commutative law, which in general does not hold in matrix multipli-
cations, the cancellation of matrices in matrix equations also cannot be performed, in
general, as the cancellation of ordinary numbers. In particular, if AB = CB, it does not
necessarily follow that A = C. This is easily demonstrated considering a specific case:

2 11 4 0|11
[+ olla) = [ 2] 218)
2 1 4 0
but [4 O] * [0 2] (2.19)
However, it must be noted that A = C if the equation AB = CB holds for all possible B.
Namely, in that case, we simply select B to be the identity matrix I, and hence A = C.

It should also be noted that included in this observation is the fact that if AB = 0, it
does not follow that*either A or B is a null matrix. A specific case demonstrates this

observation:
1 0 00 00
A= [2 0], B= [3 4], AB = [0 o] (2.20)

Some special rules concerning the use of transposed matrices in matrix multiplica-
tions need to be pointed out. It is noted that the transpose of the product of two matrices
A and B is equal to the product of the transposed matrices in reverse order; i.e.,

(AB)” = B"AT (2.21)

The proof that (2.21) does hold is obtained using the definition for the evaluation of a matrix
product given in (2.11).

Considering the matrix products in (2.21), it should be noted that although A and B
may be symmetric, AB is, in general, not symmetric. However, if A is symmetric, the matrix
BTAB is always symmetric. The proof follows using (2.21):

(BTAB)” = (AB)"(B")” - (2.22)
= B'ATB (2.23)

But, because AT = A, we have
(B"AB)” = B'AB (2.24)

and hence B"AB is symmetric.
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The Inverse Matrix

We have seen that matrix addition and subtraction are carried out using essentially the same
laws as those used in the manipulation of ordinary numbers. However, matrix multiplication
is quite different, and we have to get used to special rules. With regard to matrix division,
it strictly does not exist. Instead, an inverse matrix is defined. We shall define and use the
inverse of square matrices only.

Definition: The inverse of a matrix A is denoted by A™'. Assume that the inverse exists; then
the elements of A are such that A"'A = I and AA™' = L A matrix that possesses an inverse
is said to be nonsingular. A matrix without an inverse is a singular matrix.

As mentioned previously, the inverse of a matrix does not need to exist. A trivial
example is the null matrix. Assume that the inverse of A exists. Then we still want to show
that either of the conditions A™'A = Ior AA™! = Limplies the other. Assume that we have
evaluated the elements of the matrices A; ' and A, such that A;'A = I and AA;' = L
Then we have

Ar' = ATYAATY = (ATTA)AT! = A (2.25)

and hence A;! = A7l

EXAMPLE 2.8: Evaluate the inverse of the matrix A, where

a-[3 7]

For the inverse of A we need AA™! = 1. By trial and error (or otherwise) we find that

o

We check that AA™! = Tand A7'A =1:
2 -1 8. M1 o
-1 = 5 5| _
Ad [—1 3][% ] [o 1]
[ e P
-1 3 01

To calculate the inverse of a product AB, we proceed as follows. Let G = (AB)™',
where A and B are both square matrices. Then

W= W
WV -
—

xm=[

Q= v
[PIIS VI

GAB =1 (2.26)
and postmultiplying by B™! and A™', we obtain
GA =B™! (2.27)
G =B A (2.28)
Therefore, (AB)"! = B'A™! (2.29)

We note that the same law of matrix reversal was shown to apply when the transpose of a
matrix product is calculated.
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EXAMPLE 2.9: For the matrices A and B given, check that (AB)™! = B™'A~!,

2 -1 30
A‘[—l 3]’ B'[o 4]
The inverse of A was used in Example 2.8. The inverse of B is easy to obtain:
1 0]
B!=|3
s}
To check that (AB)™' = B7'A™!, we need to evaluate C = AB:
C_[Z—l][30_[6—4]
-1 3j10 4 -3 12
Assume that C™' = B™'A™', Then we would have
1 31 1
it A [ R @
0 zlls §5 30
To check that the matrix given in (a) is indeed the inverse of C, we evaluate C™'C and find that |
i L 6 —4]
o= |5 15 =
cc [2— ﬁ][—s 2] 7t

But since C™! is unique and only the correct C! satisfies the relation C™!C = I, we indeed have
found in (a) the inverse of C, and the relation (AB)~! = B~'A™! is satisfied.

1= Gl
- G-

In Examples 2.8 and 2.9, the inverse of A and B could be found by trial and error.
However, to obtain the inverse of a general matrix, we need to have a general algorithm.
One way of calculating the inverse of a matrix A of order n is to solve the n systems of
equations

AX =1 (2.30)

where I is the identity matrix of order n and we have X = A™'. For the solution of each
system of equations in (2.30), we can use the algorithms presented in Section 8.2.

These considerations show that a system of equations could be solved by calculating
the inverse of the coefficient matrix; i.e., if we have

Ay =¢ (2.31)
where A is of order n X n and y and ¢ are of order n X 1, then
y=Alc (2.32)

However, the inversion of A is very costly, and it is much more effective to only solve the
equations in (2.31) without inverting A (see Chapter 8). Indeed, although we may write
symbolically that y = A 'c, to evaluate y we actually only solve the equations.

Partitioning of Matrices

To facilitate matrix manipulations and to take advantage of the special form of matrices, it
may be useful to partition-a matrix into submatrices. A submatrix is a matrix that is obtained
from the original matrix by including only the elements of certain rows and columns. The
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idea is demonstrated using a specific case in which the dashed lines are the lines of
partitioning:

an | G2 a4z Qs | ais s
L} b
A=]ay | an an axu i G a (2.33)
L Uy
a1 | A 4 4y, 43 di

It should be noted that each of the partitioning lines must run completely across the original
matrix. Using the partitioning, matrix A is written as

Ay Ap Ans]
A= 2.34
[AZI Az Axn (234)
where A, = [a“]; Ap = [a” a3 a“‘]; etc. (2.35)
az a2 QG Gu
The right-hand side of (2.34) could again be partitioned, such as
All : A12 AlS]
A= ) 2.36
[Azn i An An ( )
and we may write A as
- - - Au] - [Anz Ans]
A=[A A A = R A, = 2.37
(A, Al ‘ [Azn * Az Ag (257)

The partitioning of matrices can be of advantage in saving computer storage; namely,
if submatrices repeat, it is necessary to store the submatrix only once. The same applies in
arithmetic. Using submatrices, we may identify a typical operation that is repeated many
times. We then carry out this operation only once and use the result whenever it is needed.

The rules to be used in calculations with partitioned matrices follow from the
definition of matrix addition, subtraction, and multiplication. Using partitioned matrices we
can add, subtract, or multiply as if the submatrices were ordinary matrix elements, provided
the original matrices have been partitioned in such a way that it is permissible to perform
the individual submatrix additions, subtractions, or multiplications.

These rules are easily justified and remembered if we keep in mind that the partition-
ing of the original matrices is only a device to facilitate matrix manipulations and does not

change any results. @
EXAMPLE 2.10: Evaluate the matrix product C = AB in Example 2.4 by using the following
partitioning:
5 311 15
A=|4.6:2:; B=|24
10 3 ' 4 3 2
All A12] [Bl]
Here we have A= [ ; B =
? Au Az B,
A;B: + ApB;
Therefore, AB =
erelore B [AZIBI + Azsz] @



tang
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the partitioning of  the original matrices is only a device to facilitate matrix manipulations and does not change any results.
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5 3|1 51 _[u 3

But A”B‘"’[4 6][2 4]—[16 44]
e[l 313 ]

AxB, = [10 3][; i]=[16 62]

AxB; =[4][3 2]=[12 8]
Then substituting into (a) we have

14 39
AB =122 48
28 70

EXAMPLE 2.11: Taking advantage of partitioning, evaluate ¢ = Ab, where

43311 2 2
3. 6.i2 1f 12
A_12586’ =1
2116 12f 1

The only products that we need to evaluate are

MM

1 211
and Wz_[z 1][1 -

.= [Zw, + Wz]
2w, + 2w,

17

21

20
24

| —
W W o
) I

‘We can now construct ¢:

or, substituting, c=

The Trace and Determinant of a Matrix

The trace and determinant of a matrix are defined only if the matrix is square. Both
quantities are single numbers, which are evaluated from the elements of the matrix and are
therefore functions of the matrix elements.

Definition: The trace of the matrix A is denoted as tr(A) and is equal to 2}-; a;, where n is
the order of A. :
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EXAMPLE 2.12: Calculate the trace of the matrix A given in Example 2.11.
Here we have

tr(A) =4+6+8+ 12 =130
The determinant of a matrix A can be defined in terms of the determinants of subma-

trices of A and by noting that the determinant of a matrix of order 1 is simply the element
of the matrix; i.e., if A = [a;,], then det A = ay,.

Definition: The determinant of an n X n matrix A is denoted as det A and is defined by the
recurrence relation

det A = X (—1)'*/a,; det Ay, (2.38)
J=1

where Ayjis the (n — 1) X (n — 1) matrix obtained by eliminating the 1st row and jth column
from the matrix A.

EXAMPLE 2.13: Evaluate the determinant of A, where
A= [an anz]
az; G2
Using the relation in (2.38), we obtain
det A = (—1)%ay; det Ay + (—1)%ay; det A2

But det A, = ax; det Ay; = an

Hence det A = anan — anaz

This relation is the general formula for the determinant of a 2 X 2 matrix.

It can be shown that to evaluate the determinant of a matrix we may use the recurrence
relation given in (2.38) along any row or column, as indicated in Example 2.14.

EXAMPLE 2. 14: Evaluate the determinant of the matrix A, where

2 10
A=|1 3 1
01 2

Using the recurrence relation in (2.38), we obtain

det A = (—1)2(2) det [:: ;]

+ (~1)%(1) det [(‘) ;]

01

+ (~1)(0) det [1 3]
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We now employ the formula for the determinant of a 2 X 2 matrix given in Example 2.13 and
have

det A = (2){(3)(2) — (M)} — {(HR) — @)1} + 0
Hence det A =8

Let us check that the same result is obtained by using (2.38) along the second row instead
of the first row. In this case we have, changing the 1 to 2 in (2.38),

det A = (—1)%(1) det [i (2)]

+ (—1)4(3) det [(2) (2)]

2 1
+ (—1)%(1) de
(=1)°(1) t[o 1]
Again using the formula given in Example 2.13, we have

det A = —{(1)(2) — O)D)} + B)H(2)(2) — OO} - {(2)(1) - (1))}
or, as before,
det A =8
Finally, using (2.38) along the third column, we have

det A = (—1)*0) det [(1) 3]

+,(—=1)3(1) det [(2) i]

+ (~1)5(2) det [f ;]

and, as before, obtain det A = 8.

Many theorems are associated with the use of determinants. Typically, the solution of
a set of simultaneous equations can be obtained by a series of determinant evaluations (see,
for example, B. Noble [A]). However, from a modern viewpoint, most of the results that are
obtained using determinants can be obtained much more effectively. For example, the
solution of simultaneous equations using determinants is very inefficient. As we shall see
later, a primary value of using determinants lies in the convenient shorthand notation we
can use in the discussion of certain questions, such as the existence of an inverse of a matrix.
We shall use determinants in particular in the solution of eigenvalue problems,

In evaluating the determinant of a matrix, it may be effective to first factorize the
matrix into a product of matrices and then use the following result:

det (BC - - - F) = (det B)(det C) - - - (det F) (2.39)
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Relation (2.39) states that the determinant of the product of a number of matrices is equal
to the product of the determinants of each matrix. The proof of this result is rather lengthy
. and clumsy [it is obtained using the determinant definition in (2.38)], and therefore we shall
.not include it here. We shall use the result in (2.39) often in eigenvalue calculations when
the determinant of a matrix, say matrix A, is required. The specific decomposition used is
A = LDL7, where L is a lower unit triangular matrix and D is a diagonal matrix (see
Section 8.2.2). In that case,

det A = det L det D det L7 (2.40)
and because det L = 1, we have

EXAMPLE 2.15: Using the LDLT decomposition, evaluate the determinant of A, where A is
given in Example 2.14.

The procedure to obtain the LDLT decomposition of A is presented in Section 8.2. Here
we simply give L and D, and it can be verified that LDL” = A:

100 200
L= 10} D=|0 § 0
0 %1 0 o &

Using (2.41), we obtain
det A = (2)3)E) =8
This is also the value obtained in Exampfe 2.14.

The determinant and the trace of a matrix are functions of the matrix elements.
However, it is important to observe that the off-diagonal elements do not affect the trace
of a matrix, whereas the determinant is a function of all the elements in the matrix.
Although we can conclude that a large determinant or a large trace means that some matrix
elements are large, we cannot conclude that a small determinant or a small trace means that
all matrix elements are small.

EXAMPLE 2.16: Calculate the trace and determinant of A, where

A= [ 1 10,000]

1074 2
Here we have
tr (A) =3
and det A = (1)(2) — (107%(10,000)
ie., det A =1

Hence both the trace and the determinant of A are small in relation to the off-diagonal ele-
ment aiz.
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2.3 VECTOR SPACES

In the previous section we defined a vector of order n to be an array of » numbers written
in matrix form. We now want to associate a geometric interpretation with the elements of
a vector. Consider as an example a column vector of order 3 such as

2
X=]1x21 = 4 (242)
3

We know from elementary geometry that x represents a geometric vector in a chosen
coordinate system in three-dimensional space. Figure 2.2 shows assumed coordinate axes
and the vector corresponding to (2.42) in this system. We should note that the geometric
representation of x depends completely on the coordinate system chosen; in other words, if
(2.42) would give the components of a vector in a different coordinate system, then the
geometric representation of x would be different from the one in Fig. 2.2. Therefore, the
coordinates (or components of a vector) alone do not define the actual geometric quantity,
but they need to be given together with the specific coordinate system in which they are
measured.

X3 4}

2
X= [ 4} Figure 2.2 Geometric representation of
vector X

X1

The concepts of three-dimensional geometry generalize to a vector of any finite order
n. If n > 3, we can no longer obtain a plot of the vector; however, we shall see that
mathematically all concepts that pertain to vectors are independent of n. As before, when
we considered the specific case n = 3, the vector of order n represents a quantity in a
specific coordinate system of an n-dimensional space.

Assume that we are dealing with a number of vectors all of order n, which are defined
in a fixed coordinate system. Some fundamental concepts that we shall find extremely
powerful in the later chapters are summarized in the following definitions and facts.
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Definition: A collection of vectors X, Xz, . . . , X, is said to be linearly dependent if there exist
numbers a;, az, . . ., &, which are not all zero, such that
aX, taXxo+t -+ aX, =0 (2.43)

If the vectors are not linearly dependent, they are called linearly independent vectors.

We consider the following examples to clarify the meaning of this definition.

EXAMPLE 2.17: Letn = 3 and determine if the vectors e;, i = 1, 2, 3, are linearly dependent
or independent.

According to the definition of linear dependency, we need to check if there are constants
a,, az, and as, not all zero, that satisfy the equation

1 0 0 0
a0} +ta]l|+a)0}=]0 (a)
0 0 1 0
But the equations in (a) read
o 0
a } — 0
as 0

which is satisfied only if &, = 0, { = 1, 2, 3; therefore, the vectors e; are linearly independent.

EXAMPLE 2.18: Withn = 4, investigate whether the following vectors are linearly dependent

or independent.
1 -1 [ 0
< = 1 X = 0} X = -0.5
1 0 ) 2 1 > 3 _0.5
0.5 0 | -0.25
We need to consider the system of equations
1 -1 0 [0
1 0 -0.5 0
“lo | T 1| T ®l-05 | o
0.5 0 1—0.25 | 0
or, considering each row,
a; — a2 = 0
o - 05 a3 = 0
a—05a; =0
0.5(11 - 0.25(13 =0

where we note that the equations are satisfied for oy = 1, o, = 1, and a3 = 2. Therefore, the
vectors are linearly dependent.
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In the preceding examples, the solution for a;, a2, and as could be obtained by
inspection. We shall later develop a systematic procedure of checking whether a number of
vectors are linearly dependent or independent.

Another way of looking at the problem, which may be more appealing, is to say that
the vectors are linearly dependent if any one of them can be expressed in terms of the others.
That is, if not all of the «; in (2.43) are zero, say a; ¥ 0, then we can write

X =-2 =x (2.44)
k=1 @

k#J
Geometrically, when n = 3, we could plot the vectors and if they are linearly dependent,
we would be able to plot one vector in terms of multiples of the other vectors. For example,
plotting the vectors used in Example 2.17, we immediately observe that none of them can
be expressed in terms of multiples of the remaining ones; hence the vectors are linearly
independent.

Assume that we are given g vectors of order n, n = g, which are linearly dependent,
but that we only consider any (g — 1) of them. These (g — 1) vectors may still be linearly
dependent. However, by continuing to decrease the number of vectors under consideration,
we would arrive at p vectors, which are linearly independent, where, in general, p =< g. The
other (g — p) vectors can be expressed in terms of the p vectors. We are thus led to the
following definition.

Definition: Assume that we have p linearly independent vectors of order n, where n = p.
These p vectors form a basis for a p-dimensional vector space.

We talk about a vector space of dimension p because any vector in the space can be
expressed as a linear combination of the p base vectors. We should note that the base vectors
for the specific space considered are not unique; linear combinations of them can give
another basis for the same space. Specifically, if p = n, then a basis for the space considered
ise, i=1,...,n, from which it also follows that p cannot be larger than n.

Definition: q vectors, of which p vectors are linearly independent, are said to span a
p-dimensional vector space.

We therefore realize that all the importance lies in the base vectors since they are the
smallest number of vectors that span the space considered. All g vectors can be expressed
in terms of the base vectors, however large g may be (and indeed g could be larger than n).

EXAMPLE 2.19: Establish a basis for the space spanned by the three vectors in Example 2.18.

In this case ¢ = 3 and n = 4. We find by inspection that the two vectors X, and X; are
linearly independent. Hence X, and X; can be taken as base vectors of the two-dimensional space
spanned by X, X, and X;. Also, using the result of Example 2.18, we have X3 = — X, — 3 X;.

Assume that we are given a p-dimensional vector space which we denote as E,, for
which x1, X,, . . . , X, are chosen base vectors, p > 1. Then we might like to consider only
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all those vectors that can be expressed in terms of x; and x,. But the vectors x; and x; also
form the basis of a vector space that we call E;. If p = 2, we note that E, and E; coincide.
We call E; a subspace of E,, the concise meaning of which is defined next.

Definition: A subspace of a vector space is a vector space such that any vector in the subspace
is also in the original space. If X;, X2, . . . , X, are the base vectors of the original space, any
subset of these vectors forms the basis of a subspace; the dimension of the subspace is equal to
the number of base vectors selected.

EXAMPLE 2.20: The three vectors X;, X2, and X3 are linearly independent and therefore form
the basis of a three-dimensional vector space Ej:

X, = H X; =

1
2
1

==
|
—

-0

0 0

Identify some possible two-dimensional subspaces of E.

Using the base vectors in (a), a two-dimensional subspace is formed by any two of the three
vectors; e.g., X, and X, represent a basis for a two-dimensional subspace; X, and x; are the basis
for another two-dimensional subspace; and so on. Indeed, any two linearly independent vectors
in E; from the basis of a two-dimensional subspace, and it follows that there are an infinite
number of two-dimensional subspaces in Es.

Having considered the concepts of a vector space, we may now recognize that the
columns of any rectangular matrix A also span a vector space. We call this space the column
space of A. Similarly, the rows of a matrix span a vector space, which we call the row space
of A. Conversely, we may assemble any g vectors of order n into a matrix A of ordern X gq.
The number of linearly independent vectors used is equal to the dimension of the column
space of A. For example, the three vectors in Example 2.20 form the matrix

-1 (2.45)

O = N
OO O -

1

Assume that we are given a matrix A and that we need to calculate the dimension of
the column space of A. In other words, we want to evaluate how many columns in A are
linearly independent. The number of linearly independent columns in A is neither increased
nor decreased by taking any linear combinations of them. Therefore, in order to identify the
column space of A, we may try to transform the matrix, by linearly combining its columns,
to obtain unit vectors e;. Because unit vectors e; with distinct i are linearly independent, the
dimension of the column space of A is equal to the number of unit vectors that can be
obtained. While frequently we are not able to actually obtain unit vectors e; (see Exam-
ple 2.21), the process followed in the transformation of A will always lead to a form that
displays the dimension of the column space.
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EXAMPLE 2.21: Calculate the dimension of the column space of the matrix A formed by the
vectors X;, X2, and X5 considered in Example 2.20.
The matrix considered is

1 1
2 0 -1

A=l o o
0 0 1]

Writing the second and third columns as the first and second columns, respectively, we obtain

1 0 1]
0 -1 2

A=lo o 1
0 1 0

Subtracting the first column from the third column, adding twice the second column to the third
column, and finally multiplying the second column by (—1), we obtain

[1 0 O
0 1 o
A2=1y 0 1
0o -1 2

But we have now reduced the matrix to a form where we can identify that the three columns are
linearly independent; i.e., the columns are linearly independent because the first three elements
in the vectors are the columns of the identity matrix of order 3. However, since we obtained A,
from A by interchanging and linearly combining the original columns of A and thus in the
solution process have not increased the space spanned by the columns of the matrix, we find that
the dimension of the column space of A is 3.

In the above presentation we linearly combined the vectors X, . . . , X,, which were
the columns of A, in order to identify whether they were linearly independent. Alternatively,
to find the dimension of the space spanned by a set of vectors X, X2, . . . , X,, we could use

the definition of vector linear independence in (2.43) and consider the set of simultaneous
homogeneous equations

aX; +ax; + - aXx, =0 (2.46)

which is, in matrix form,
Aa =10 (2.47)
where a is a vector with elements a,, . . . a,, and the columns of A are the vectors x,,
X2, . . . , X The solution for the unknowns ai, ..., a, is not changed by linearly

combining or multiplying any of the rows in the matrix A. Therefore, we may try to reduce
A by multiplying and combining its rows into a matrix in which the columns consist only
of unit vectors. This reduced matrix is called the row-echelon form of A. The number of unit
column vectors in the row-echelon form of A is equal to the dimension of the column space
of A and, from the preceding discussion, is also equal to the dimension of the row space of
A. It follows that the dimension of the column space of A is equal to the dimension of the
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row space of A. In other words, the number of linearly independent columns in A is equal
to the number of linearly independent rows in A. This result is summarized in the definition
of the rank of A and the definition of the null space (or kernel) of A.

Definition: The rank of a matrix A is equal to the dimension of the column space and equal
to the dimension of the row space of A.

Definition: The space of vectors a such that Ao = 0 is the null space (or kernel) of A.

EXAMPLE 2.22: Consider the following three vectors:

|

X =

:-PO\UI'—wN:

2
1.
NE
4
3]

Use these vectors as the columns of a matrix A and reduce the matrix to row-echelon form.
We have

AW ==
1
N

AN W = W N

3 -1 4

Subtracting multiples of the first row from the rows below it in order to obtain the unit
vector e, in the first column, we obtain

1 3 7]
0 -5 -1
0 -5 -1
A=ty s o
0 —-10 -2
0 ~10 -2

Dividing the second row by (—5) and then subtracting multiples of it from the other rows in order
to reduce the second column to the unit vector e;, we obtain

(1 0

S O O O O
OO0 O O =
O O O O w-wa
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Hence we can give the following equivalent statements:

1. The solution to Aax = 0 is
a = —tay
@ = —:a; ,
2. The three vectors X;, Xz, and Xx; are linearly dependent. They form a two-dimensional

vector space. The vectors X; and X, are linearly independent, and they form a basis of the
two-dimensional space in which x;, X,, and x; lie.

~ 3. The rank of A is 2.
4. The dimension of the column space of A is 2.
S. The diglension of the row space of A is 2. ’
6. The null space (kernel) of A has dimension 1 and a basis is the vector

Wil= Wl

1
Note that the rank of AT is also 2, but that the kernel of AT has dimension 4.

2.4 DEFINITION OF TENSORS

In engineering analysis, the concept of tensors and their matrix representations can be
important. We shall limit our discussion to tensors in three-dimensional space and pri-
marily be concerned with the representation of tensors in rectangular Cartesian coordinate
frames.

Let the Cartesian coordinate frame be defined by the unit base vectors e; (see Fig. 2.3).
A vector u in this frame is given by

3
u=2 ue; (2.48)
i=1

Figure 2.3 Cartesian coordinate systems
for definition of tensors




Sec. 2.4 Definition of Tensors 41

where the u; are the components of the vector. In tensor algebra it is convenient for the
purpose of a compact notation to omit the summation sign in (2.48); i.e., instead of (2.48)
we simply write

u = y;€; (2.49)

where the summation on the repeated index i is implied (here i = 1, 2, 3). Since i could be
replaced by any other subscript without changing the result (e.g., k or j), it is also called a
dummy index or a free index. This convention is referred to as the summation convention
of indicial notation (or the Einstein convention) and is used with efficiency to express in a
compact manner relations involving tensor quantities (see Chapter 6 where we use this
notation extensively).

Considering vectors in three-dimensional space, vector algebra is employed effec-
tively.

The scalar (or dot) product of the vectors u and v, denoted by u * v is given by

u-v='|u||v|cos8 (2.50)

where |u| is equal to the length of the vector u, [u| = Vuu,. The dot product can be
evaluated using the components of the vectors,

The vector (or cross) product of the vectors u and v produces a new vectorw =u X v
€ € €

w=det|u w u (2.52)
D1 V2 U3

Figure 2.4 illustrates the vector operations performed in (2.50) and (2.52). We should
note that the direction of the vector w is obtained by the right-hand rule; i.e., the right-hand
thumb points in the direction of w when the fingers curl from u to.v.

X .
34 cos 8= Vi

lul vl
lwl = lul Ivl sin@

Figure 2.4 Vectors used in products
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These vector algebra procedures are frequently employed in finite element analysis to
evaluate angles between two given directions and to establish the direction perpendicular
to a given plane.

EXAMPLE 2.23: Assume that the vectors u and v in Fig. 2.4 are

3 0
u=1[31; v=]2
0 2

Calculate the angle between these vectors and establish a vector perpendicular to the plane that
is defined by these vectors.
Here we have

lu| = 3V2
lv] =2V2
Hence cos § =3}
and 6 = 60°.
A vector perpendicular to the plane defined by u and v is given by
€ € €
w=det|3 3 O
0 2 2
6
hence w=1]-6
6
Using |w| = Vww;, we obtain
' |w| = 6V3

which is also equal to the value obtained using the formula given in Fig. 2.4.

Although not specifically stated, the typical vector considered in (2.48) is a tensor. Let
us now formally define what we mean by a tensor.

For this purpose, we consider in addition to the unprimed Cartesian coordinate frame
a primed Cartesian coordinate frame with base vectors e; which spans the same space as
the unprimed frame (see Fig. 2.3).

An entity is called a scalar, a vector (i.e., a tensor of first order or rank 1), or a tensor
(i.e., a tensor of higher order or rank) depending on how the components of the entity are
defined in the unprimed frame (coordinate system) and how these components transform
the primed frame. '

Definition: An entity is called a scalar if it has only a single component ¢ in the coordinates
x; measured along e; and this component does not change when expressed in the coordinates x|
measured along e|:

&(x1, x2, x3) = ¢'(xi, x3, x3) (2.53)

A scalar is also a tensor of order 0. As an example, temperature at a point is a scalar.
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Definition: An entity is called a vector or tensor of first order if it has three components & in
the unprimed frame and three components £ in the primed frame, and if these components are
related by the characteristic law (using the summation convention)

& = pubic (2.54)
where Pu = cos (e/, &) (2.55)

The relation (2.54) can also be written in matrix form as \
£ =PE (2.56)

where €', P, and £ contain the elements of (2.54).

The transformation in (2.54) corresponds to a change of basis in the representation of
the vector. To arrive at (2.54) we recognize that the same vector is considered in the two
different bases; hence we have

&iej = & (2.57)
Using the fact that the base vectors in each coordinate frame are orthogonal to each other
and are of unit length, we can take the dot products [see (2.50)] on both sides of (2.57) with

e; and obtain (2.54). Of course, analogously we could also take the dot product on both
sides with e, to obtain the inverse transformation

& = cos(en, /)& (2.58)
or in matrix form, £=P¥¢ (2.59)
Hence we note that P~! = P7, and this leads us to the following definition.

Definition: A matrix Q is an orthogonal matrix if Q"Q = QQ = L Therefore, for an or-
thogonal matrix, we have Q™! = Q.

Hence the matrix P defined in (2.55) and (2.56) is an orthogonal matrix, and because the
elements of P produce a rotation, we also refer to P as a rotation matrix.
We demonstrate the preceding discussion in the following example.

EXAMPLE 2.24: The components of a force expressed in the unprimed coordinate system
shown in Fig. E2.24 are

0
R=|1
V3

Figure E2.24 Representation of a force
in different coordinate systems
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Evaluate the components of the force in the primed coordinate system in Fig. E2.24.
Here we have, using (2.56),

1 0 0
P=]0 cos#f sin 6
0 —sin @ cos 8

and then R’ = PR (a)

where R’ gives the components of the force in the primed coordinate system. As a check, if we
use # = —30° we obtain, using (a),

0
R'=1]0
2

which is correct because the e3-vector is now aligned with the force vector.

To define a second-order tensor we build on the definition given in (2.54) for a tensor
of rank 1.

Definition: An entity is called a second-order tensor if it has nine components ty, i = 1, 2, 3,
andj = 1, 2, 3, in the unprimed frame and nine components ty in the primed frame and if these
components are related by the characteristic law

ty = DaDitu (2.60)

As in the case of the definition of a first-order tensor, the relation in (2.60) represents
a change of basis in the representation of the entity (see Example 2.25) and we can formally
derive (2.60) in essentially the same way as we derived (2.54). That is, if we write the same
tensor of rank 2 in the two different bases, we obtain

trn€m€n = lu€i€ (2.61)

where clearly in the tensor representation the first base vector goes with the first subscript
(the row in the matrix representation) and the second base vector goes with the second
subscript (the column in the matrix representation). The open product' or tensor product
e:€; is called a dyad and a linear combination of dyads as used in (2.61) is called a dyadic,
(see, for example, L. E. Malvern [A]). '
Taking the dot product from the right in (2.61), first with €; and then with e;, we
obtain
Lrn€mOn = tueier * €f)
t,',.,,8,,.,»8,,j = 1kl(ek . ei')(el * e_/’) (2'62)

or ty = tupapi

'The open product or tensor product of two vectors denoted as ab is defined by the requirement that
(ab)-v=ab-v)
for all vectors v. Some writers use the notation a @ b instead of ab.
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Here §; is the Kronecker delta (6; = 1 fori = j, and 8; = O for i # j). This transforma-
tion may also be written in matrix form as

t' = PtPT (2.63)

where the (i, k)th element in P is given by pi. Of course, the inverse transformation also
holds:

t=Pt'P (2.64)

This relation can be derived using (2.61) and [similar to the operation in (2.62)] taking the
dot product from the right with e; and then e;, or simply using (2.63) and the fact that P is
an orthogonal matrix.

In the preceding definitions we assumed that all indices vary from 1 to 3; special cases
are when the indices vary from 1 to n, with n < 3. In engineering analysis we frequently
deal only with two-dimensional conditions, in which case n = 2.

EXAMPLE 2.25: Stress is a tensor of rank 2. Assume that the stress at a point measured in
an unprimed coordinate frame in a plane stress analysis is (not including the third row and
column of zeros)
_ 1 - 1]
Tl

Establish the components of the tensor in the primed coordinate system shown in Fig. E2.25.

t‘rzz=1 141
werd ™
2 11

T11=1

T12=-1

x5 A x2

Figure E2.25 Representation of a stress tensor in different coordinate systems

Here we use the rotation matrix P as in Example 2.24, and the transformation in (2.63) is

+ = PrP p= [ cos 0 sin 0]
—sin § cos 6

Assume that we are interested in the specific case when 8 = 45°, In this case we have

it (R | R
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and we recognize that in this coordinate system the off-diagonal elements of the tensor (shear
components) are zero. The primed axes are called the principal coordinate axes, and the diagonal
elements 7{; = 0 and 75, = 2 are the principal values of the tensor. We will see in Section 2.5
that the principal tensor values are the eigenvalues of the tensor and that the primed axes define
the corresponding eigenvectors.

The previous discussion can be directly expanded to also define tensors of higher order
than 2. In engineering analysis we are, in particular, interested in the constitutive tensors
that relate the components of a stress tensor to the components of a strain tensor (see, for
example, Sections 4.2.3 and 6.6)

Ty = Cijki€u (2.65)

The stress and strain tensors are both of rank 2, and the constitutive tensor with components
Ciju is of rank 4 because its components transform in the following way:

Cns'kl = pimpjnpkrplscmnrs (2-66)

In the above discussion we used the orthogonal base vectors €, and €, of two
Cartesian systems. However, we can also express the tensor in components of a basis of
nonorthogonal base vectors. It is particularly important in shell analysis to be able to use
such base vectors (see Sections 5.4.2 and 6.5.2).

In continuum mechanics it is common practice to use what is called a covariant basis
with the covariant base vectors g;, i = 1, 2, 3, and what is called a contravariant basis with
the contravariant base vectors, g/, j = 1, 2, 3; see Fig. 2.5 for an example. The covariant and
contravariant base vectors are in general not of unit length and satisfy the relationships

g-g =25 (2.67)
where & is the (mixed) Kronecker delta (8! = 1 fori = j, and & = 0 for i # j).

X2 A

X1

1 .. 1 Figure 2.5 Example of covariant and
91°9'=1 809 =0 contravariant base vectors,n = 2 (plotted
91°9°=0; g2-g=1 in Cartesian reference frame)
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Hence the contravariant base vectors are orthogonal to the covariant base vectors.
Furthermore, we have

g = &g (2.68)
with 8 =88 (2.69)
and g = glg; ' (2.70)
with gi=g-g @.71)

where g;; and g¥ are, respectively, the covariant and contravariant components of the metric
tensor.

To prove that (2.68) holds, we tentatively let
g = g (2.72)

with the a; unknown elements. Taking the dot product on both sides with g;, we obtain

g g =ag-g
L = g dt (2.73)

Of course, (2.70) can be proven in a similar way (see Exercise 2.11).

Frequently, in practice, the covariant basis is conveniently selected and then the
contravariant basis is given by the above relationships.

Assume that we need to use a basis with nonorthogonal base vectors. The elegance of'
then using both the covariant and contravariant base vectors is seen if we simply consider
the work done by a force R going through a displacement u, given by R * u. If we express
both R and u in the covariant basis given by the base vectors g;, we have

R:u= (R'g: + R’g + Rg) * (u'g: + u’g + ugy)
) (2.74)
= R'ulg,
On the other hand, if we express only R in the covariant basis, but u in the contravariant
basis, given by the base vectors g/, we have
R:u= (R'g + R*% + R%gy) * (mg' + u:g* + usg’®) = Riu; 8!
. Riu_ (2.75)

which is a much simpler expression. Fig. 2.6 gives a geometrical representation of this
evaluation in a two-dimensional case.

We shall use covariant and contravariant bases in the formulation of plate and shell
elements. Since we are concerned with the product of stress and strain (e.g., in the principle
of virtual work), we express the stress tensor in contravariant components [as for the force
R in (2.75)],

T = fvg,.g, (2.76)
and the strain tensor in covariant components [as for the displacement in (2.75)],

€ = &g 2.77)
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flgql = 1
ligall = 1

R=R191+R292 ) 1
u=u;g'+ug?

Figure 2.6 Geometrical representation of R and u using covariant and contravariant bases

Using these dyadics we obtain for the product of stress and strain
W = (F"g.g) * (&8'8)
7 &858, (2.78)

g

ol

This expression for W is as simple as the result in (2.75). Note that here we used the
convention—designed such that its use leads to correct results>—that in the evaluation of
the dot product the first base vector of the first tensor multiplies the first base vector of the
second tensor, and so on.

Instead of writing the product in summation form of products of components, we shall
also simply use the notation

W=nr-€ (2.79)

and simply imply the result in (2.78), in whichever coordinate system it may be obtained.
The notation in (2.79) i, in essence, a simple extension of the notation of a dot product
between two vectors. Of course, when considering u * v, a unique result is implied, but this
result can be obtained in different ways, as given in (2.74) and (2.75). Similarly, when

zNamely, consider (ab) * (cd). Let A = ab, B =cd; then A-B = AUBU = a;bjc;d, = (a;c,-)(b,d,) =
(@a-c)b-d. .
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writing (2.79), the unique result of W is implied, and this result may also be obtained in
different ways, but the use of 7/ and &; can be effective (see Example 2.26).

Hence we note that the covariant and contravariant bases are used in the same way as
Cartesian bases but provide much more generality in the representation and use of tensors.
Consider the following examples.

EXAMPLE 2.26: Assume that the stress and strain tensor components at a point in a contin-
uum corresponding to a Cartesian basis are 7; and €; and that the strain energy, per unit volume,
is given by U = § ;€. Assume also that a basis of covariant base vectors g, i = 1,2, 3, is given,
Show explicitly that the value of U is then also given by 3 ¥ &,.

Here we use

™ GnBn = Ty€1E) (a)
and EmgE"E" = €50/¢ ®)
But from (a) and (b) we obtain

Ty = #"(gn * €)(g. " €) sum on m and n
and €& = Em(@" €)@ -e) sumonmandn
Now since

(8-e)g-e)=1 sumonj

we also have U=35F"&n
EXAMPLE 2.27: The Cartesian components 7; of the stress tensor 7;e;e; are 7, = 100,
72 = 60, 7, = 200, and the components e; of the strain tensor €,e;e; are €, = 0.001,
€ = 0.002, €pn = 0.003. ’

Assume that the stress and strain tensors are to be expressed in terms of covariant strain
components and contravariant stress components with

N R
V2

Calculate these components and, using these components, evaluate the product £ 7¢;.
Here we have, using (2.67),

o=l e-[ul

To evaluate 7/ we use
g = Tn€m€s
so that = Tulem * g)(e, * &)
Therefore, the contravariant stress components are
Fl =180,  #2 =7 = ~140V2;
Similarly, &g'g = €y
& = emlen g)(e.* g)

él
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and the covariant strain components are

€y = _1 € = €y = 3 . = ———4
11 12 21 lom\/—Z-s 22 10()0

1000’
Then we have
179g, = 7= (180 + 1600 — 840) = 0.47

This value is of course also equal to 3 7y€5.

EXAMPLE 2.28: The Green-Lagrange strain tensor can be defined as

€ = &g
with the components
&=13(g"'g '8 °8) ()
ax a(x + w)
0g — X, 1
where 8 an &= ar, (b)

and x denotes the vector of Cartesian coordinates of the material point considered, u denotes the
vector of displacements into the Cartesian directions, and the r; are convected coordinates (in
finite element analysis the r; are the isoparametric coordinates; see Sections 5.3 and 5.4.2).

1. Establish the linear and nonlinear components (in displacements) of the strain tensor.

2.. Assume that the convected coordinates are identical to the Cartesian coordinates. Show
that the components in the Cartesian system can be written as

_ 1(% ;o u 61)
axj ax; ax,- ax, ‘

3 ©

To establish the linear and nonlinear components, we substitute from (b) into (a). Hence

. 1[ (ax au> (ax au> X ox
GU = - — + —_— e | - + — — — 0 —
2| \or; or ar;, on ar, ar;

The terms linear in displacements are therefore

e = (0. 25 2 ) @
il = o\or, or, ' on an
and the terms nonlinear in displacements are
€ I = l(a_u . au) (e)
¥lnontihesr = 9\ an ar;

If the convected coordinates are identical to the Cartesian coordinates, we have r; = x;, i =
1,2, 3, and dx;/dx; = §;. Therefore, (d) becomes

and (¢) becomes
€ |nontinear = l(.aﬂ .aﬂ‘> @
ij [nonlinear 2 axi axj g

Adding the linear and nonlinear terms (f) and (g), we obtain (c).
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The preceding discussion was only a very brief introduction to the definition and use
of tensors. Our objective was merely to introduce the basic concepts of tensors so that we
can work with them later (see Chapter 6). The most important point about tensors is that
the components of a tensor are always represented in a chosen coordinate system and that
these components differ when different coordinate systems are employed. It follows from
the definition of tensors that if all components of a tensor vanish in one coordinate system,
they vanish likewise in any other (admissible) coordinate system. Since the sum and differ-
ence of tensors of a given type are tensors of the same type, it also follows that if a tensor
equation can be established in one coordinate system, then it must also hold in any other
(admissible) coordinate system. This property detaches the fundamental physical relation-
ships between tensors under consideration from the specific reference frame chosen and is
the most important characteristic of tensors: in the analysis of an engineering problem we
are concerned with the physics of the problem, and the fundamental physical relationships
between the variables involved must be independent of the specific coordinate system
chosen; otherwise, a simple change of the reference system would destroy these relation-
ships, and they would have been merely fortuitous. As an example, consider a body sub-
jected to a set of forces. If we can show using one coordinate system that the body is in
equilibrium, then we have proven the physical fact that the body is in equilibrium, and this
force equilibrium will hold in any other (admissible) coordinate system.

The preceding discussion also hinted at another important consideration in engineer-
ing analysis, namely, that for an effective analysis suitable coordinate systems should be
chosen because the effort required to express and work with a physical relationship in one
coordinate system can be a great deal less than when using another coordinate system. We
will see in the discussion of the finite element method (see, for example, Section 4.2) that
indeed one important ingredient for the effectiveness of a finite element analysis is the
flexibility to choose different coordinate systems for different finite elements (domains) that
together idealize the complete structure or continuum.

2.5 THE SYMMETRIC EIGENPROBLEM Av = v

In the previous section we discussed how a change of basis can be performed. In finite
element analysis we are frequently interested in a change of basis as applied to symmetric
matrices that have been obtained from a variational formulation, and we shall assume in the
discussion to follow that A is symmetric. For example, the matrix A may represent the
stiffness matrix, mass matrix, or heat capacity matrix of an element assemblage.

There are various important applications (see Examples 2.34 to 2.36 and Chapter 9)
in which for overall solution effectiveness a change of basis is performed using in the
transformation matrix the eigenvectors of the eigenproblem

Av = Av (2.80)

The problem in (2.80) is a standard eigenproblem. If the solution of (2.80) is consid-
ered in order to obtain eigenvalues and eigenvectors, the problem Av = Av is referred to as
an eigenproblem, whereas if only eigenvalues are to be calculated, Av = Av is called an
eigenvalue problem. The objective in this section is to discuss the various properties that
pertain to the solutions of (2.80).
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Let n be the order of the matrix A. The first important point is that there exist n
nontrivial solutions to (2.80). Here the word “nontrivial” means that v must not be a null
vector for which (2.80) is always satisfied. The ith nontrivial solution is given by the
eigenvalue A; and the corresponding eigenvector v;, for which we have

AVf b A.‘V.‘ (281)

Therefore, each solution consists of an eigenpair, and we write the n solutions as (A, vi),
(A2, v2), . . ., (A4, V»), wWhere
ASAh<..-<A, (2.82)

We also call all n eigenvalues and eigenvectors the eigensystem of A.
The proof that there must be n eigenvalues and corresponding eigenvectors can
conveniently be obtained by writing (2.80) in the form

(A-ADv =20 (2.83)
But these equations have a solution only if
det (A — AD = 0 (2.84)

Unfortunately, the necessity for (2.84) to hold can be explained only after the solution of
simultaneous equations has been presented. For this reason we postpone until Sec-
tion 10.2.2 a discussion of why (2.84) is indeed required.

Using (2.84), the eigenvalues of A are thus the roots of the polynomial

p(A) = det (A — Al (2.85)

This polynomial is called the characteristic polynomial of A. However, since the order of
the polynomial is equal to the order of A, we have n eigenvalues, and using (2.83) we obtain
n corresponding eigenvectors. It may be noted that the vectors obtained from the solution
of (2.83) are defined only within a scalar multiple.

EXAMPLE 2.29: Consider the matrix

-1 2
=)
Show that the matrix has two eigenvalues. Calculate the eigenvalues and eigenvectors.
The characteristic polynomial of A is

o T-1-a 2
mn—w[ ; 2—J

Using the procedure given in Section 2.2 to calculate the determinant of a matrix (see Exam-
ple 2.13), we obtain

pA) = (-1 = N2 -1 - @2)Q)
=A’-A-6
=A+ 20X -3)
The order of the polynomial is 2, and hence there are two eigenvalues. In fact, we have
A=-2 A=
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The corresponding eigenvectors are obtained by applying (2.83) at the eigenvalues. Thus we have

for Ay,
[_1 PR —2(—2)][::] = [8] ®

with the solution (within a scalar multiple)

ne ]
ISPt MK g

with the solution (within a scalar multiple)
w= i
h
A change of basis on the matrix A is performed by using
v =P¥ (2.86)

For Az, we have

where P is an orthogonal matrix and ¥ represents the solution vector in the new basis.
Substituting into (2.80), we obtain

AV = AV (2.87)
where A = PTAP (2.88)

and since A is a symmetric matrix, A is a symmetric matrix also. This transformation is
called a similarity transformation, and because P is an orthogonal matrix, the transforma-
tion is called an orthogonal similarity transformation.

If P were not an orthogonal matrix, the result of the transformation would be

AV = ABV (2.89)
where A =P'AP; B =PP (2.90)

The eigenproblem in (2.89) is called a generalized eigenproblem. However, since a
generalized eigenproblem is more difficult to solve than a standard problem, the transfor-
mation to a generalized problem should be avoided. This is achieved by using an orthogonal
matrix P, which yields B = 1. -

In considering a change of basis, it should be noted that the problem AV = AB¥in
(2.89) has the same eigenvalues as the problem Av = Av, whereas the eigenvectors are
related as given in (2.86). To show that the eigenvalues are identical, we consider the
characteristic polynomials.

For the problem in (2.89), we have

B(A) = det (PTAP — AP'P) (2.91)

which can be written as
B(A) = det PT det (A — AI) det P (2.92)
and therefore, P(A) = det P” det P p(A) (2.93)
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where p(A) is given in (2.85). Hence the characteristic polynomials of the problems
Av = Avand AV = ABV are the same within a multiplier. This means that the eigenvalues
of the two problems are identical.

So far we have shown that there are n eigenvalues and corresponding eigenvectors, but
we have not yet discussed the properties of the eigenvalues and vectors.

A first observation is that the eigenvalues are real. Consider the ith eigenpair (A;, v)),
for which we have

Av; = Awv; (2.94)

Assume that v; and A, are complex, which includes the case of real eigenvalues, and let the
elements of V; and A; be the complex conjugates of the elements of v; and A;. Then premul-
tiplying (2.94) by v/, we obtain

vIAv;, = AV]v; (2.95)
On the other hand, we also obtain from (2.94),
VIA =¥ (2.96)
and postmultiplying by v;, we have
vTAv, = AvTv, (297)
But the left-hand sides of (2.95) and (2.97) are the same, and thus we have
(i — W¥Ivi =0 (2.98)

Since v, is nontrivial, it follows that A, = A;, and hence the eigenvalue must be real.
However, it then also follows from (2.83) that the eigenvectors can be made real because
the coefficient matrix A — Al is real.

Another important point is that the eigenvectors that correspond to distinct eigen-
values are unique (within scalar multipliers) and orthogonal, whereas the eigenvectors
corresponding to multiple eigenvalues are not unique, but we can always choose an orthog-
onal set. ‘

Assume first that the eigenvalues are distinct. In this case we have for two eigenpairs,

Av; = Av; (2.99)
and Av; = Ay, (2.100)
Premultiplying (2.99) by v/ and (2.100) by v{, we obtain
v/Av; = Avly; (2.101)
viAv; = Avly; (2.102)
Taking the transpose in (2.102), we have
viAv; = Avlv, (2.103)
and thus from (2.103) and (2.101) we obtain
| A = Wvvi =0 (2.104)

Since we assumed that A; # A;, it follows that vIv; = 0, i.e., that v; and v; are orthogonal.
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Furthermore, we can scale the elements of the vector v; to obtain
viv; = § (2.105)

where §; = the Kronecker delta; i.e., §; = 1 when i = j, and §; = 0 when i # j. If
(2.105) is satisfied, we say that the eigenvectors are orthonormal.

It should be noted that the solution of (2.83) yields a vector in which only the relative
magnitudes of the elements are defined. If all elements are scaled by the same amount, the
new vector would still satisfy (2.83). In effect, the solution of (2.83) yields the direction of
the eigenvector, and we vse the orthonormality condition in (2.105) to fix the magnitudes
of the elements in the vector. Therefore, when we refer to eigenvectors from now on it is
implied that the vectors are orthonormal.

EXAMPLE 2.30: Check that the vectors calculated in Example 2.29 are orthogonal and then
orthonormalize them.
The orthogonality is checked by forming v{v,, which gives

vive = 2)@) + (-1)(1) = 0

Hence the vectors are orthogonal. To orthonormalize the vectors, we need to make the lengths
of the vectors equal to 1. Then we have

I CREE a EREE 1 R

We now turn to the case in which multiple eigenvalues are also present. The proof of
eigenvector orthonormality given in (2.99) to (2.105) is not possible because for a multiple
eigenvalue, A, is equal to A;in (2.104). Assume that A; = Ajey = « + + = Ajgm-1} 1€, Asis an
m-times multiple root. Then we can show that it is still always possible to choose m
orthonormal eigenvectors that correspond to A, Ai+1, . - . , Ar+m-1. This follows because for
a symmetric matrix of order n, we can always establish a complete set of n orthonormal
eigenvectors. Corresponding to each distinct eigenvalue we have an eigenspace with dimen-
sion equal to the multiplicity of the eigenvalue. All eigenspaces are unique and are orthog-
onal to the eigenspaces that correspond to other distinct eigenvalues. The eigenvectors
associated with an eigenvalue provide a basis for the eigenspace, and since the basis is not
unique if m > 1, the eigenvectors corresponding to a multiple eigenvalue are not unique.
The formal proofs of these statements are an application of the principles discussed earlier
and are given in the following examples.

EXAMPLE 2.31: Show that for a symmetric matrix A of order n, there are always »n orthonor-
mal eigenvectors.

Assume that we have calculated an eigenvalue A; and corresponding eigenvector v;. Let us
construct an orthonormal matrix Q whose first column is v;,

Q=[v Qk QQ-=I

This matrix can always be constructed because the vectors in Q provide an orthonormal basis for
the n-dimensional space in which A is defined. However, we can now calculate

v a)

0 A (a)

QAQ = [
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where A = Q7AQ

and A, is a full matrix of order (n — 1). If n = 2, we note that Q”AQ is diagonal. In that case,
if we premultiply (a) by Q and let a = A, we obtain

A0
AQ Q[ 0 a]

and hence the vector in Q is the other eigenvector and a is the other eigenvalue regardless of
whether A, is a multiple eigenvalue or not.

The complete proof is now obtained by induction. Assume that the statement is true for
a matrix of order (n — 1); then we will show that it is also true for a matrix of order n. But since
we demonstrated that the statement is true for n = 2, it follows that it is true for any n.

The assumption that there are (n — 1) orthonormal eigenvectors for a matrix of order
(n — 1) gives

QfAQ/=A ®

where Q, is a matrix of the eigenvectors of A, and A is a digonal matrix listing the eigenvalues
of A,. However, if we now define

I 0
5T [o Ql]
we have STQ7AQS = [)"‘ 0] ©
0 A
Let P = QS; PP =1
Then premultiplying (c) by P, we obtain
ey 4]

Therefore, under the assumption in (b), the statement is also true for a matrix of order n, which
completes the proof.

EXAMPLE 2.32: Show that the eigenvectors corresponding to a multiple eigenvalue of multi-
plicity m define an m-dimensional space in which each vector is also an eigenvector. This space
is called the eigenspace corresponding to the eigenvalue considered.

Let A; be the eigenvalue of multiplicity m; i.e., we have

Al = X1 = 0 = Aigm—1

We showed in Example 2.31 that there are m orthonormal eigenvectors Vi, Vii1, . « ., Viem-1
corresponding to A;. These vectors provide the basis of an m-dimensional space. Consider any
vector w in this space, such as

W=V + ®1Vie1 + ¢ 00+ Qeme1 Viem—1
where the a;, a;+1, . . . , are constants. The vector w is also an eigenvector because we have
. . AW = AV, + a;1AVi + 0+ Cemo 1AV
which gives
AW = Vi + @ AiVir 0 Qi1 AiViem— = AW
Therefore, any vector w in the space spanned by the m eigenvectors v;, Vis1, . . . , Vizm—1 is also

an eigenvector. It should be noted that the vector w will be orthogonal to the eigenvectors that
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correspond to eigenvalues not equal to A;. Hence there is one eigenspace that corresponds to each,
distinct or multiple, eigenvalue. The dimension of the eigenspace is equal to the multiplicity of
the eigenvalue.

Now that the main properties of the eigenvalues and eigenvectors of A have been
presented, we can write the n solutions to Av = Av in various forms. First, we have

AV = VA ‘ (2.106)

where V is a matrix storing the eigenvectors, V = [v,, . . ., v,], and A is a diagonal matrix
with the corresponding eigenvalues on its diagonal, A = diag (A.). Using the orthonormal-
ity property of the eigenvectors (i.e., V'V = I), we obtain from (2.106),

VTAV = A (2.107)
Furthermore, we obtain the spectral decomposition of A,
A = VAV’ (2.108)

where it may be convenient to write the spectral decomposition of A as

A =2 AvvT (2.109)
i=1
It should be noted that each of these equations represents the solution to the eigen-
problem Av = Av. Consider the following example.

EXAMPLE 2.33: Establish the relations given in (2.106) to (2.109) for the matrix A used in
Example 2.29.

The eigenvalues and eigenvectors of A have been calculated in Examples 2.29 and 2.30.
Using the information given in these examples, we have for (2.106),

[—1 2] _% —\;—§—= _% % [—2 o]
2 2 03
by s

and for (2.109),

21 21
S B e B TR E
| V5 V5 V5 Vs
2 1 2 1]
for (2.108), [—1 2]={—% Vs [‘2 0][ V3 Vs
| 2 2 120l o 3l 2
VARV VARVA
1

= L
e T ol of s
Vs
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The relations in (2.107) and (2.108) can be employed effectively in various important
applications. The objective in the following examples is to present some solution procedures
in which they are used.

EXAMPLE 2.34: Calculate the kth power of a given matrix A; i.e., evaluate A*. Demonstrate
the result using A in Example 2.29.

One way of evaluating A* is to simply calculate A> = AA, A* = A?A? etc. However, if k
is large, it may be more effective to employ the spectral decomposition of A. Assume that we
have calculated the eigenvalues and eigenvectors of A; i.e., we have

A = VAV’
To calculate A%, we use A? = VAVTVAV?
but because Y'V= I, we have A? = VAVT
Proceeding in the same manner, we thus obtain

A = VAWVT

As an example, let A be the matrix considered in Example 2.29. Then we have

e T BT
e

It is interesting to note that if the largest absolute value of all the eigenvalues of A is smaller than
1, we have A* — 0 as k — o, Thus, defining the spectral radius of A,

p(A) = max ||
we have Pm A* = 0, provided that p(A) < 1.

EXAMPLE 2.35: Consider the system of differential equations
X + Ax = f(9) (a

and obtain the solution using the spectral decomposition of A. Demonstrate the result using the
matrix A in Example 2.29 and
e’ 1
t) = ; Oy =
w=[} =[]

where % are the initial conditions.
Substituting A = VAV” and premultiplying by V7, we obtain

VX + A(Vx) = V()

Thus if we define y = VX, we need to solve the equations

y + Ay = V()
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But this is a set of n decoupled differential equations. Consider the rth equation, which is typical:
¥r + Ay, = v

1

The solution is yAt) = %, e + M f e vif(7) dr
0

where %, is the value of y, at time ¢+ = 0. The complete solution to the system of equations in (a) is

x=2 vy, (b)

r=1

As an example, we consider the system of differential equations

NP M

X2 2 2]lx: 0

In this case we have to solve the two decoupled differential equations
i+ (=2 =2

Y2+ 3y =¢€"'

with initial conditions
We obtain »n =

Thus, using (b), we have

MEE (NS

V5, .3 2
—_t 4+ = —3I+_ 2
|76 st s
ﬁe-t+§e—31_le21

3 5 5

To conclude the presentation, we may note that by introducing auxiliary variables, higher-
order differential equations can be reduced to a system of first-order differential equations.
However, the coefficient matrix A is in that case nonsymmetric.

EXAMPLE 2.36: Using the spectral decomposition of an n X n symmertric matrix A, evalu-
ate the inverse of the matrix. Demonstrate the result using the matrix A in Example 2.29.

Assume that we have evaluated the eigenvalues A, and corresponding eigenvectors v;,
i=1,...,n, of the matrix A; i.e., we have solved the eigenproblem

Av = \v (a)
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Premultiplying both sides of (a) by A™'A~!, we obtain the eigenproblem

Alv= A"l
But this relation shows that the eigenvalues of A~! are 1/A; and the eigenvectors are v;, i =
1, ..., n. Thus using (2.109) for A™, we have
A"l = VATIVT
A
or At=2 <—-)v,v.-7
i=1 Ai

These equations show that we cannot find the inverse of A if the matrix has a zero eigenvalue.
As an example, we evaluate the inverse of the matrix A considered in Example 2.29. In this

case we have
R (I I
S5L—-1 2 0 i1 2 6l 2 1

The key point of the tranformation (2.107) is that in (2.107) we perform a change of basis
[see (2.86) and (2.88)]. Since the vectors in V correspond to a new basis, they span the
n-dimensional space in which A and A are defined, and any vector w can be expressed as
a linear combination of the eigenvectors v;; i.e., we have

w=2 av (2.110)
i=1

An important observation is that A shows directly whether the matrices A and A are
singular. Using the definition given in Section 2.2, we find that A and hence A are singular
if and only if an eigenvalue is equal to zero, because in that case A~ cannot be calculated.
In this context it is useful to define some additional terminology. If all eigenvalues are
positive, we say that the matrix is positive definite. If all eigenvalues are greater than or
equal to zero, the matrix is positive semidefinite; with negative, zero, or positive eigenval-

ues, the matrix is indefinite.

2.6 THE RAYLEIGH QUOTIENT AND THE MINIMAX
CHARACTERIZATION OF EIGENVALUES

In the previous section we defined the eigenproblem Av = Av and discussed the basic
properties that pertain to the solutions of the problem. The objective in this section is to
complement the information given with some very powerful principles.

A number of important principles are derived using the Rayleigh quotient p (v), which

is defined as .
viAv
plv) = 0 2.111)
The first observation is that
AM=plv)=A, (2.112)

and it follows that using the definitions given in Section 2.5, we have for any vector v, if A
is positive definite p(v) > 0, if A is positive semidefinite p(v) = 0, and for A indefinite p(v)
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can be negative, zero, or positive. For the proof of (2.112) we use
V=2 av (2.113)
i=1

where v; are the eigenvectors of A. Substituting for v into (2.111) and using that Av; = A,
vlv; = §;, we obtain ‘

Mal + Al + -0+ Al

p(v) = P Sr——— (2.114)
Hence, if A; # 0,
2 4+ (A 2.+, 2
pw) = & B EL ’/:%)‘f - ~ ;( [h)a (2.115)
2 2 '] 2
and if)\,, # 0, p(V) = A, (/\l//\n)a] Z%(iz//\n)aj;‘ + an (2.116)

Butsince A; < A; = - - - =< A, therelations in (2.114) to (2.116) show that (2.112) holds.
Furthermore, it is seen that if v = v,, we have p(v) = A,

Considering the practical use of the Rayleigh quotient, the following property is of
particular value. Assume that v is an approximation to the eigenvector v;; i.e., say with €
small, we have

V=1vV + €x 2.117)
Then the Rayleigh quotient of v will give an approximation to A; of order €?; i.e.,
p(v) = A + o(€?) (2.118)

The notation o(e?) means “of order €” and indicates that if § = o(€?), then |8| = be?,
where b is a constant.

To prove this property of the Rayleigh quotient, we substitute for v from (2.113) into
the Rayleigh quotient expression to obtain

(v7 + exDA(v; + ex)

i+ = 2.11
pvi + €x) (vT + ex’)(v; + ex) (2.119)
vIAv; + 2eviAx + exTAx
r + = .
° pv: + €x) viv; + 2ex’v; + eXx (2.120)
Howeyver, since X is an error in v;, we can write
n
x=2ay (2.121)

=t
fig)

But then using v/'v; = §; and Av; = A;v;, we have v/Ax = 0 and x"v; = 0, and hence

n

At e alA
j=t
i

pvi + ex) = —— I (2:122)

1+e2 af
=1
i
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However, using the binomial theorem to expand the denominator in (2.122), we have

p(v, + €x) = <)L,- + € i a})t,)[l - ez<i a}) + e“(i az})2 + .- ] (2.123)

=1 Jj=1 j=1
i i i

or p(v, + ex) = A + €° (2 alh — A ) ajz) + higher-order terms (2.124)
j=1 i=1
i J*i

The relation in (2.118) thus follows. We demonstrate the preceding results in a brief
example.

EXAMPLE 2.37: Evaluate the Rayleigh quotients p(v) for the matrix A used in Example 2.29.
Using v and v, in Example 2.29, consider the following cases:

1. v=v + 2v; 2. Vv=v; 3 v=wv + 0.02v,.

SR HEH
s s L R

1
o)

Recalling that A; = —2 and A, = 3, we have, as expected,
M=pv) <A,

[
o - 2]

and hence p(v) = > = =9
2 —
@ -] ]

and so, as expected, p(v) = A;.

Finally, in case 3, we use

=[]+ [l = [6es]
[2.01 —0-98][—; 5][_333

[2.01 —0.98][ 2'01]

In case 1, we have

In case 2, we have

and hence p(v) =

—0.98
= —1.99950005

Here we note that p(v) > A, and that p(v) approximates A; more closely than v approx-
imates v;.
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Having introduced the Rayleigh quotient, we can now proceed to a very important
principle, the minimax characterization of eigenvalues. We know from Rayleigh’s principle
that

p(v) = A (2.125)

where v is any vector. In other words, if we consider the problem of varying v, we will
always have p(v) = A,, and the minimum will be reached when v = v,, in which case
p(v1) = A,. Suppose that we now impose a restriction on v, namely that v be orthogonal to
a specific vector w, and that we consider the problem of minimizing p(v) subject to this
restriction. After calculating the minimum of p(v) with the condition v’'w = 0, we could
start varying w and for each new w evaluate a new minimum of p(v). We would then find
that the maximum value of all the minimum values evaluated is A;. This result can be
generalized to the following principle, called the minimax characterization of eigenvalues,

T
A, = max {min Y ‘,“} r=1,....n (2.126)
viv
with v satisfying v'w; = Ofori = 1,...,r — 1, r = 2. In (2.126) we choose vectors w;,
i=1,...,r — 1, and then evaluate the minimum of p(v) with v subject to the condition
vi'w; = 0,i = 1,...,r — 1. After calculating this minimum we vary the vectors w; and
always evaluate a new minimum. The maximum value that the minima reach is A,.
The proof of (2.126) is as follows. Let

v=2 A (2.127)
i=1

and evaluate the right-hand side of (2.126), which we call R,

I+t aPA + akidgg o+ a2,
R = max {min il 2y Gt . } (2.128)
airt - +tartorattoa;
The coefficients o; must satisfy the conditions
wXav=0 j=1,...,r—1 (2.129)
i=1
Rewriting (2.128), we obtain
a%(’\r - A1) + -0+ a;—l(Ar - A,-_l)
_ . + a,2-+1(A.,- - A-r+1) + .-+ arzz(/\r - An)
R = max {min | A, Tt taltaf o ta (2.130)
But we can now see that for the condition a,+1 = @,+2 = - - - = a, = 0, we have
R =A (2.131)
and the condition in (2.129) can still be satisfied by a judicious choice for ¢,. On the other
hand, suppose that we now choose w; = v;forj = 1, ..., r — 1. This would require that
ag=0forj=1,...,r — 1, and consequently we would have R = A,, which completes

the proof.
A most important property that can be established using the minimax characterization
of eigenvalues is the eigenvalue separation property. Suppose that in addition to the
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problem Av = Av, we consider the problems
Almylm) — ) (myylm) (2.132)

.where A™ is obtained by omitting the last m rows and columns of A. Hence A™ is a
square-symmetric matrix of order (n — m). Using also the notation A? = A, A® = ),
v® = v, the eigenvalue separation property states that the eigenvalues of the problem
Al Dylm+l) = \m+Dym+D) geparate the eigenvalues of the problem in (2.132); i.e., we have

A < M) < A = A <L AL = D) < AT,
form=20,...,n—2

For the proof of (2.133) we consider the problems Av = Av and AVy() = Ay If
we can show that the eigenvalue separation property holds for these two problems, it will

(2.133)

hold also form = 1, 2, ..., n — 2. Specifically, we therefore want to prove that
A S A=A, r=1,...,n—1 (2.134)
Using the minimax characterization, we have
Ar+1 = max {min vTAv}
! viv (2.135)
viw, = 0; i=1,...,r all w, arbitrary
Similarly, we have
T
A = max {min z ﬁ“}
vy
viw, = 0 i=1,...,r (2.136)
w; arbitrary fori = 1, ...,r — 1
wr = €,

where w, is constrained to be equal to e, to ensure that the last element in v is zero because
e, is the last column of the » X n identity matrix I. However, since the constraint for A, .,
can be more severe and includes that for A{", we have

AD < AL, (2.137)

To determine A, we use

{ . v’Av}
A, = max {min —
vy
viw; = 0; i=1...,r—-1 (2.138)

all w; arbitrary

Comparing the characterizations of A" and A,, i.e., (2.136) with (2.138), we observe
that to calculate A" we have the same constraints as in the calculation of A, plus one more
(namely, v’e, = 0), and hence

A =AW (2.139)
But (2.137) and (2.139) together establish the required result given in (2.134).
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The eigenvalue separation property now yields the following result. If we write the
eigenvalue problems in (2.132) including the problem Av = Av in the form

Pm(A™) = det (A™ — A™); m=0,...,n—1 (2.140)

where p® = p, we see that the roots of the polynomial p(A™*!) separate the roots of the
polynomial p (A“). However, a sequence of polynomials pi(x), i = 1,. . ., g, form a Sturm
sequence if the roots of the polynomial p;.(x) separate the roots of the polynomial p;(x).
Hence the eigenvalue separation property states that the characteristic polynomials of the
problems A™y™ = \™y™_ pn =0, 1,...,n — 1, form a Sturm sequence. It should be
noted that in the presentation we considered all symmetric matrices; i.e., the minimax
characterization of eigenvalues and the Sturm sequence property are applicable to positive
definite and indefinite matrices. We shall use the Sturm sequence property extensively in

later chapters (see Sections 8.2.5, 10.2.2, 11.4.3, and 11.6.4). Consider the following
example.

EXAMPLE 2.38: Consider the eigenvalue problem Av = Av, where

5 -4 -7
A=|-4 2 -4
-7 -4 5

Evaluate the eigenvalues of A and of the matrices A™, m = 1, 2. Show that the separation
property given in (2.133) holds and sketch the characteristic polynomials p(A), p™(AY), and
POO),

We have

pA) =det(A — AI) = (5 — N[2 — N5 - A — 16]
+ 4[—4(5 — A) — 28] — 7[16 + 7(2 — A)]
Hence pA) = (=6 — A)(6 — M)(12 - ))
and the eigenvalues are

A = —6; A2 =6; Ay = 12

Also, pPAP) = det (AD — AD)
=5 - A2 - M) - 16
or pPOAD) = A\ — 7\ — 6
Hence AP =3 -3V13 = -0.7720
M =1+V73=17772
Finally, PP(A?) = det (A? — API)
=5—-2®
Hence AR =5

The separation property holds because
MEAP=s LA =N,
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p2 (a2

A pm(l‘")

I —0.772;&./15" =7772

A plA)

\ =8 AN,

11-—6\/ ,13=1z\ 1

and AR < AP < AP
The characteristic polynomials are sketched in Fig. E2.38.

Figure E2.38 Characteristic polynomials

2.7 VECTOR AND MATRIX NORMS

We have discussed vectors, matrices, eigenvalues, and eigenvectors of symmetric matrices
and have investigated the deeper significance of the elements in these entities. However, one
important aspect has not been discussed so far. If we deal with single numbers, we can
identify a number as being large or small. Vectors and matrices are functions of many
elements, but we also need to measure their “size.” Specifically, if single numbers are used
in iterative processes, the convergence of a series of numbers, say x,, X2, . . ., Xk, t0 a number
x is simply measured by

lim | —x] =0 (2.141)

or, in words, convergence is obtained if the residual y, = |x; — x|approaches zero as k— =,
Furthermore, if we can find constants p = 1 and ¢ > 0 such that

. ka+1—x|_
21_12 |x — xp N

(2.142)
we say that convergence is of order p. If p = 1, convergence is linear and the rate of
convergence is ¢, in which case ¢ must be smaller than 1.

In iterative solution processes using vectors and matrices we also need a measure of
convergence, Realizing that the size of a vector or matrix should depend on the magnitude
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of all elements in the arrays, we arrive at the definition of vector and matrix norms. A norm
is a single number that depends on the magnitude of all elements in the vector or matrix.

Definition: A norm of a vector v of order n written as || v|| is a single number. The norm is
a function of the elements of v, and the following conditions are satisfied:

L |v||=0and|v| =0ifand only ifv = 0. (2.143)
2. Jev| = | clll v for any scalar c. (2.149)
3. |lv+ w| =< | vl + | wlforvectors v and w. (2.145)

The relation (2.145) is the triangle inequality. The following three vector norms are
commonly used and are called the infinity, one, and two vector norms:

vl = max | vi (2.146)
Ivlh = 2 |oi (2.147)
i=1
L 1/2
vl = (2 Iv.-lz) (2.148)
i=1

| v |l is also known as the Euclidean vector norm. Geometrically, this norm is equal to the
length of the vector v. All three norms are special cases of the vector norm V'3, |v:|?,
where for (2.146), (2.147), and (2.148), p = =, 1, and 2, respectively. It should be noted
that each of the norms in (2.146) to (2.148) satisfies the conditions in (2.143) to (2.145).
We can now measure convergence of a sequence of vectors X;, Xz, Xa, . .., X to a
vector X. That is, for the sequence to converge to x it is sufficient and necessary that

lim || — x| =0 (2.149)

for any one of the vector norms. The order of convergence p, and in case p = 1, the rate
of convergence c, are calculated in an analogous manner as in (2.142) but using norms; i.e.,
we have

lim " Xi+1 — X”

e " Xx — X”p =c (2.150)

Looking at the relationship between the vector norms, we note that they are equivalent
in the sense that for any two norms || * |is, and || * ||s, there exist two positive constants a;
and o, such that

Ivlls, = el vlls, (2.151)

and Ivls, = el vls, (2.152)
where s, and s; denote the «-, 1-, or 2-norms. Hence it follows that

allvls, = lvlls, = el vis, (2.153)

where ¢, and ¢, are two positive constants that may depend on n, and of course also

1 1
Z,;” v”-Yz = ” v”51 = C_l" v”52
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EXAMPLE 2.39: Give the constants ¢; and ¢, in (2.153) if, first, the norms s, and s, are the
oo- and 1-norms, and then, second, the «- and 2-norms. Then show that in each case (2.153) is
satisfied using the vector

1
v=|-3
2
In the first case we have
Ivlle = vl = nf v]e @

with ¢; = 1, ¢; = n, and in the second case we have
vl <l vle = Va| v| ()

with ¢, = 1 and ¢; = Vn. These relations show that the 1- and 2-norms are equivalent to the
oo- norm. We can easily show that lower and upper bounds on || v|; in (a) and || v |, in (b) cannot
be closer because the equal signs are reached for the vectors vV = [1 1...1] and v" = ¢, (and
any scalar multiples thereof).

If we apply (a) and (b) to the given vector v, we have

vl =3
Ivh=1+3+2=6
Ivk=VI+9+4=Vid

and the relations in (a) and (b) read
3=6=<(3)Q3); 3 < V14 = (V3)(3)

In analogy with the definition of a vector norm, we also define a matrix norm.

Definition: A norm of a matrix A of order n X n, written as | A||, is a single number. The
norm is a function of the elements of A, and the following relations hold:

1. | Al = 0 and||A|| = 0 ifand only if A = o. (2.154)
2. || cA|| = | cl|| A |l for any scalar c. (2.155)
3. |A + B|| = ||A] + ||B|| for matrices A and B. (2.156)
4. | AB| =< || A||l| B|| for matrices A and B. (2.157)

The relation in (2.156) is the triangle inequality equivalent to (2.145). The additional
condition in (2.157), which was not postulated in the definition of a vector norm, must be
satisfied in order to be able to use matrix norms when matrix products occur.

The following are frequently used matrix norms:

| Alle = max 2 {ay] (2.158)
j=1

Al = max > |y (2.159)
i=1

IAlL = VA, A, = maximum eigenvalue of A”A (2.160)

where for a symmetric matrix A we have | A|l. = | Al and | A|l, = max |A;| (see Exer-

cise 2.21). The norm || A |); is called the spectral norm of A. Each of these norms satisfies
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the relations in (2.154) to (2.157). The proof that the relation in (2.157) is satisfied for the
infinity norm is given in Example 2.41.

EXAMPLE 2.40: Calculate the «-, 1-, and 2-norms of the matrix A, where A was given in
Example 2.38.
The matrix A considered is

5 -4 -7
A=|-4 2 -4
-7 -4 5

Using the definitions given in (2.158) to (2.160), we have
Ak =5+4+7=16
|[Ali=5+4+7=16

The 2-norm is equal to | A;|, and hence (see Example 2.38) || A [, = 12.

EXAMPLE 2.41: Show that for two matrices A and B, we have
|AB|. = [ Al [ B
Using the definition of the infinity matrix norm in (2.158), we have

| ABJ.. = max 2 | 3 auby |
Poj=1 k=1
but then | AB|l < max 2 2 |ax| | by
Poj=1k=1
max 3 {laul 2 101}
P =1 Jj=1
{max > |a,-k|}{max > |bkj|}
Pog=1 ko j=1

A

This proves the desired result.

As in the case of a sequence of vectors, we can now measure the convergence of a
sequence of matrices A;, Az, As,. . ., Acto amatrix A. For convergence it is necessary and
sufficient that

lim || A~ Al =0 (2.161)

for any one of the given matrix norms.

In the definition of a matrix norm we needed relation (2.157) to be able to use norms
when we encounter matrix products. Similarly, we also want to use norms when products
of matrices with vectors occur. In such a case, in order to obtain useful information by
applying norms, we need to employ only specific vector norms with specific matrix norms.
Which matrix and vector norms should only be used together is determined by the condition
that the following relation hold for any matrix A and vector v:

lAv] = [[Allv] (2.162)



70 Vectors, Matrices, and Tensors Chap. 2

where || Av|| and || v|| are evaluated using the vector norm and || A ]| is evaluated using the
matrix norm. We may note the close relationship to the condition (2.157), which was
required to hold for a matrix norm. If (2.162) holds for a specific vector and matrix norm,
the two norms are said to be compatible and the matrix norm is said to be subordinate to

“the vector norm. The 1-, 2-, and «-norms of a matrix, as defined previously, are subordi-
nate, respectively, to the 1-, 2-, and co-norms of a vector given in (2.146) to (2.148). In the
following example we give the proof that the co-norms are compatible and subordinate. The
compatibility of the vector and matrix 1- and 2-norms is proved similarly.

EXAMPLE 2.42: Show that for a matrix A and vector v, we have
IAV]e < | Al | V] (@)
Using the definitions of the infinity norms, we have

n
| Av]. = max > a,
j=1

n
< max 2 | ay] | o)
Jj=1

s{m?xﬁzllagl}{mjaﬂv/l}

This proves (a).
To show that equality can be reached, we need only to consider the case where v is a full
unit vector and a; = 0. In this case, || v|l = 1 and | AV = | Al

In later chapters we shall encounter various applications of norms. One valuable
application arises in the calculation of eigenvalues of a matrix: if we consider the problem
Av = Av, we obtain, taking norms on both sides,

Av] = fav]l (2.163)

and hence using (2.144) and (2.162), we have
TALlv] = fal]v] (2.164)
or Al =] Al (2.165)

Therefore, every eigenvalue of A is in absolute magnitude smaller than or equal to any norm
of A. Defining the spectral radius p(A) as®

p(A) = max | A (2.166)
we have
p(A) < | A (2.167)

In practice, the c-norm of A is calculated most conveniently and thus used effectively to
obtain an upper bound on the largest absolute value reached by the cigenvalues.

3Note that for a symmetric matrix A we have p(A) = || A|;, but this does not hold in general for a

nonsymmetric matrix; consider, for example, A = ‘;], a# 0.

1
G
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EXAMPLE 2.43: Calculate the spectral radius of the matrix A considered in Example 2.38.
Then show that p(A) < || A ||..

The spectral radius is equal to max |A;| The eigenvalues of A have been calculated in
Example 2.38.

A] = —6‘, Az = 6; Ag =12
Hence p(A) =12
In Example 2.40 we calculated || A |l = 16. Thus the relation p(A) =< || A [ is satisfied.

Another important application of norms is encountered when considering the stability
of finite element formulations (see Section 4.5). Assume that we have a sequence of finite
element discretizations using a specific element and that a typical discretization gives the
equation

Ax =D (2.168)
Then, roughly speaking, for stability we want a small change in b to result in only a small
change in x. To measure the magnitude of these changes, assume that we choose a norm

| * [l. for measuring the size of solutions and a norm || * ||z for measuring the size of the
right-hand terms.

Definition: Let A be a nonsingular matrix of size n X n. We define the stability constant of A
with respect to the norms ||+ || and ||+ |z as the smallest possible constant Six such that

IAxk _ o 1Abl
Txll. = * Tol

for all vectors x and perturbations Ax which satisfy Ax = b and A Ax = Ab.

(2.169)

This relation bounds the relative change in the solution x (in the norm ||« [|.) as a
consequence of a change in the forcing vector b (in the norm || » ||z), and we say that a
sequence of discretizations is stable with respect to the norms || || and || * || if the constant
Sz is uniformly bounded irrespective of how large n is (see Section 4.5.2).

In accordance with (2.162), let*

IAY [l

A lle = sup T (2.170)
and 1A~ = sup Ll )
Using y = x in (2.170), we obtain

Iale = [2e @im)
and using z = Ab in (2.171), we obtain
1A~ e = “2;“’; 2.173)

4In the following presentation “sup” means “supremum” and “inf” means “infimum” (see Table 4.5).
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A Ab
Therefore, ”"x""'L" < A e A e ""b""" 2.174)
and hence Stz = | Aller || A [lez (2.175)

In the evaluation of Six it is crucial to use appropriate norms, and given a norm || *||. a
natural choice for the R norm is the dual norm of || *||. defined as

"z "DL Sup ” " (2. 176)

With this choice we obtain for a symmetric matrix A (see Exercise 2.22)

x7A
I Al = ___!__
A -
= kA
x"Ay
and (Ul A7 |lzz)"! = inf sup ——— 2.178)
A7 ™ = f 0P Ty (
= ‘YA
The stability constant S5 is then given by
Stk = k—A 2.179)
YA

As we mentioned earlier, for stability of a discretization we need to show that Sz in
(2.179) remains bounded as the finite element mesh is refined. This is a rather general
result. Our discussion in Section 4.5 is concerned with a particular form of A, namely, the
form arising in our mixed displacement/pressure (1/p) formulations. In this case the stabil-
ity condition leads to specific expressions that pertain specifically to the u/p formulations,
and we give these expressions in Section 4.5.2.

2.8 EXERCISES

2.1. Evaluate the following required result in the most efficient way, that is, with the least number of
multiplications. Count the number of multiplications used.

34 1
Let A=|4 6 2
1 2 3
B =[1 3 2]
k:
4 1 -2
c=| 1 8 -1
-2 -1 6

and calculate B’Ak CB.
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2.2. (a) Evaluate A~! when

2 0
and when A=]0 4
10

N O =

(b) Evaluate the determinants of these two matrices.

2.3. Consider the following three vectors.

1 4 -7

3 1 1

x =] 41|; x; =|—1]; x3={ 6
-1 0 -1

2 1 -1

Use these vectors as the columns of a matrix A and determine the rank and kernel of A.

2.4. Consider the following matrix A. Determine the constant k such that the rank of A is 2 and then

determine the kernel of A.

1 -1 0
A=|-1 1+k -1
0o -1 1

2.5. Consider the following two vectors defined in the three-dimensional Cartesian frame with basis

vectors €;.
2 1
u=1,31|; v=]2
4 3

(a) Evaluate the angle between these vectors.

(b) Assume that a new basis is to be used, namely, the primed basis in Example 2.24. Evaluate
the components of the two vectors in this basis.

(c) Evaluate the angle between the vectors in this new basis.

2.6. A reflection matrix is definedasP = I — avw’, a = % where v is a vector (of order n) normal
to the plane of reflection. vy

(a) Show that P is an orthogonal matrix.

(b) Consider the vector Pu where u is also a vector of order n. Show that the action of P on u
is that the component of u normal to the plane of reflection has its direction reversed and
the component of u in the plane of reflection is not changed.

2.7. The components of the stress tensor in the x;, x, coordinate system of Fig. E2.25 are at a point

e [ 10 —6]
-6 20
(a) Establish a new basis in which the off-diagonal components are zero, and give the new
diagonal components.
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2.9.

2.10.

2.11.
2.12.
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(b) The effective stress is defined as & = A /%S;,S,j where the S; are the components of the

. . . . Ti —.
deviatoric stress tensor, Sy = 7; — Tm0; and T, is the mean stress 7,, = —3'-‘ Prove that & is

a scalar. Then also show explicitly for the given value of = that @ is the same number in
the old and new bases.
_ [ x1 ]
1 x + x

The column q is defined as
where (x1, x2) are the coordinates of a point. Prove that q is not a vector.
The components of the Green-Lagrange strain tensor in the Cartesian coordinate system are
defined as (see Section 6.2.2 for details)
e=3XX-1)
where the components of the deformation gradient X are

ou,
. Y 4 3.Xj
and u,, x; are the displacements and coordinates, respectively. Prove that the Green-Lagrange
strain tensor is a second-order tensor.

The material tensor in (2.66) can be written as [see (6.185)]

CU’-‘ = A6(1'6"-‘ + /"’(61'@': + 81:6jr) (a)
where A and u are the Lamé constants,
Ev E

AT 0= * 20+

This stress-strain relation can also be written in the matrix form used in Table 4.3, but in the table

the use of engineering strain components is implied. (The tensor normal strain components are

equal to the engineering normal strain components, but the tensor shear strain components are

one-half the engineering components).

(a) Prove that Cy. is a fourth-order tensor.

(b) Consider the plane stress case and derive from the expression in (a) the expression in
Table 4.3.

(c) Consider the plane stress case and write (2.66) in the matrix form C' = TCT, where C is
given in Table 4.3 and you derive T. (See also Exercise 4.39.)

Prove that (2.70) holds.

The covariant base vectors expressed in a Cartesian coordinate system are
1

The force and displacement vectors in this basis are

R = 3g, + 4g,; u = —2g;, + 3g;
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(a) Calculate R - u using the covariant basis only.
(b) Calculate R - u using the covariant basis for R and the contravariant basis for u.

2.13. Assume that the covariant basis is given by g; and g, in Exercise 2.12. Let the stress and strain
tensor components in the Cartesian basis be

.= 100 10 | «— 0.01 0.05
10 200]° 0.05 0.02
Evaluate the components ™ and &, and show explicitly that the product 7 ¢ € is the same using

on the one side the Cartesian stress and strain components and on the other side the contravari-
ant stress and covariant strain components.

2.14. Let a and b be second-order tensors and let A and B be transformation matrices. Prove that
a‘ (AbB") = (A’aB) * b.

(Hint: This proof is easily achieved by writing the quantities in component forms.)
2.15. Consider the eigenproblem Av = Av with

2 -1
A=
[—1 1]
(a) Solve for the eigenvalues and orthonormalized eigenvectors and write A in the form (2.109).
(b) Calculate A%, A~! and A~
2.16. Consider the eigenproblem

210
1 3 1|v=aAv
01 2

The smallest eigenvalue and corresponding eigenvector are

1
V3
1
A= 1; = —73
R
[ V3.
Also, A = 2, A; = 4. Calculate the Rayleigh quotient p(v) with
1
=wv + 0.1} 1
0

and show that p(v) is closer to A, than v is to v.
2.17. Consider the eigenproblem
2 -1 0
-1 4 —1|v=Av
0 -1 8



76 - Vectors, Matrices, and Tensors Chap. 2

Evaluate the eigenvalues of the matrices A and A™, m = 1, 2, where A™ is obtained by omitting
the last m rows and columns in A. Sketch the corresponding characteristic polynomials (see

Example 2.38).
2.18. Prove that the 1- and 2-norms of a vector v are equivalent. Then show explicitly this equivalency
for the vector
1
v=]| 4
-3

2.19. Prove the relation (2.157) for the 1-norm.

2.20. Prove that " Av "1 = ” A "1 " V"].

2.21. Prove that for a symmetric matrix A we have || A|. = p(A). (Hint: Use (2.108).)

2.22. Prove that (2.177) and (2.178) hold when we use the dual norm of the L-norm for the R-norm.



Il CHAPTER THREE I

Some Basic Concepts

of Engineering Analysis

and an Introduction

to the Finite Element Method

3.1 INTRODUCTION

The analysis of an engineering system requires the idealization of the system into a form that
can be solved, the formulation of the mathematical model, the solution of this model, and
the interpretation of the results (see Section 1.2). The main objective of this chapter is to
discuss some classical techniques used for the formulation and solution of mathematical
models of engineering systems (see also S. H. Crandall [A]). This discussion will provide
a valuable basis for the presentation of finite element procedures in the next chapters. Two
categories of mathematical models are considered: lumped-parameter models and
continuum-mechanics-based models. We also refer to these as “discrete-system” and
“continuous-system” mathematical models.

In a lumped-parameter mathematical model, the actual system response is directly
described by the solution of a finite number of state variables. In this chapter we discuss
some general procedures that are employed to obtain the governing equations of lumped-
parameter models. We consider steady-state, propagation, and eigenvalue problems and
also briefly discuss the nature of the solutions of these problems.

For a continuum-mechanics-based mathematical model, the formulation of the gov-
erning equations is achieved as for a lumped-parameter model, but instead of a set of
algebraic equations for the unknown state variables, differential equations govern the
response. The exact solution of the differential equations satisfying all boundary conditions
is possible only for relatively simple mathematical models, and numerical procedures must
in general be employed. These procedures, in essence, reduce the continuous-system math-
ematical model to a discrete idealization that can be solved in the same manner as a
lumped- parameter model. In this chapter we summarize some important classical proce-
dures that are employed to reduce continuous-system mathematical models to lumped-
parameter numerical models and briefly show how these classical procedures provide the
basis for modern finite element methods.

77
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In practice, the analyst must decide whether an engineering system should be repre-
sented by a lumped-parameter or a continuous-system mathematical model and must
choose all specifics of the model. Furthermore, if a certain mathematical model is chosen,
the analyst must decide how to solve numerically for the response. This is where much of
the value of finite element procedures can be found; that is, finite element techniques used
in conjunction with the digital computer have enabled the numerical solution of continuous-
system mathematical models in a systematic manner and in effect have made possible the
practical extension and application of the classical procedures presented in this chapter to
very complex engineering systems.

3.2 SOLUTION OF DISCRETE-SYSTEM MATHEMATICAL MODELS

In this section we deal with discrete or lumped-parameter mathematical models. The
essence of a lumped-parameter mathematical model is that the state of the system can be
described directly with adequate precision by the magnitudes of a finite (and usually small)
number of state variables. The solution requires the following steps:

1. System idealization: the actual system is idealized as an assemblage of elements

2. Element equilibrium: the equilibrium requirements of each element are established in
terms of state variables

3. Element assemblage: the element interconnection requirements are invoked to estab-
lish a set of simultaneous equations for the unknown state variables

4. Calculation of response: the simultaneous equations are solved for the state variables,
and using the element equilibrium requirements, the response of each element is
calculated.

These steps of solution are followed in the analyses of the different types of problems
that we consider: steady-state problems, propagation problems, and eigenvalue problems. -
The objective in this section is to provide an introduction showing how problems in these
particular areas are analyzed and to briefly discuss the nature of the solutions. It should be
realized that not all types of analysis problems in engineering are considered; however, a
large majority of problems do fall naturally into these problem areas. In the examples in this .
section we consider structural, electrical, fluid flow, and heat transfer problems, and we
emphasize that in each of these analyses the same basic steps of solution are followed.

3.2.1 Steady-State Problems

The main characteristic of a steady-state problem is that the response of the system does not
change with time. Thus, the state variables describing the response of the system under
consideration can be obtained from the solution of a set of equations that do not involve time
as a variable. In the following examples we illustrate the procedure of analysis in the
solution of some problems. Five sample problems are presented:

1. Elastic spring system
2. Heat transfer system
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3. Hydraulic network
4. Dc network
5. Nonlinear elastic spring system.

The analysis of each problem illustrates the application of the general steps of analysis
summarized in Section 3.2. The first four problems involve the analysis of linear systems,
whereas the nonlinear elastic spring system responds nonlinearly to the applied loads. All
the problems are well defined, and a unique solution exists for each system response.

EXAMPLE 3.1: Figure E3.1 shows a system of three rigid carts on a horizontal plane that are
interconnected by a system of linear elastic springs. Calculate the displacements of the carts and
the forces in the springs for the loading shown.
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(b) Element equilibrium relations

Figure E3.1 System of rigid carts interconnected by linear springs
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We perform the analysis by following steps 1 to 4 in Section 3.2. As state variables that
characterize the response of the system, we choose the displacements U;, U,, and Us. These
displacements are measured from the initial positions of the carts, in which the springs are
unstretched. The individual spring elements and their equilibrium requirements are shown in
Fig. E3.1(b).

To generate the governing equations for the state variables we invoke the element intercon-
nection requirements, which correspond to the static equilibrium of the three carts:

FO +FP + FP + FP =R,
FP + FY + F =R, @
F + FY =R,

We can now substitute for the element end forces F; i = 1,2,3;j=1,..., 5; using the
element equilibrium requirements given in Fig. E3.1(b). Here we recognize that corresponding
to the displacement components U,, U, and U; we can write for element 1,

k0 Ol[U F{
0 0 OljUl=1 0
0 0 OHHUs 0
or K(I)U = FW
for element 2,
k -k OYU F?
-k ke O||U2]|=|F?
0 0 OHU 0
or K@U = F®, and so on. Hence the element interconnection requirements in (a) reduce to
KU =R (b)
where U = [U] U, U3]
Ky + k2 + ks + ka) —(k2 + k3) —ks
K= —(kz + k3) (kz + k3 + ks) "ks
—ks —ks (ks + ks)
and R"=[R R, R3]

Here it is noted that the coefficient matrix K can be obtained using

S
K=2K ©
i=1
where the K© are the element stiffness matrices. The summation process for obtaining in (c) the
total structure stiffness matrix by direct summation of the element stiffness matrices is referred
to as the direct stiffness method.
The analysis of the system is completed by solving (b) for the state variables U:, U,, and
Us and then calculating the element forces from the element equilibrium relationships in
Fig. E3.1.

EXAMPLE 3.2: A wall is constructed of two homogeneous slabs in contact as shown in
Fig. E3.2. In steady-state conditions the temperatures in the wall are characterized by the
external surface temperatures 6, and 6 and the interface temperature 6,. Establish the equi-
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Figure E3.2 Slab subjected to temperature boundary conditions

librium equations of the problem in terms of these temperatures when the ambient temperatures
6 and 6, are known.

The conductance per unit area for the individual slabs and the surface coefficients are
given in Fig. E3.2. The heat conduction law is g/A = k A8, where q is the total heat fiow, A is
the area, A is the temperature drop in the direction of heat fiow, and k is the conductance or
surface coefficient. The state variables in this analysis are 6, 8,, and 6;. Using the heat conduc-
tion law, the element equilibrium equations are

for the left surface, per unit area:

q1 = 3k(6 — 6)
for the left slab: q2 = 2k(6, — &)
for the right slab: g3 = 3k6, — 63)
for the right surface: gs = 2k(6; — 0y)

To obtain the governing equations for the state variables, we invoke the heat fiow equilibrium
requirement ¢; = q2 = g3 = qa. Thus,

3k(6 — 61) = 2k(6, — 6,)
2k(6, — 6;) = 3k(6, — 65)
3k(6, — 6;) = 2k(6s — 04)

Writing these equations in matrix form we obtain

5k -2k 0 [e 3k
-2k 5k -3k|l&al=] 0 (@
0 -3k 5k} 6 2k6,

These equilibrium equations can be also derived in a systematic manner using a direct
stiffness procedure. Using this technique, we proceed as in Example 3.1 with the typical element

equilibrium relations
- 1 -11]6: _la
o -1
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where g, g; are the heat flows into the element and 6;, 6, are the element-end temperatures. For
the system in Fig. E3.2 we have two conduction elements (each slab being one element), hence
we obtain !

2% -2 0 7[6 3k(6 — 6)
2% 5k -3k|| 6| = 0 ®
0 -3 3k}le 2k(6s — 6)

Since 8, and 6; are unknown, the equilibrium relations in (b) are rearranged for solution to obtain
the relations in (a).

It is interesting to note the analogy between the displacement and force analysis of the
spring system in Example 3.1 and the temperature and heat transfer analysis in Example 3.2.
The coefficient matrices are very similar in both analyses, and they can both be obtained
in a very systematic manner. To emphasize the analogy we give in Fig. 3.1 a spring model
that is governed by the coefficient matrix of the heat transfer problem.

2 3k 2% 3k 2k

Uv Ry Uy, Ry Us, Ry

Figure 3.1 Assemblage of springs governed by same coefficient matrix as the heat transfer
problem in Fig. E3.2

We next consider the analyses of a simple flow problem and a simple electrical system,
both of which are again analyzed in much the same manner as the spring and heat transfer
problems.

EXAMPLE 3.3: Establish the equations that govern the steady-state pressure and flow distribu-
tions in the hydraulic network shown in Fig. E3.3. Assume the fluid to be incompressible and the
pressure drop in a branch to be proportional to the flow g through that branch, Ap = Rg, where
R is the branch resistance coefficient.

In this analysis the elements are the individual branches of the pipe network. As unknown
state variables that characterize the flow and pressure distributions in the system we select the

c R=3b D

Figure E3.3 Pipe network
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pressures at A, C, and D, which we denote as p,, pc, and pp, and we assume that the pressure
at B is zero. Thus, we have for the elements

_ P _Pc—po
q 106 g3 b
- o (@
| _ Ps " Pc, o) = Po. q=Pc Po
q2 jac 55 ° 2 |D 5b° 4 3b
The element interconnectivity requirements require continuity of flow, hence
Q=g +q
- . = (b)
@2lac = 3 + qa; q2008 = g3 + qu
Substituting from (a) into (b) and writing the resulting equations in matrix form, we obtain
3 -2 01[ pa 10bQ
-6 31 =-25{|pc|= 0
-1 1 1l po 0
9 -6 01l pa 306Q
or -6 31 -25|lpc|= 0 ©
0 -25 31 |lpo 0

The analysis of the pipe network is completed by solving from (c) for the pressures p,4, pc, and
Do, and then the element equilibrium relations in (a) can be employed to obtain the flow
distribution.

The equilibrium relations in (c) can also be derived—as in the preceding spring and heat
transfer examples—using a direct stiffness procedure. Using this technique, we proceed as in
Example 3.1 with the typical element equilibrium relations

L -
Rl -1 1 J] q;
where g;, g; are the fluid flows into the element and p;, p; are the element-end pressures.

EXAMPLE 3.4: Consider the dc network shown in Fig. E3.4, The network with the resistances
shown is subjected to the constant-voltage inputs E and 2F at A and B, respectively. We are to
determine the steady-state current distribution in the network.

In this analysis we use as unknown state variables the currents I, L, and I5. The system
elements are the resistors, and the element equilibrium requirements are obtained by applying
Ohm’s law to the resistors. For a resistor R, carrying current /, we have Ohm’s law

AE = RI

where AE is the voltage drop across the resistor.
The element interconnection law to be satisfied is Kirchhoff’s voltage law for each closed
loop in the network,

2E = 2RI, + 2R(11 - 13)
E= 4R(12 - 13)
0= 6RI3 + 4R(I3 - 12) + 2R(I3 - 11)
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Figure E3.4 Dc network

Writing these equations in matrix form, we obtain

4R 0 -—2R1[HL 2E
0 4R -4R||R|=]| E (a)
-2R -4R 1R || L 0

The analysis is completed by solving these equations for I, I>, and 5. Note that the equilibrium
equations in (a) could also have been established using a direct stiffness procedure, as in
Examples 3.1 to 3.3.

‘We should note once again that the steps of analysis in the preceding structural, heat
transfer, fluid flow, and electrical problems are very similar, the basic analogy being
possibly best expressed in the use of the direct stiffness procedure for each problem. This
indicates that the same basic numerical procedures will be applicable in the analysis of
almost any physical problem (see Chapters 4 and 7).

Each of these examples deals with a linear system; i.e., the coefficient matrix is
constant and thus, if the right-hand-side forcing functions are multiplied by a constant «,
the system response is also a times as large. We consider in this chapter primarily linear
systems, but the same steps for solution summarized previously are also applicable in
nonlinear analysis, as demonstrated in the following example (see also Chapters 6 and 7).

EXAMPLE 3.5: Consider the spring-cart system in Fig. E3.1 and assume that spring (0) now
has the nonlinear behavior shown in Fig. E3.5. Discuss how the equilibrium equations given in
Example 3.1 have to be modified for this analysis.

As long as U; < Ay, the equilibrium equations in Example 3.1 are applicable with k; = k.
Howebver, if the loads are such that U, > Ay, i.e., F{" > F,, we need to use a different value for
ki, and this value depends on the force F{" acting in the element. Denoting the stiffness value by
ks, as shown in Fig. E3.5, the response of the system is described for any load by the equilibrium

equations
KU=R (@
where the coefficient matrix is established exactly as in Example 3.1 but using ; instead of &,
(k, + ky + ks + k4) —(kz + k3) —ks
K, = —(ky + ks) (k2 + ks + ks) —ks ®)

—ka —ks (ks + ks)
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U,

Spring

A

Figure E3.5 Spring (D of the cart-spring system of Fig. E3.1 with nonlinear elastic charac-
teristics

Although the response of the system can be calculated using this approach, in which K, is
referred to as the secant matrix, we will see in Chapter 6 that in general practical analysis we
actually use an incremental procedure with a tangent stiffness matrix.

These analyses demonstrate the general analysis procedure: the selection of unknown
state variables that characterize the response of the system under consideration, the
identification of elements that together comprise the complete system, the establishment of
the element equilibrium requirements, and finally the assemblage of the elements by invok-
ing interelement continuity requirements.

A few observations should be made. First, we need to recognize that there is some
choice in the selection of the state variables. For example, in the analysis of the carts in
Example 3.1, we could have chosen the unknown forces in the springs as state variables. A
second observation is that the equations from which the state variables are calculated can
be linear or nonlinear equations and the coefficient matrix can be of a general nature.
However, it is most desirable to deal with a symmetric positive definite coefficient matrix
because in such cases the solution of the equations is numerically very effective (see
Section 8.2).

In general, the physical characteristics of a problem determine whether the numerical
solution can actually be cast in a form that leads to a symmetric positive definite coefficient
matrix. However, even if possible, a positive definite coefficient matrix is obtained only if
appropriate solution variables are selected, and in a nonlinear analysis an appropriate
linearization must be performed in the iterative solution. For this reason, in practice, it is
valuable to employ general formulations for whole classes of problems (e.g., structural
analysis, heat transfer, and so on—see Sections 4.2, 7.2, and 7.3) that for any analysis lead
to a symmetric and positive definite coefficient matrix.

In the preceding discussion we employed the direct approach of assembling the
system-governing equilibrium equations. An important point is that the governing equi-
librium equations for state variables can in many analyses also be obtained using an
extremum, or variational formulation. An extremum problem consists of locating the set (or
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sets) of values (state variables) U, i = 1, . . . n, for which a given functional I1U,, . . .,
U,) is a maximum, is a minimum, or has a saddle point. The condition for obtaining the
equations for the state variables is

Il =0 3.1)

. oIl oIl
and since 8Il = v, U, + -+ v 8U, (3.2)
we must have Z—I(:j[— =0 fori=1,...,n (3.3)

We note that U, stands for “variations in the state variables U; that are arbitrary except that
they must be zero at and corresponding to the state variable boundary conditions.”* The
second derivatives of I1 with respect to the state variables then decide whether the solution
corresponds to a maximum, a minimum, or a saddle point. In the solution of lumped-
parameter models we can consider that I1 is defined such that the relations in (3.3) generate
the governing equilibrium equations.” For example, in linear structural analysis, when
displacements are used as state variables, I1 is the total potential (or total potential energy)

M= -W (34
where U is the strain energy of the system and W is the total potential of the loads. The
solution for the state variables corresponds in this case to the minimum of I1.

EXAMPLE 3.6: Consider a simple spring of stiffness &k and applied load P, and discuss the use
of (3.1) and (3.4).
Let u be the displacement of the spring under the load P. We then have

o =kuy W =Pu
and I =4%ku? — Pu

Note that for a given P, we could graph II as a function of u. Using (3.1) we have, with
u as the only variable,

S8II = (ku — P) du; 51-‘—=ku—P

which gives the equilibrium equation

ku=P (a
Using (a) to evaluate W', we have at equilibrium W = ku? ie, W = 2% and Il = —jku? =
—4Pu. Also, 3*I1/6u® = k and hence at equilibrium II is at its minimum.

EXAMPLE 3.7: Consider the analysis of the system of rigid carts in Example 3.1. Determine
IT and invoke the condition in (3.1) for obtaining the governing equilibrium equations.
Using the notation defined in Example 3.1, we have

A = LUTKU @)

' More precisely, the variations in the state variables must be zero at and corresponding to the essential
boundary conditions, as further discussed in Section 3.3.2.

2In this way we consider a specific variational formulation, as further discussed in Chapters 4 and 7.
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and W = U'R (b)
where it should be noted that the total strain energy in (a) could also be written as

5
QY = %UT(E K“’)U

i=1
= JU'KOU + JU'K®U + - - - + JUTKOU
=°u1+°uz+---+°u5

where Y, is the strain energy stored in the ith element.
Using (a) and (b), we now obtain

= ;UKU - U'R ©
Applying (3.1) gives
KU =R

Solving for U and then substituting into (c), we find that IT corresponding to the displacements
at system equilibrium is

= -iUR

Since the same equilibrium equations are generated using the direct solution approach
and the variational approach, we may ask what the advantages of employing a variational
scheme are. Assume that for the problem under consideration I1 is defined. The equilibrium
equations can then be generated by simply adding the contributions from all elements to I1
and invoking the stationarity condition in (3.1). In essence, this condition generates auto-
matically the element interconnectivity requirements. Thus, the variational technique can
be very effective because the system-governing equilibrium equations can be generated
“quite mechanically.” The advantages of a variational approach are even more pronounced
when we consider the numerical solution of a continuous system (see Section 3.3.2). How-
ever, a main disadvantage of a variational approach is that, in general, less physical insight
into a problem formulation is obtained than when using the direct approach. Therefore, it
may be critical that we interpret physically the system equilibrium equations, once they have
been established using a variational approach, in order to identify possible errors in the
solution and in order to gain a better understanding of the physical meaning of the equations.

3.2.2 Propagation Problems

The main characteristic of a propagation or dynamic problem is that the response of the
system under consideration changes with time. For the analysis of a system, in principle, the
same procedures as in the analysis of a steady-state problem are employed, but now the state
variables and element equilibrium relations depend on time. The objective of the analysis
is to calculate the state variables for all time 7.

Before discussing actual propagation problems, let us consider the case where the time
effect on the element equilibrium relations is negligible but the load vector is a function of
time. In this case the system response is obtained using the equations governing the steady-
state response but substituting the time-dependent load or forcing vector for the load vector
employed in the steady-state analysis. Since such an analysis is in essence still a steady-state
analysis, but with steady-state conditions considered at any time ¢, the analysis may be
referred to as a pseudo steady-state analysis.
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In an actual propagation problem, the element equilibrium relations are time-
dependent, and this accounts for major differences in the response characteristics when
compared to steady-state problems. In the following we present two examples that demon-
strate the formulation of the governing equilibrium equations in propagation problems.
Methods for calculating the solution of these equations are given in Chapter 9.

EXAMPLE 3.8: Consider the system of rigid carts that was analyzed in Example 3.1. Assume
that the loads are time-dependent and establish the equations that govern the dynamic response
of the system.

For the analysis we assume that the springs are massless and that the carts have masses m;,
my, and m; (which amounts to lumping the distributed mass of each spring to its two end points).
Then, using the information given in Example 3.1 and invoking d’Alembert’s principle, the
element interconnectivity requirements yield the equations

FO + F® + FP + F® = R() — mi U,
FP + F9 + F9 = R(t) — m U
F® + FY = Ry(t) — my U

. d*Uu; .
where U = g H i=1273
Thus we obtain as the system-governing equilibrium equations
MU + KU = R() (a)
where K, U, and R have been defined in Example 3.1 and M is the system mass matrix
m, 0 0
M= 0 ms 0
0 0 ms

The equilibrium equations in (a) represent a system of ordinary differential equations of second
order in time. For the solution of these equations it is also necessary that the initial conditions
on U and U be given; i.c., we need to have °U and °U, where

U= U|z=0; oﬁ = ﬁ|r=0

Earlier we mentioned the case of a pseudo steady-state analysis. Considering the
response of the carts, such analysis implies that the loads change very slowly and hence
mass effects can be neglected. Therefore, to obtain the pseudo steady-state response, the
equilibrium equations (a) in Example 3.8 should be solved with M = 0.

EXAMPLE 3.9: Figure E3.9 shows an idealized case of the transient heat flow in an electron
tube. A filament is heated to a temperature 6; by an electric current; heat is convected from the
filament to the surrounding gas and is radiated to the wall, which also receives heat by convection
from the gas. The wall itself convects heat to the surrounding atmosphere, which is at tempera-
ture 6,. It is required to formulate the system-governing heat flow equilibrium equations.

In this analysis we choose as unknown state variables the temperature of the gas, 6, and
the temperature of the wall, 8. The system equilibrium equations are generated by invoking the
heat flow equilibrium for the gas and the wall. Using the heat transfer coefficients given in
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Figure E3.9 Heat transfer idealization of an electron tube

Fig. E3.9, we obtain for the gas

de
a;—’ = k(6 — 6) — ka6, — 6)
t
and for the wall
dé, 4 4
Cz; = k((69* — (82)*) + ko(6; — 62) — k3(6, — 6s)
These two equations can be written in matrix form as
Cé + Ko =0Q (a)
Gt O (k1 + ko) —k2 ]
where ¢ [0 Cz] [ —k; (k2 + k3)
6 ki 6 ]
0= ; =
[02] Q [kr((of)“ = (62)*) + k36,

We note that because of the radiation boundary condition, the heat flow equilibrium equations
are nonlinear in 0. Here the radiation boundary condition term has been incorporated in the heat
flow load vector Q. The solution of the equations can be carried out as described in Section 9.6.

Although, in the previous examples, we considered very specific cases, these examples
illustrated in a quite general way how propagation problems of discrete systems are formu-
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lated for analysis. In essence, the same procedures are employed as in the analysis of
steady-state problems, but “time-dependent loads” are generated that are a result of the
“resistance to change” of the elements and thus of the complete system. This resistance to
change or inertia of the system must be considered in a dynamic analysis.

Based on the preceding arguments and observations, it appears that we can conclude
that the analysis of a propagation problem is a very simple extension of the analysis of the
corresponding steady-state problem. However, we assumed in the earlier discussion that the
discrete system is given and thus the degrees of freedom or state variables can be directly
identified. In practice, the selection of an appropriate discrete system that contains all the
important characteristics of the actual physical system is usually not straightforward, and
in general a different discrete model must be chosen for a dynamic response prediction than
is chosen for the steady-state analysis. However, the discussion illustrates that once the
discrete model has been chosen for a propagation problem, formulation of the governing
equilibrium equations can proceed in much the same way as in the analysis of a steady-state
response, except that inertia loads are generated that act on the system in addition to the
externally applied loads (see Section 4.2.1). This observation leads us to anticipate that
the procedures for solving the dynamic equilibrium equations of a system are largely based
on the techniques employed for the solution of steady-state equilibrium equations (see Sec-
tion 9.2).

3.2.3 Eigenvalue Problems

In our earlier discussion of steady-state and propagation problems we implied the existence
of a unique solution for the response of the system. A main characteristic of an eigenvalue
problem is that there is no unique solution to the response of the system, and the objective
of the analysis is to calculate the various possible solutions. Eigenvalue problems arise in
both steady-state and dynamic analyses.

Various different eigenvalue problems can be formulated in engineering analysis. In
this book we are primarily concerned with the generalized eigenvalue problem of the form

Av = ABv (3.5)

where A and B are symmetric matrices, A is a scalar, and v is a vector. If A, and v, satisfy
(3.5), they are called an eigenvalue and an eigenvector, respectively.

In steady-state analysis an eigenvalue problem of the form (3.5) is formulated when
it is necessary to investigate the physical stability of the system under consideration. The
question that is asked and leads to the eigenvalue problem is as follows: Assuming that the
steady-state solution of the system is known, is there another solution into which the system
could bifurcate if it were slightly perturbed from its equilibrium position? The answer to
this question depends on the system under consideration and the loads acting on the system.
We consider a very simple example to demonstrate the basic idea.

EXAMPLE 3.10: Consider the simple cantilever shown in Fig. E3.10. The structure consists of
a rotational spring and a rigid lever arm. Predict the response of the structure for the load
applications shown in the figure.

We consider first only the steady-state response as discussed in Section 3.2.1. Since the bar
is rigid, the cantilever is a single degree of freedom system and we employ A, as the state variable.
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In loading condition I, the bar is subjected to a longitudinal tensile force P, and the moment
in the spring is zero. Since the bar is rigid, we have

A, =0 (2)
Next consider loading condition II. Assuming small displacements we have in this case
PL?
A = + (b)
Finally, for loading condition III we have, as in condition I,
A, =0 ©

We now proceed to determine whether the system is stable under these load applications.
To investigate the stability we perturb the structure from the equilibrium positions defined in (a),
(b), and (c) and ask whether an additional equilibrium position is possible.

Assume that A, is positive but small in loading conditions I and II. If we write the
equilibrium equations taking this displacement into account, we observe that in loading condition
I the small nonzero A, cannot be sustained, and that in loading condition II the effect of including
A, in the analysis is negligible.

" Consider next that A, > 0 in loading condition IIL In this case, for an equilibrium
configuration to be possible with A, nonzero, the following equilibrium equation must be
satisfied:

A,
PA, = k=

But this equation is satisfied for any A,, provided P = k/L. Hence the critical load Py at which
an equilibrium position in addition to the horizontal one becomes possible is

P =

o~

In summary, we have

P < Py only the horizontal position of the bar is possible;
equilibrium is stable

P = Py horizontal and deflected positions of the bar are
possible; the horizontal equilibrium position is
unstable for P = P.

To gain an improved understanding of these results we may assume that in addition to the
load P shown in Fig. E3.10(b), a small transverse load W is applied as shown in Fig. E3.10(d).
If we then perform an analysis of the cantilever model subjected to P and W, the response curves
shown schematically in Fig. E3.10(¢) are obtained. Thus, we observe that the effect of the load
W decreases and is constant as P increases in loading conditions I and II, but that in loading
condition III the transverse displacement A, increases very rapidly as P approaches the critical
load, P,

The analyses given in Example 3.10 illustrate the main objective of an eigenvalue

formulation and solution in instability analysis, namely, to predict whether small distur-
bances that are imposed on the given equilibrium configuration tend to increase very
substantially. The load level at which this situation arises corresponds to the critical loading
of the system. In the second solution carried out in Example 3.10 the small disturbance was
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due to the small load W, which, for example, may simulate the possibility that the horizontal
load on the cantilever is not acting perfectly horizontally. In the eigenvalue analysis, we
simply assume a deformed configuration and investigate whether there is a load level that
indeed admits such a configuration as a possible equilibrium solution. We shall discuss in
Section 6.8.2 that the eigenvalue analysis really consists of a linearization of the nonlinear
response of the system, and that it depends largely on the system being considered whether
a reliable critical load is calculated. The eigenvalue solution is particularly applicable in the
analysis of “beam-column-type situations” of beam, plate, and shell structures.

EXAMPLE 3.11: Experience shows that in structural analysis the critical load on column-type
structures can be assessed appropriately using an eigenvalue problem formulation. Consider the
system defined in Fig. E3.11. Construct the eigenvalue problem from which the critical loading
on the system can be calculated.

P
Va Spring A
IJ —_—
k
Rigid bar \
%] Spring B L y
7 k E> T

Rigid bar \

Smooth hinges at
A B and C

Figure E3.11 Instability analysis of a column



94

Some Basic Concepts of Engineering Analysis Chap. 3

As in the derivation of steady-state equilibrium equations (see Section 3.2.1), we can
employ the direct procedure or a variational approach to establish the problem-governing equa-
tions, and we describe both techniques in this problem solution.

In the direct approach we establish the governing equilibrium equations directly by consid-
ering the equilibrium of the structure in its deformed configuration. Referring to Fig. E3.11, the
moment equilibrium of bar AB requires that

PL sin(a + B) = kU, Lcos(a + B) + k.a (a)
Similarly, for bars CBA we need
PL[sin(a + B) + sin B] = kU; L[cos(a + B) + cos B] + kU,L cos B (b)

We select U, and U, as state variables that completely describe the structural response. We also
assume small displacements, for which

LSin(a+ﬁ)=U]_U2’ LSinB=U2
Lcos(a + B) =L L cos B =] a = U, —LZU2
Substituting into (a) and (b) and writing the resulting equations in matrix form, we obtain
k: k
kL + Z 2 I U, - p 1 1| |u,
%L kL || U 1 ollo,

We can symmetrize the coefficient matrices by multiplying the first row by —2 and adding the
result to row 2, which gives the eigenvalue problem

kr __21(: U1 1 _1 U]

+
kL 3 7 o
= P C
2k, 4k,
- 7 kL + T U, -1 21 |U,

It may be noted that the second equation in (c) can also be obtained by considering the moment
equilibrium of bar CB.

Considering next the variational approach, we need to determine the total potential IT of
the system in the deformed configuration. Here we have

I = kU3 + 3kU3 + $ka® — PL[1 — cos(a + B) + 1 — cos B] (d

As in the direct approach, we now assume small displacement conditions. Since we want
to derive, using (3.1), an eigenvalue problem of form (3.5) in which the coefficient matrices are
independent of the state variables, we approximate the trigonometric expressions to second order
in the state variables. Thus, we use

cos(@ + B) =1 — @t By ;B)z
2 G]
cos =1 —%
and a+fp= v ; Uz; a i-————Ul _LZUZ; B:% ®
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Substituting from (e) and (f) into (d) we obtain
1, .1 1 (U —-2U, P P
= = + kU3 k| ———) - — - 2 _ 2
2kU| 2kU2 + 2k< 3 ) 2L(U' U,) 2LU2
Applying the stationarity principle,
oIl

oll
U, U, 0

the equations in (c) are obtained.

Considering now dynamic analysis, an eigenvalue problem may need to be formulated
in the solution of the dynamic equilibrium equations. In essence, the objective is then to find
a mathematical transformation on the state variables that is employed effectively in the
solution of the dynamic response (see Section 9.3). In the analysis of physical problems, it
is then most valuable to identify the eigenvalues and vectors with physical quantities (see
Section 9.3).

To illustrate how eigenvalue problems are formulated in dynamic analysis, we present
the following examples.

EXAMPLE 3.12: Consider the dynamic analysis of the system of rigid carts discussed in
Example 3.8. Assume free vibration conditions and that

U = ¢ sin(wt — ¢) (a)

where ¢ is a vector with components independent of time, w is a circular frequency, and i is a
phase angle. Show that with this assumption an eigenvalue problem of the form given in (3.5)
is obtained when searching for a solution of ¢ and w.

The equilibrium equations of the system when considering free-vibration conditions are

MU +KU=0 ®)

where the matrices M and K and vector U have been defined in Examples 3.1 and 3.8. If U given
in (a) is to be a solution of the equations in (b), these equations must be satisfied when substituting
for U,

—w*Mé sin(wr — ¢) + Kb sin(wt — ¢) = 0
Thus, for (a) to be a solution of (b) we obtain the condition
Ké = oMo ©)

which is an eigenvalue problem of form (3.5). We discuss in Section 9.3 the physical character-
istics of a solution, w? and ¢y, to the problem in (c).

EXAMPLE 3.13: Consider the electric circuit in Fig. E3.13. Determine the eigenvalue problem
from which the resonant frequencies and modes can be calculated when L, = L, = L and
C=C=C
Our first objective is to derive the dynamic equilibrium equations of the system. The
element equilibrium equation for an inductor is
dl

Lo = (a)
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—
-
I
i
AY

L Figure E3.13 Electric circuit

where L is the inductance, I is the current through the inductor, and V is the voltage drop across
the inductor. For a capacitor of capacitance C the equilibrium equation is

I = C-"i? (b)

As state variables we select the currents /; and I, shown in Fig. E3.13. The governing
equilibrium equations are obtained by invoking the element interconnectivity requirements
contained in Kirchhoff’s voltage law:

Vcl + VL2 + VC2 = 0
Vi, + Vi, + Ve, = 0 ©

Differentiating (a) and (c) with respect to time and substituting into (c) with L, = L, = L and
C, = C, = C, we obtain ‘

1 1[6h] 12 1 11] [0]
I + -_— =
L[l 2] [1] c[1 1] [12 0 @
We note that these equations are quite analogous to the free-vibration equilibrium equations of
a structural system. Indeed, recognizing the analogy

I — displacement; %, — stiffness; L — mass

the eigenproblem for the resonant frequencies is established as in Example 3.12 (and an equiv-
alent structural system could be constructed).

3.2.4 On the Nature of Solutions

In the preceding sections we discussed the formulation of steady-state, propagation, and
eigenvalue problems, and we gave a number of simple examples. In all cases a system of
equations for the unknown state variables was formulated but not solved. For the solution
of the equations we refer to the techniques presented in Chapters 8 to 11. The objective in
this section is to discuss briefly the nature of the solutions that are calculated when steady-
state, propagation, or eigenvalue problems are considered.

For steady-state and propagation problems, it is convenient to distinguish between
linear and nonlinear problems. In simple terms, a linear problem is characterized by the fact
that the response of the system varies in proportion to the magnitude of the applied loads.
All other problems are nonlinear, as discussed in more detail in Section 6.1. To demonstrate
in an introductory way some basic response characteristics that are predicted in linear
steady-state, propagation, and eigenvalue analyses we consider the following example.
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EXAMPLE 3.14: Consider the simple structural system consisting of an assemblage of rigid
weightless bars, springs, and concentrated masses shown in Fig. E3.14. The elements are con-
nected at A, B, and C using frictionless pins. It is required to analyze the discrete system for the
loading indicated, when the initial displacements and velocities are zero.

The response of the system is described by the two state variables U; and U, shown in
Fig. E3.14(c). To decide what kind of analysis is appropriate we need to have sufficient informa-
tion on the characteristics of the structure and the applied forces F and P. Let us assume that the
structural characteristics and the applied forces are such that the displacements of the element
assemblage are relatively small,

Rigid bar c P
k
L .

Smooth hinges at 7
A B and C

{a) Discrete system

F P ?
F= 2 ‘n’_t - e
sin T,
Ta t Tt

{b} Loading conditions
t F
2F mUy
1 ‘ 2 p
m01 ‘T
kUz

U,
Y 0 A {

____________________________________ e

ke

{c) External forces in deformed configuration

Figure E3.14 A two degree of freedom system



Some Basic Concepts of Engineering Analysis Chap. 3

We can then assume that

cosa =cos B =cos(B —a) =1
sina = a; sin3=p (a)
_ U, _L-U
*TT B==7

The governing equilibrium equations are derived as in Example 3.11 but we include inertia forces
(see Example 3.8); thus we obtain

m 0 ||U (Sk + %) —<2k + f) U, 2F
m * P P - ()
0 E U, —<2k + z) <2k + z) U, F

The response of the system must depend on the relative values of k, m, and P/L. In order
to obtain a measure of whether a static or dynamic analysis must be performed we calculate the
natural frequencies of the system. These frequencies are obtained by solving the eigenvalue
problem

<5k + “2—"12) —(2k + I—J) U1 m 0 U[
- . = w’ ©
= w
P P m
—<2k + 'L') (2k + L) U, 0 —2‘ U,

The solution of (c) gives (see Section 2.5)

S 2P [332 8Pk 2P |
2m mL 4m?  m*L m2L?

&4—-2—1.—)-'— 33k2+ﬂ+2P2 1/2
T \2m mL 4m?  m*L m?L?

We note that for constant k and m the natural frequencies (radians per unit time) are a function
of P/L and increase with P/L as shown in Fig. E3.14(d). The ith natural period, T;, of the system
is given by 7; = 2m/w;, hence

S
|

§
i

n:——-; T2=._...
) wr

The response of the system depends to a large degree on the duration of load application when
measured on the natural periods of the system. Since P is constant, the duration of load applica-
tion is measured by T,. To illustrate the response characteristics of the system, we assume a
specific case k = m = P/L = 1 and three different values of T,. ’
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(d) Frequencies of the system

Displacements
o
[+
—

U2|static

U‘l |static

Case (i) Tq = 4T;:

response of the system

01 02 03 04 05 06 07 08 08 1.0

tiTy
(e) Analysis of the system: Case i

Figure E3.14 (continued)

The response of the system is shown for this case of load application in

Fig. E3.14(e), Case i. We note that the dynamic response solution is somewhat close to the static

and would be very close if T} < T.
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Case (ii) To = (T, + T2)/2:  The response of the system is truly dynamic as shown in
It would be completely inappropriate to neglect the inertia effects.

Fig. E3.14(e), Case ii.

Case (iii) To = 1/4 T,:

to the natural periods

very close if T, > T,.

2.0
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(e) Analysis of the system: Cese ii
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Impulse response
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t/Ty

(e) Analysis of the system: Case iii (here the actual
displacements ere obtained by multiplying the given
values by 2T,/m; the impulse response was celculated
using °U; = °U, = 0, °U, = °U, = 4T, /= and setting the
external loads to zero).

Figure E3.14 (continued)

In this case the duration of the loading is relatively short compared
of the system. The response of the system is truly dynamic, and inertia
effects must be included in the analysis as shown in Fig. E3.14(e), Case iii. The response of the
system is somewhat close to the response generated assuming impulse conditions and would be
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To identify some conditions for which the structure becomes unstable, we note from (b)
that the stiffness of the structure increases with increasing values of P/L (which is why the
frequencies increase as P/L increases). Therefore, for the structure to become unstable, we need
a negative value of P; i.e., P must be compressive. Let us now assume that P is decreased very
slowly (P increases in compression) and that F is very small. In this case a static analysis is
appropriate, and we can neglect the force F to obtain from (b) the governing equilibrium

equations
[ Sk _Zk][Ul] _ f[-—Z 1][U1]
-2k 2k]LU; LL 1 —-1]4LU;
The solution of this eigenvalue problem gives two values for P/L. Because of the sign convention
for P, the larger eigenvalue gives the critical load
P = —2kL

It may be noted that this is the load at which the smallest frequency of the system is zero
[see Fig. E3.14(d)].

Although we considered a structural system in this example, most of the solution
characteristics presented are also directly observed in the analysis of other types of prob-
lems. As shown in an introductory manner in the example, it is important that an analyst
be able to decide what kind of analysis is required: whether a steady-state analysis is
sufficient or whether a dynamic analysis should be performed, and whether the system may
become unstable. We discuss some important factors that influence this decision in Chap-
ters 6 and 9.

In addition to deciding what kind of analysis should be performed, the analyst must
select an appropriate lumped-parameter mathematical model of the actual physical system.
The characteristics of this model depend on the analysis to be carried out, but in complex
engineering analyses, a simple lumped-parameter model is in many cases not sufficient, and
itis necessary to idealize the system by a continuum-mechanics-based mathematical model.
We introduce the use of such models in the next section.

3.2.5 Exercises

3.1. Consider the simple cart system in static (steady-state) conditions shown. Establish the governing
equilibrium equations.

p—>— Ry =10 = R5=0
B 3k

AAAA
yvy

R, =20
Spring

7 stiffness k 2k
‘ k 4k
A AAA AAAA /

yyYvy Yyvy

cart1™ | Cart2 Cart3
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3.2. Consider the wall of three homogeneous slabs in contact as shown. Establish the steady-state heat
transfer equilibrium equations of the analysis problem.

Conductanca 4k / 7 Conductance 3k
Conductance 2k // / / Surface coefficient 3k

Prescribed 62 63 ‘N Environmental
temperature 61 temperature 65

3.3. The hydraulic network shown is to be analyzed. Establish the equilibrium equations of the system
when Ap = Rq and R is the branch resistance coefficient.

3.4. The dc network shown is to be analyzed. Using Ohm’s law, establish the current-voltage drop
equilibrium equations of the system.

E
R
AAAA |I
Yyvy |
2R 3R
AAAA AAAA
YYVY \AAAZ
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3.5. Consider the spring-cart system in Exercise 3.1. Determine the variational indicator IT of the total
potential of this system.

3.6. Consider the slab in Example 3.2. Find a variational indicator IT that has the property that
8I1 = 0 generates the governing equilibrium equations.

3.7. Establish the dynamic equilibrium equations of the system of carts in Exercise 3 1 when the carts
have masses m,, m,, and ms.

3.8. Consider the simple spring-cart system shown initially at rest. Establish the equations governing
the dynamic response of the system.

Ri )

Time
f=—>— Ry = 50 Spring stiffness k 1! > R3 =10
MW
’—-’- Ry=0
2k Rigid certs
MWWy r 2k /
/ MWWy
Mass m, m, 3k ms

3.9. The rigid bar and cable structure shown is to be analyzed for its dynamic response. Formulate
the equilibrium equations of motion.

Messlesa cable
Tension T
Length L

L\ /f_%

MassM M
Rigid, massless bars
Spring stiffness k
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3.10. Consider the structural model shown. Determine the eigenvalue problem from which the critical
load can be calculated. Use the direct method and the variational method to obtain the governing
equations.

P

.
————%—-ww—:—»m

. — Rigid bar

Frictionless hinges

R S a—-}"m——: s Uy

L Spring stiffness k | — Rigid bar

i;é 2 k= kL2

3.11. Establish the eigenproblem governing the stability of the system shown.

|

— W

Rigid bars, frictionless hinges

) k= kL2
k

r

N
x
JZN
2 (o)

Spring stiffness k

-

Spring stiffness k
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3.12. The column structure in Exercise 3.11 is initially at rest under the constant force P (where P is
below the critical load) when suddenly the force W is applied. Establish the governing equations
of equilibrium. Assume the springs to be massless and that the bars have mass m per unit length,

3.13. Consider the analysis in Example 3.9. Assume @ = dbe™™ and Q = 0 and establish an eigenprob-
lem corresponding to A, &.

3.14. Consider the wall of three homogeneous slabs in Exercise 3.2. Formulate ‘the heat transfer
equations for a transient analysis in which the initial temperature distribution is given and
suddenly 6, is changed to 87°*. Then assume 8 = ¢e ™ and Q = 0, and establish an eigenprob-
lem corresponding to A, ¢. Assume that, for a unit cross-sectional area, each slab has a total heat
capacity of ¢, and that for each slab the heat capacity can be lumped to the faces of the slab.

3.3 SOLUTION OF CONTINUOUS-SYSTEM MATHEMATICAL MODELS

The basic steps in the solution of a continuous-system mathematical model are quite similar
to those employed in the solution of a lumped-parameter model (see Section 3.2). However,
instead of dealing with discrete elements, we focus attention on typical differential elements
with the objective of obtaining differential equations that express the element equilibrium
requirements, constitutive relations, and element interconnectivity requirements. These
differential equations must hold throughout the domain of the system, and before the
solution can be calculated they must be supplemented by boundary conditions and, in
dynamic analysis, also by initial conditions.

As in the solution of discrete models, two different approaches can be followed to
generate the system-governing differential equations: the direct method and the variational
method. We discuss both approaches in this section (see also R. Courant and D. Hilbert [A])
and illustrate the variational procedure in some detail because, as introduced in Sec-
tion 3.3.4, this approach can be regarded as the basis of the finite element method.

3.3.1 Differential Formulation

In the differential formulation we establish the equilibrium and constitutive requirements
of typical differential elements in terms of state variables. These considerations lead to a
system of differential equations in the state variables, and it is possible that all compatibility
requirements (i.e., the interconnectivity requirements of the differential elements) are
already contained in these differential equations (e.g., by the mere fact that the solution is
to be continuous). However, in general, the equations must be supplemented by additional
differential equations that impose appropriate constraints on the state variables in order
that all compatibility requirements be satisfied. Finally, to complete the formulation of the
problem, all boundary conditions, and in a dynamic analysis the initial conditions, are
stated.

For purposes of mathematical analysis it is expedient to classify problem-governing
differential equations. Consider the second-order general partial differential equation in the
domain x, y,

8 u *u &u ou au)
Alx, y)— + 2B , y)—— + L Y)— = , Y U,
(x, ) Y% (x, y) oxdy C(x, y) 3y ¢<x y, u

o By (3.6)
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where u is the unknown state variable. Depending on the coefficients in (3.6) the differential
equation is elliptic, parabolic or hyperbolic:

<0 elliptic
B2 - AC{=0 parabolic
>0 hyperbolic

This classification is established when solving (3.6) using the method of characteristics
because it is then observed that the character of the solutions is distinctly different for the
three categories of equations. These differences are also apparent when the differential
equations are identified with the different physical problems that they govern. In their
simplest form the three types of equations can be identified with the Laplace equation, the
heat conduction equation, and the wave equation, respectively. We demonstrate how these
equations arise in the solution of physical problems by the following examples.

EXAMPLE 3.15: The idealized dam shown in Fig. E3.15 stands on permeable soil. Formulate
the differential equation governing the steady-state seepage of water through the soil and give the
corresponding boundary conditions.

For a typical element of widths dx and dy (and unit thickness), the total flow into the
element must be equal to the total flow out of the element. Hence we have

(qu - q|y+dy) dx + (qlx - q|X+dx) dy =0

_%
day

0Gx
dx — —dxdy =
or dy dx a5 Gx dy 0 (a)

X X X X X X X X X
Impermeable rock

(a) ldealization of dam on soil and rock

TQIy-rdy

Tq Iy Figure E3.15 Two-dimensional seepage
(b) Differential element of soil problem
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Using Darcy’s law, the flow is given in terms of the total potential ¢,

a¢ a¢
x = —k——; = —k— b
q ax 9y k 3y (b)
where we assume a uniform permeability k. Substituting from (b) into (a), we obtain the Laplace
equation
62 ¢ 62 ¢
{52+ 50 =0 ©

It may be noted that this same equation is also obtained in heat transfer analysis and in the
solution of electrostatic potential and other field problems (see Chapter 7).

The boundary conditions are no-flow boundary conditions in the soil at x = —o and
x =+
9¢ =0; 99 =0 (d)
ax x=—0 ax x=+400

at the rock-soil interface,

Sl =0 ©
and at the dam-soil interface,
%y?(x,L)=0 for—%5x5+% )
In addition, the total potential is prescribed at the water-soil interface,
¢(x, )| s<-2) = h1; ¢(x, L) x>/ = ha (8)

The differential equation in (c) and the boundary conditions in (d) to (g) define the seepage flow
steady-state response.

EXAMPLE 3.16: The very long slab shown in Fig. E3.16 is at a constant initial temperature
6: when the surface at x = 0 is suddenly subjected to a constant uniform heat flow input. The
surface at x = L of the slab is kept at the temperature 6;, and the surfaces parallel to the x, z plane
are insulated. Assuming one-dimensional heat flow conditions, show that the problem-governing
differential equation is the heat conduction equation

o _ o
. ax P
where the parameters are defined in Fig. E3.16, and the temperature 6 is the state variable. State
also the boundary and initial conditions.

We consider a typical differential element of the slab [see Fig. E3.16(b)]. The element
equilibrium requirement is that the net heat flow input to the element must equal the rate of heat
stored in the element. Thus

96

5 dx (@)

x

gAlx — (qAI, + A%% xdx) =pAc

The constitutive relation is given by Fourier’s law of heat conduction

q= "ka (b
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T W Unit depth —{aix}<— y

A i gl =8;
—— 4 S —— — X=L 1
t=0
G S 12 i 'q!:D
t>0 . |2 e - Constant 9|, : X+ dx
T conductivity k

Mass density p
Heat capacity

le . ¢

n L per unit mass ¢ (b} Differential element of
l slab, A=1.0
-]

(a) Idealization of very long slab

Figure E3.16 One-dimensional heat conduction problem

Substituting from (b) into (a) we obtain

820 a0

pc— (©

k— =
ax? at

In this case the element interconnectivity requirements are contained in the assumption that the
temperature @ be a continuous function of x and no additional compatibility conditions are
applicable.

The boundary conditions are

20 qo(t)
ox (0’ t) - k
t>0 (d
o(L, t) =6
and the initial condition is 6(x,0) = 6 e

The formulation of the problem is now complete, and the solution of (c) subject to the
boundary and initial conditions in (d) and (e) yields the temperature response of the slab.

EXAMPLE 3.17: The rod shown in Fig. E3.17 is initially at rest when a load R(#) is suddenly
applied at its free end. Show that the problem-governing differential equation is the wave
equation

where the variables are defined in Fig. E3.17 and the displacement of the rod, , is the state
variable. Also state the boundary and initial conditions.

The element force equilibrium requirements of a typical differential element are, using
d’Alembert’s principle,

do
, + A—
oAl dax

62
dx — oAl = pAa—t': dx (a)
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a ‘ e #‘/ Young's modulus £
Mass density p
Cross-sectional area A

(a) Geometry of rod

e —

aAIx 0'A|

re

X

x+dx

{b) Differential element

Figure E3.17 Rod subjected to step load

9
The constitutive relation is o=E :,fc b)
Combining (a) and (b) we obtain
u _ 1 0%u
Eroeir ©

The element interconnectivity requirements are satisfied because we assume that the displace-
ment u is continuous, and no additional compatibility conditions are applicable.
The boundary conditions are

u(©0,1) =0
ou ; t>0 d)
EA—(L,1) = Ro
and the initial conditions are u(x,0)=0
(©

ou
‘a—t(x, 0) =0

With the conditions in (d) and (e) the formulation of the problem is complete, and (c) can be
solved for the displacement response of the rod.

Although we considered in these examples specific problems that are governed by
elliptic, parabolic, and hyperbolic differential equations, the problem formulations illus-
trate in a quite general way some basic characteristics. In elliptic problems (see Exam-
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ple 3.15) the values of the unknown state variables (or their normal derivatives) are given
on the boundary. These problems are for this reason also called boundary value problems,
where we should note that the solution at a general interior point depends on the data at
every point of the boundary. A change in only one boundary value affects the complete
solution; for instance, in Example 3.15 the complete solution for ¢ depends on the actual
value of h,. Elliptic differential equations generally govern the steady-state response of
systems.

Comparing the governing differential equations given in Examples 3.15 to 3.17 it is
noted that in contrast to the elliptic equation, the parabolic and hyperbolic equations
(Examples 3.16 and 3.17, respectively) include time as an independent variable and thus
define propagation problems. These problems are also called initial value problems because
the solution depends on the initial conditions. We may note that analogous to the derivation
of the dynamic equilibrium equations of lumped-parameter models, the governing differen-
tial equations of propagation problems are obtained from the steady-state equations by
including the “resistance to change” (inertia) of the differential elements. Conversely, the
parabolic and hyperbolic differential equations in Examples 3.16 and 3.17 would become
elliptic equations if the time-dependent terms were neglected. In this way the initial value
problems would be converted to boundary value problems with steady-state solutions.

We stated earlier that the solution of a boundary value problem depends on the data
at all points of the boundary. Here lies a significant difference in the analysis of a propaga-
tion problem, namely, considering propagation problems the solution at an interior point
may depend only on the boundary conditions of part of the boundary and the initial
conditions over part of the interior domain.

3.3.2 Variational Formulations

The variational approach of establishing the governing equilibrium equations of a system
was already introduced as an alternative to the direct approach when we discussed the
analysis of discrete systems (see Section 3.2.1). As described, the essence of the approach
is to calculate the total potential IT of the system and to invoke the stationarity of II, i.e.,
811 = 0, with respect to the state variables. We pointed out that the variational technique
can be effective in the analysis of discrete systems; however, we shall now observe that the
variational approach provides a particularly powerful mechanism for the analysis of contin-
uous systems. The main reason for this effectiveness lies in the way by which some boundary
conditions (namely, the natural boundary conditions defined below) can be generated and
taken into account when using the variational approach.

To demonstrate the variational formulation in the following examples, we -assume that
the total potential IT is given and defer the description of how an appropriate Il can be
determined until after the presentation of the examples.

The total potential IT is also called the functional of the problem. Assume that in the
functional the highest derivative of a state variable (with respect to a space coordinate) is
of order m; i.e., the operator contains at most mth-order derivatives. We call such a problem
a C™ ! variational problem. Considering the boundary conditions of the problem, we
identify two classes of boundary conditions, called essential and natural boundary condi-
tions.

The essential boundary conditions are also called geometric boundary conditions
because in structural mechanics the essential boundary conditions correspond to prescribed
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displacements and rotations. The order of the derivatives in the essential boundary condi-
tions is, in a C™~! problem, at most m — 1.

The second class of boundary conditions, namely, the natural boundary conditions,
are also called force boundary conditions because in structural mechanics the natural
boundary conditions correspond to prescribed boundary forces and moments. The highest
derivatives in these boundary conditions are of order m to 2m — 1.

We will see later that this classification of variational problems and associated
boundary conditions is most useful in the design of numerical solutions.

In the variational formulations we will use the variational symbol 8, already briefly
employed in (3.1). Let us recall some important operational properties of this symbol; for
more details, see, for example, R. Courant and D. Hilbert [A]. Assume that a function F for

a given value of x depends on v (the state variable), dv/dx, . . ., d’v/dx?, where p =
1,2, ....Then the first variation of F is defined as
oF oF dv oF dPo
= ———— — e — _— A
oF v 8v + d(dv/dx) 8<dx> + (dPv/dxP) B(dx") (3.72)

This expression is explained as follows. We associate with v(x) a function € n(x) where
€ is a constant (independent of x) and 77(x) is an arbitrary but sufficiently smooth function
that is zero at and corresponding to the essential boundary conditions. We call n(x) a
variation in v, that is 1(x) = 8v(x) [and of course € 7(x) is then also a variation in v] and
also have for the required derivatives

d'n _d"év _ (d"o)
dx*  dx" ax"

that is, the variation of a derivative of v is equal to the derivative of the variation in v. The
expression (3.7a) then follows from evaluating

d 2 P
Hosamdora) | deral o o
8F = lim - ad (3.7b)l

Considering (3.7a) we note that the expression for 6F looks like the expression for the
total differential dF; that is, the variational operator 6 acts like the differential operator with
respect to the variables v, dv/dx, ..., dPv/dx?. These equations can be extended to
multiple functions and state variables, and we find that the laws of variations of sums,
products, and so on, are completely analogous to the corresponding laws of differentiation.
For example, let F and Q be two functions possibly dependent on different state variables;
then - '

8(F + Q) = 6F + 8Q; 8(FQ) = (8F)Q + F(80Q); 8(F)" = n(Fy~'6F
In our applications the functions usually appear within an integral sign; and so, for example,
we also use

6 f F(x) dx = f OF(x) dx

We shall employ these rules extensively in the variational derivations and will use one
important condition (which corresponds to the properties of 7 stated earlier), namely, that
the variations of the state variables and of their (m — 1)st derivatives must be zero at and
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corresponding to the essential boundary conditions, but otherwise the variations can be
arbitrary.
Consider the following examples.

EXAMPLE 3.18: The functional governing the temperature distribution in the slab considered

in Example 3.16 is
H=J‘_k<60> dx—fLOde—% @
o 2 \9x ° g L

and the essential boundary condition is
0.= 6, (b)
where 6 = 60, ?) and 0. = 0(L, 1)

q® is the heat generated per unit volume, and otherwise the same notation as in Example 3.16
is used. Invoke the stationarity condition on II to derive the governing heat conduction equation
and the natural boundary condition.

This is a C? variational problem; i.e., the highest derivative in the functional in (a) is of
order 1, or m = 1. An essential boundary condition, here given in (b), can therefore correspond
only t0 a prescribed temperature, and a natural boundary condition must correspond to a
prescribed temperature gradient or boundary heat flow input.

To invoke the stationarity condition 811 = 0, we can directly use the fact that variations
and differentiations are performed with the same rules. That is, using (3.7a) we obtain

Lroa0\[ . a6
L(kEc)(Sa )dx—f 86 g® dx — 66,0 = 0 ©

where also 8(36/3x) = 386/ dx . The same result is also obtained when using (3.7b), which gives

here
L
1 /06 d
[ [
811 = lim 2
€—0 €
a6 - B }
- dx —
Uo 2k(ax> o Loq e
€
) L
J [ kao an + -€ k<an> ] dx —J E‘andx - Enlx=0 qo
= lim 2° dx ox 2 9x >
€—0 €
_ a0 an - B —
_J ko= ldx an dx = T qo
=0

where 1 = 1]:-0 and we would now substitute 86 for 7.
Now using integration by parts,” we obtain from (c) the following equation:

90 a6 a0
_— iR, — — — + =
L (k +q ) 80dx + k re 56, [k i qo] 86, (d)

) ® ®

2The divergence theorem is used (see Examples 4.2 and 7.1).
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To extract from (d) the governing differential equation and natural boundary condition, we use
the argument that the variations on @ are completely arbitrary, except that there can be no
variations on the prescribed essential boundary conditions. Hence, because 6, is prescribed, we
have 66, = 0 and term @ in (d) vanishes.

Considering next terms (1) and (3), assume that 86, = 0 but that 88 is otherwise nonzero
(except at x = 0, where we have a sudden jump to a zero value). If (d) is to hold for any nonzero
86, we need to have?

36

k W + qB =0 (e)
Conversely, assume that 66 is zero everywhere except at x = 0; i.e., we have 66, # 0; then
(d) is valid only if

a0

k— +go=0 f

9% | 10 qo ( )
The expression in (f) represents the natural boundary condition.

The governing differential equation of the propagation problem is obtained from (g),
specifying here that

a0

B = — —
q pc . (8
3%0 36
H d to k—s = pc —
ence (e) reduces Py c %

We may note that until the heat capacity effect was introduced in the formulation in (g), the
equations were derived as if a steady-state problem (and with g® time-dependent a pseudo
steady-state problem) was being considered. Hence, as noted previously, the formulation of the
propagation problem can be obtained from the equation governing the steady-state response by
simply taking into account the time-dependent “inertia term.”

EXAMPLE 3.19: The functional and essential boundary condition governing the wave propa-
gation in the rod considered in Example 3.17 are

| ou\? L
= - _— - B _
II L 2EA( ax> dx f uf® dx — uR (a)

V]
and U =0 ®)

where the same notation as in Example 3.17is used, up = u(0, #), u, = u(L, t), and f2 is the body
force per unit length of the rod. Show that by invoking the stationarity condition on II the
governing differential equation of the propagation problem and the natural boundary condition
can be derived.

We proceed as in Example 3.18. The stationarity condition 6II = 0 gives

L ou ou L B
J;’ (EA 5)(85) dx J;’ oufidx — ouR=0

Writing 36u/dx for 8 (du/dx), recalling that EA is constant, and using integration by parts yields

L *u u
—f (EA—2 + f") du dx + [EA—
ax a

[}

8u0= 0

x=0

9
—R] u, — EAZ
L a

x=

3We in effect imply here that the limits of integration are not 0 to L but 0* to L~
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To obtain the governing differential equation and natural boundary condition we use, in essence,
the same argument as in Example 3.18; i.e., since 8u, is zero but du is arbitrary at all other points,
we must have

o*u
EA ‘("E + =0 (©)
ou
EA — =R d
and x|, d)
In this problem we have f2 = —Ap 8%/3t* and hence (c) reduces to the problem-governing

differential equation

The natural boundary condition was stated in (d).
Finally, it may be noted that the problem in (a) and (b) is a C° variational problem; i.e.,
m = 1 in this case.

EXAMPLE 3.20: The functional governing static buckling of the column in Fig. E3.20 is

1 (" (d*wY P (" (dwY 1,
IT= EJ;, El(d_xz> dx 2J; (E) dx + EkWL (a)
where w, = w|x=, and the essential boundary conditions are
dw
W|x=o = 0, E o =0 (b)

Invoke the stationarity condition 81 = 0 to derive the problem-governing differential equation
and the natural boundary conditions.

/ Flexural stiffness
El

P

A
é——»—x —_ ’ —_ — g —ifn—
|«
[

T~ Spring
stiffness
k

7777777
: -

Figure E3.20 Column subjected to a compressive load

This problem is a C' variational problem, i.e., m = 2, because the highest derivative in the
functional is of order 2.
The stationarity condition 8II = 0 yields

L L
J EIw" éw" dx — PJ w ow' dx + kw, éw. =0

o o
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where we use the notation w' = dw/dx, and so on. But 8w” = d(éw')/dx, and EI is constant;
hence, using integration by parts, we obtain
L L
J EWw" 8w" dx = EIw" 8w'|§ — EIJ w"” 8w’ dx
o o

If we continue to integrate by parts f w
we obtain

8w’ dx and also integrate by parts [y w' éw’ dx,

L
J (EW™ + Pw") 8w dx + (EIw" 8w")|. — (EIw" 8w')|o
J - \ -’ —

® ) ®
—\[(Elw"’ + Pw') 8w]|L1+ [(Ew™ + Pw') 6w]|oj + kw, 8w, = 0 ©
@ ® ®

Since the variations on w and w' must be zero at the essential boundary conditions, we have
dwo = 0 and dw{ = 0. It follows that terms () and (5) are zero. The variations on w and w’
are arbitrary at all other points, hence to satisfy (c) we conclude, using the earlier arguments (see
Example 3.18), that the following equations must be satisfied:

term 1: EIw"™ + Pw" = (d)
term 2: EW"|=1 =0 (e
terms 4 and 6: (EIw"™ + Pw' — kw)i= =0 (f)

The problem-governing differential equation is given in (d), and the natural boundary conditions
are the relations in (e) and (f). We should note that these boundary conditions correspond to the
physical conditions of moment and shear equilibrium at x = L.

We have illustrated in the preceding examples how the problem-governing differential
equation and the natural boundary conditions can be derived by invoking the stationarity
of the functional of the problem. At this point a number of observations should be made.

First, considering a C™! variational problem, the order of the highest derivative
present in the problem-governing differential equation is 2m. The reason for obtaining a
derivative of order 2m in the problem-governing differential equation is that integration by
parts is employed m times.

A second observation is that the effect of the natural boundary conditions was always
included as a potential in the expression for II. Hence the natural boundary conditions are
implicitly contained in II, whereas the essential boundary conditions have been stated
separately.

Our objective in Examples 3.18 to 3.20 was to derive the governing differential
equations and natural boundary conditions by invoking the stationarity of a functional, and
for this purpose the appropriate functional was given in each case. However, an important
question then arises: How can we establish an appropriate functional corresponding to a
given problem? The two previous observations and the mathematical manipulations in
Examples 3.18 to 3.20 suggest that to derive a functional for a given problem we could start
with the governing differential equation, establish an integral equation, and then proceed
backward in the mathematical manipulations. In this derivation it is necessary to use
integration by parts, i.e., the divergence theorem, and the final check would be that the
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stationarity condition on the II derived does indeed yield the governing differential equa-
tions. This procedure is employed to derive appropriate functionals in many cases (see
Section 3.3.4 and Chapters 4 and 7, and for further treatment see, for example, R. Courant
and D, Hilbert [A], S. G. Mikhlin [A], K. Washizu [B], and J. T. Oden and J. N. Reddy [A)]).
In this context, it should also be noted that in considering a specific problem, there does not
generally exist a unique appropriate functional, but a number of functionals are applicable.
For instance, in the solution of structural mechanics problems, we can employ the principle
of minimum potential energy, other displacement-based variational formulations, the Hu-
Washizu or Hellinger-Reissner principles, and so on (see Section 4.4.2).

Another important observation is that once a functional has been established for a
certain class of problems, the functional can be employed to generate the governing equa-
tions for all problems in that class and therefore provides a general analysis tool. For
example, the principle of minimum potential energy is general and is applicable to all
problems in linear elasticity theory.

Based simply on a utilitarian point of view, the following observations can be made in
regard to variational formulations.

1. The variational method may provide a relatively easy way to construct the system-
governing equations. This ease of use of a variational principle depends largely on the
fact that in the variational formulation scalar quantities (energies, potentials, and so
on) are considered rather than vector quantities (forces, displacements, and so on).

2. A variational approach may lead more directly to the system-governing equations and
boundary conditions. For example, if a complex system is being considered, it is of
advantage that some variables that need to be included in a direct formulation are not
considered in a variational formulation (such as internal forces that do no net work).

3. The variational approach provides some additional insight into a problem and gives
an independent check on the formulation of the problem.

4. For approximate solutions, a larger class of trial functions can be employed in many
cases if the analyst operates on the variational formulation rather than on the differ-
ential formulation of the problem; for example, the trial functions need not satisfy the
natural boundary conditions because these boundary conditions are implicitly con-
tained in the functional (see Section 3.3.4).

This last consideration has most important consequences, and much of the success of
the finite element method hinges on the fact that by employing a variational formulation, a
larger class of functions can be used. We examine this point in more detail in the next section
and in Section 3.3.4.

3.3.3 Weighted Residual Methods; Ritz Method

In previous sections we have discussed differential and variational formulations of the
governing equilibrium equations of continuous systems. In dealing with relatively simple
systems, these equations can be solved in closed form using techniques of integration,
separation of variables, and so on. For more complex systems, approximate procedures of
solution must be employed. The objective in this section is to survey some classical tech-
niques in which a family of trial functions is used to obtain an approximate solution. We
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shall see later that these techniques are very closely related to the finite element method of
analysis and that indeed the finite element method can be regarded as an extension of these
classical procedures.

Consider the analysis of a steady-state problem using its differential formulation

Lad) =r (3.8)

in which L,,, is a linear differential operator, ¢ is the state variable to be calculated, and r
is the forcing function. The solution to the problem must also satisfy the boundary condi-
tions

B’[¢] = qilatboundary 55 i= 1, 2, P (39)

We shall be concerned, in particular, with symmetric and positive definite operators that
satisfy the symmetry condition

D D
and the condition of positive definiteness

J (Lan[u])u dD > 0 (3.11)

where D is the domain of the operator and u and v are any functions that satisfy homoge-
neous essential and natural boundary conditions. To clarify the meaning of relations (3.8)
to (3.11), we consider the following example.

EXAMPLE 3.21: The steady-state response of the bar shown in Fig. E3.17 is calculated by
solving the differential equation

*u
—FEA— =
A e 0 (@)
subject to the boundary conditions
ou
=0 = 0; EA — =
ul 0 ox L R (b)

Identify the operators and functions of (3.8) and (3.9) and check whether the operator L., is
symmetric and positive definite.
Comparing (3.8) with (a), we see that in this problem
62

L,y = —EA 5;‘,

b =u r=0

Similarly, comparing (3.9) with (b), we obtain
B =1 g =0

d
B, = EA —; =R
2 ax 7

To identify whether the operator L,,, is symmetric and positive definite, we consider the
case R = 0. This means physically that we are concerned only with the structure itself and not
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with the loading applied to it. For (3.10) we have

L 62
f EA——odx = —EA—v

[}

L
f EA%@d
0

[

L L ©
v 9%v
. J:) EA _é)_x_z u dx

ou a
= — - A —
EAaxv +E uax

[}

Since the boundary conditions are « = v = Oatx = 0 and du/dx = dv/dx = Qatx = L, we
have

L L 621.7
f—EA vdx—f—EA——zudx
dx

o [

and the operator is symmetric. We can also directly conclude that the operator is positive definite
because from (¢) we obtain

L %u
—_ ——— = A
J; EAax2“dx J;E(a)dx

In the following we discuss the use of classical weighted residual methods and the Ritz
method in the solution of linear steady-state problems as in (3.8) and (3.9), but the same
concepts can also be employed in the analysis of propagation problems and eigenproblems
and in the analysis of nonlinear response (see Examples 3.23 and 3.24).

The basic step in the weighted residual and Ritz analyses is to assume a solution of the
form

$ = g af; (3.12)
where the f; are linearly independent trial functions and the a; are multipliers to be deter-
mined in the solution.

Consider first the weighted residual methods. These techniques operate directly on
(3.8) and (3.9). Using these methods, we choose the functions £ in (3.12) so as to satisfy
all boundary conditions in (3.9), and we then calculate the residual

R=r- L%[E a‘»f.-] : (3.13)

i=1
For the exact solution this residual is of course zero. A good approximation to the exact
solution would imply that R is small at all points of the solution domain. The various
weighted residual methods differ in the criteria that they employ to calculate the a; such that

R is small. However, in all techniques we determine the a; so as to make a weighted average
of R vanish.

Galerkin method. In this technique the parameters a; are determined from the n
equations

fﬁRdD=0; i=12,...,n (3.14)
D

where D is the solution domain.
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Least squares method. In this technique the integral of the square of the residual
is minimized with respect to the parameters a;,
2 R*dD = 0, i=1,2,...,n (3.15)
da; Jp
Substituting from (3.13), we thus obtain the following n simultaneous equations for the
parameters a;,

f RL.,[f]dD = 0; i=1,2...,n (3.16)
D

Collocation method. In this method the residual R is set equal to zero at n distinct
points in the solution domain to obtain » simultaneous equations for the parameters a;. The
location of the » points can be somewhat arbitrary, and a uniform pattern may be appropri-
ate, but usually the analyst should use some judgment to employ appropriate locations.

Subdomain method. The complete domain of solution is subdivided into n sub-
domains, and the integral of the residual in (3.13) over each subdomain is set equal to zero
to generate n equations for the parameters a;.

An important step in using a weighted residual method is the solution of the simulta-
neous equations for the parameters a;,. We note that since L,, is a linear operator, in all the
procedures mentioned, a linear set of equations in the parameters g; is generated. In the
Galerkin method, the coefficient matrix is symmetric (and also positive definite) if L, is a
symmetric (and also positive definite) operator. In the least squares method we always
generate a symmetric coefficient matrix irrespective of the properties of the operator L.
However, in the collocation and subdomain methods, nonsymmetric coefficient matrices
may be generated. In practical analysis, therefore, the Galerkin and least squares methods
are usually preferable.

Using weighted residual methods, we operate directly on (3.8) and (3.9) to minimize
the error between the trial solution in (3.12) and the actual solution to the problem.
Considering next the Ritz analysis method (due to W. Ritz [A]), the fundamental difference
from the weighted residual methods is that in the Ritz method we operate on the functional
corresponding to the problem in (3.8) and (3.9). Let II be the functional of the C™!
variational problem that is equivalent to the differential formulation given in (3.8) and
(3.9); in the Ritz method we substitute the trial functions ¢ given in (3.12) into I and
generate n simultaneous equations for the parameters a; using the stationarity condition of
IL 8I1 = 0 [see (3.1)], which now gives

g—l;li=0; i=12 ...,n 3.17)

An important consideration is the selection of the trial (or Ritz) functions f; in (3.12).
In the Ritz analysis these functions need only satisfy the essential boundary conditions and
not the natural boundary conditions. The reason for this relaxed requirement on the trial
functions is that the natural boundary conditions are implicitly contained in the functional
I1. Assume that the L, operator corresponding to the variational problem is symmetric and
positive definite. In this case the actual extremum of II is its minimum, and by invoking
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(3.17) we minimize (in some sense) the violation of the internal equilibrium requirements
and the violation of the natural boundary conditions (see Section 4.3). Therefore, for
convergence in a Ritz analysis, the trial functions need only satisfy the essential boundary
conditions, which is a fact that may not be anticipated because we know that the exact
solution also satisfies the natural boundary conditions. Actually, assuming a given number
of trial functions, it can be expected that in most cases the solution will be more accurate
if these functions also satisfy the natural boundary conditions. However, it can be very
difficult to find such trial functions, and it is generally more effective to use instead a larger
number of functions that satisfy only the essential boundary conditions. We demonstrate
the use of the Ritz method in the following examples.

EXAMPLE 3.22: Consider a simple bar fixed at one end (x = 0) and subjected to a concen-
trated force at the other end (x = 180) as shown in Fig. E3.22. Using the notation given in the
figure, the total potential of the structure is

180
1 (duY
II= J; EEA(E) dx — 100u|x=180 (a)
and the essential boundary condition is #|=0 = 0.

1. Calculate the exact displacement and stress distributions in the bar.

2. Calculate the displacement and stress distributions using the Ritz method with the follow-
ing displacement assumptions:

u = ax + ax® ]
and u=%; 0= x=<100
©
x — 100 x — 100
U= (1 - 30 )ua + ('S—O-)MC; 100 = x < 180

where ug and uc are the displacements at points B and C.

Cross-sectional area = (1 + Z%)zcmz

Area = 1 cm? /

7

2

7 R=100N
— — A X u - —e - e

% 8

7 N

y

~ 100 ¢m <80 cm—]

Figure E3.22 Bar subjected to a concentrated end force

In order to calculate the exact displacements in the structure, we use the stationarity
condition of IT and generate the governing differential equation and the natural boundary

condition, We have
180 du du 00
= — 8 -_— - x=

SI1 L (EA dx) (dx) dx 1 8“[ 180 (d)
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Setting 8II = 0 and using integration by parts, we obtain (see Example 3.19)

d du
Z;(EA z;) =0 (e
EA fl_‘f = 100 )
dx |v=180

The solution of (e) subject to the natural boundary condition in (f) and the essential
boundary condition «|:—o = 0 gives

100

u=—E—x; 0=x=100
u=10000+4000— 4000 , 100 < x < 180
EE e
40
The exact stresses in the bar are
o = 100; 0=<x=<100
1
o= 00 100 = x = 180

(1 LET 100)2;
40

Next, to perform the Ritz analyses, we note that the displacement assumptions in (b) and
(c) satisfy the essential boundary condition but not the natural boundary condition. Substituting
from (b) into (a), we obtain

100 180 _ 2
= -E-f (a1 + 2a:x)* dx + Ef (1 + 3 100) (a1 + 2a:x)* dx ~ 100u|.=150
2 (V] 2 100 40
Invoking 8I1 = 0, we obtain the following equations for a, and a,:
E[0.4467 115.6 ][al] _ [ 18 ] ©
1156 340757 [la:] ~ (3240 £
d _ 129, _ 0341
an a E a = _E

This Ritz analysis therefore yields the approximate solution

_ 129 0341 ,
u=—7x 7 X (h)
o =129 — 0.682x; 0=<x=<180 (i)

Using next the Ritz functions in (c), we have

E ("1 2 E ‘“( x — 100\/ 1 1 )2
2J; (1 uB) dx + 2fmo 1 20 ) ( 80“3 80uc dx — 100uc

Invoking again 811 = 0, we obtain

1[15.4 —13][u3] _ [ 0 ] .
2400 -13  13l{uc] (100 @
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Hence we now have

_ 10,000 _ 11,846.2
Up £ Uc __E
and o = 100; 0=<x=<100
0'—1—83(-?—2—2308 100 < x = 180

We shall see in Chapter 4 (see Example 4.5) that this Ritz analysis can be regarded to be
a fimte element analysis.
EXAMPLE 3.23: Consider the slab in Example 3.16. Assume that
8 = 6:(1) + 6:()x + Bs(1)x (@

where 6,(1), 62(2), and 6;(¢) are the undetermined parameters. Use the Ritz analysis procedure to
generate the governing heat transfer equilibrium equations.
The functional governing the temperature distribution in the slab is (see Example 3.18)

H=f—(ao)d—fL03d - 6]
o 2 \ax) T, T Vot

with the essential boundary condition

(b)

0 | x=L = 01'
Substituting the temperature assumption of (a) into (b), we obtain

L L
= f %k((ez)2 + 46,0:x + 4(6:)°x%)dx — f (61 + 6:x + 6:x%)q%dx — 6iqo
0 0

Invoking the stationarity condition of I, i.e., 8II = 0, we use

oIl oIl oIl
=0 —=0 --=0
86, 06, 06,
and obtain -
[
0 0 O 6,
Ko L L 02=fqux ©
o Lz 4r*|| o
f x2q® dx
—0 —

In this analysis go varies with time, so that the temperature varies with time, and heat
capacity effects can be important. Using

B

q° = —pc— (@

ot

because no other heat is generated, substituting for @ in (d) from (a), and then substituting into
(), we obtain as the equilibrium equations,

0 0 o1e L 4L* L2116, 9
kKo L L || 6| +pcjsL? iL° 4|l &]|=10 @
0 L* $2|| 6 irr i1t L] e 0
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The final equilibrium equations are now obtained by imposing on the equations in (e) the
condition that 0|, = 6;; i.e.,

6:(t) + 62(L + 65(L* = 6,
which can be achieved by expressing 6, in (¢) in terms of 6, 6, and 6;.
EXAMPLE 3.24: Consider the static buckling response of the column in Example 3.20. As-
sume that
w = aix® + a;x® (a)

and use the Ritz method to formulate equations from which we can obtain an approximate
buckling load.
The functional governing the problem was given in Example 3.20,

1t (d*w)? P (X (dw)? 1 "
II= EJ:) El("?) d EJ:) (E;) dx + Ek(W]FL) (b)

We note that the trial function on w in (a) already satisfies the essential boundary conditions
(displacement and slope equal to zero at the fixed end). Substituting for w into (b), we obtain

1 Pt 1
= Ef EI(2a, + 6a:x)* dx — Ef Qaix + 3ax?)* dx + Ek(a]L2 + a,L?%?
0 V]

Invoking the stationarity condition 811 = 0, i.e.,

oIl oIl
— =0 — =0
6a1 daz
we obtain
2L 3L? 1 L a g % a 0
2EI + kL* - PL? AL 9L2 =
3L2 6L3 L L? as 7 ? a 0

The solution of this eigenproblem gives two values of P for which w in (a) is nonzero. The
smaller value of P represents an approximation to the lowest buckling load of the structure.

The weighted residual methods presented in (3.14) to (3.16) are difficult to use in
practice because the trial functions must be 2m-times-differentiable and satisfy all—essen-
tial and natural—boundary conditions [see (3.13)]. On the other hand, with the Ritz
method, which operates on the functional corresponding to the problem being considered,
the trial functions need to be only m-times-differentiable and do not need to satisfy the
natural boundary conditions. These considerations are most important for practical analy-
sis, and therefore the Galerkin method is used in practice in a different form, namely,
in a form that allows the use of the same functions as used in the Ritz method. In the
displacement-based analysis of solids and structures, this form of the Galerkin method is
referred to as the principle of virtual displacements. If the appropriate variational indicator
I1 is used, the equations obtained with the Ritz method are then identical to those obtained
with the Galerkin method.

We elaborate upon these issues in the next section with the objective of providing
further understanding for the introduction of finite element procedures.
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3.3.4 An Overview: The Differential and Galerkin
Formulations, the Principle of Virtual Displacements,
and an Introduction to the Finite Element Solution

In the previous sections we reviewed some classical differential and variational formula-
tions, some classical weighted residual methods, and the Ritz method. We now want to
reinforce our understanding of these analysis approaches—by summarizing some impor-
tant concepts—and briefly introduce a mathematical framework for finite element proce-
dures that we will further use and extend in Chapter 4. Let us pursue this objective by
focusing on the analysis of a simple example problem.

Consider the one-dimensional bar in Fig. 3.2. The bar is subjected to a distributed load
72(x) and a concentrated load R at its right end. As discussed in Section 3.3.1, the differen-
tial formulation of the bar gives the governing equations

( d’u .
EA i + fB=0 in the bar (3.18)
Differential ) _
formulation o = 0 (319
du
EA — =R .
7| (3.20)

"

Since f2 = ax, we obtain the solution

_ —f(ax’/6) + R + sal?x

3.21
u(x) TA (3.21)
Constant cross-sectional area A

. Young's modulus £
v,

fB(x) = ax
/)—» X — fB( X) J—— R

(@] (@) (@] (@) (@] ) Figure 3.2 Uniform bar subjected to
L/ Y body load f# (force/unit length) and tip
' load R

We recall that (3.18) is a statement of equilibrium at any point x within the bar, (3.19) is
the essential (or geometric) boundary condition (see Section 3.2.2), and (3.20) is the natural
(or force) boundary condition. The exact analytical solution (3.21) of course satisfies all
three equations (3.18) to (3.20).

We also note that the solution u(x) is a continuous and twice-differentiable function,
as required in (3.18). Indeed, we can say that the solutions to (3.18) satisfying (3.19) and
(3.20) for any continuous loading /2 lie in the space of continuous and twice-differentiable
functions that satisfy (3.19) and (3.20).
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An alternative approach for the solution of the analysis problem is given by the
variational formulation (see Section 3.3.2),

([ L
= f EA(d“) dx — f uf® dx — Ruxes (3.22)
o 2 d 0 .
Variational _
formulation ) 81l =0 (323)
with Ulemo = 0 (3.24)
8tt|ymo = 0 (3.25)

where & means “variation in” and du is an arbitrary variation on u subject to the condition
8u |,=0 = 0. We may think of Su(x) as any continuous function that satisfies the boundary
condition (3.25).*

Let us recall that (3.22) to (3.25) are totally equivalent to (3.18) to (3.20) (see
Section 3.3.2). That is, invoking (3.23) and then using integration by parts and the
boundary condition (3.25) gives (3.18) and (3.20). Therefore, the solution of (3.22) to
(3.25) is also (3.21).

The variational formulation can be derived as follows.

Since (3.18) holds for all points within the bar, we also have

(EAZ 2. f") du=0 (3.26)

where Su(x) is an arbitrary variation on « (or an arbitrary continuous function) with
8ul,-o = 0. Hence, also

f ( Aglz+ f”) Sudx =0 (3.27)
Integrating by parts, we obtain
ds ‘
f —“—EA—dx—ffBaudx+EA%au|§ (3.28)
V]

Substituting from (3.20) and (3.25), we therefore have

dbu -
Principle of f — EA — dx = J:) fB6udx + R dule-r (3.29)

virtual displacements

with u|x=0 = 0; Su |x=0 =0 (330)
Of course, (3.29) gives

a{ fo ’ [%(%)2 - f"u] dx — Ru |,=L} =0 (331)

which with (3.30) is the variational statement of (3.22) to (3.25).
The relation (3.29) along with the condition (3.30) is the celebrated principle of
virtual displacements (or principle of virtual work) in which su(x) is the virtual displace-

“In the literature, differential and variational formulations are, respectively, also referred to as strong and
weak forms. Variational formulations are also referred to as generalized formulations.
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ment. We discuss this principle extensively in Section 4.2 and note that the derivation in
(3.26) to (3.30) is a special case of Example 4.2.

It is important to recognize that the above three formulations of the analysis problem
are totally equivalent, that is, the solution (3.21) is the (unique) solution® u(x) of the
differential formulation, the variational formulation, and the principle of virtual displace-
ments. However, we note that the variational formulation and the principle of virtual work
involve only first-order derivatives of the functions « and du. Hence the space of functions
in which we look for a solution is clearly larger than the space of functions used for the
solution of (3.18) [we define the space precisely in (3.35)], and there must be a question as
to what it means and how important it is that we use a larger space of functions when solving
the problem in Fig. 3.2 with the principle of virtual displacements.

Of course, the space of functions used with the principle of virtual displacements
contains the space of functions used with the differential formulation, hence all analysis
problems that can be solved with the differential formulation (3.18) to (3.20) can also be
solved exactly with the principle of virtual displacements. However, in the analysis of the
bar (and the analysis of general bar and beam structures) additional conditions for which
the principle of virtual work can be used directly for solution are those where concentrated
loads are applied within the bar or discontinuities in the material property or cross-sectional
area are present. In these cases the first derivative of u(x) is discontinuous and hence the
differential formulation has to be extended to account for such cases (in essence treating
separately each section of the bar in which no concentrated loads are applied and in which
no discontinuities in the material property and cross-sectional area are present, and con-
necting the section to the adjoining sections by the boundary conditions; see, for example,
S. H. Crandall, N. C. Dahl, and T. J. Lardner [A]). Hence, in these cases the variational
formulation and the principle of virtual displacements are somewhat more direct and more
powerful for solution.

For general two- and three-dimensional stress situations, we will only consider math-
ematical models of finite strain energy (meaning for example that concentrated loads should
only be applied as enumerated in Section 1.2, see Fig. 1.4, and further discussed in Section
4.3.4), and then the differential and principle of virtual work formulations are also totally
equivalent and give the same solutions (see Chapter 4).

These considerations point to a powerful general procedure for formulating the nu-
merical solution of the problem in Fig. 3.2. Consider (3.27) in which we now replace 8«
with the test function v,

t d’*u 5
EA— + f®)odx =0 (3.32)
[} dx
with ¥ = 0 and v = 0 at x = 0. Integrating by parts and using (3.20), we obtain
L L
dv du _ .
. @ EA o= fo fBodx + Role=t (3.33)

This relation is an application of the Galerkin method or of the principle of virtual displace-
ments and states that “for u(x) to be the solution of the problem, the left-hand side of (3.33)
(the internal virtual work) must be equal to the right-hand side (the external virtual work)

3The uniqueness of u(x) follows in this case clearly from the simple integration process for obtaining (3.21),
but a general proof that the solution of a linear elasticity problem is always unique is given in (4.80) to (4.82).
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for arbitrary test or virtual displacement functions v(x) that are continuous and that satisfy
the condition v = 0 at x = 0.”
In Chapter 4 we write the formulation (3.33) in the following form:

Find ¥ € V such that$ alu, v) = (f, v) YVoeV (3.34)

where the space V is defined as
V= {v |v e LZ(L) e LY(L), 0]=0 = 0} (3.35)
and L?(L) is the space of square integrable functions over the length of the bar,0 < x < L,
LA(L) = {w | wis defined over 0 < x < L and J;L Wldx =||wli. < °°} (3.36)
Using (3.34) and (3.33), we have

alu, v) = f — EA — dx (3.37)

and (f,v) = f fBodx + Rol,_, (3.38)

where a(u, v) is the bilinear form and (£, v) is the linear form of the problem.
The definition of the space of functions Vin (3.35) says that any element v in V is zero

atx = 0 and
L
J-vzdx<°°; f [dv] dx <
0 o dx

Hence, any element v in V corresponds to a finite strain energy. We note that the elements
in V comprise all functions that are candidates for solution of the differential formulation
(3.18) to (3.20) with any continuous 2 and also correspond to possible solutions with
discontinuous strains [because of concentrated loads, in this one-dimensional analysis case,
or discontinuities in the material behavior or cross-sectional area]. This observation under-
lines the generality of the problem formulation given in (3.34) and (3.35).

For the Galerkin (or finite element) solution we define the space V, of trial (or finite
element) functions v,

Vh = {vh|v;, (S LZ(L) @ (S LZ(L) Un ls = 0} (339)

where S, denotes the surface area on which the zero displacement is prescribed. The
subscript ~ denotes that a particular finite element discretization is being considered (and
h actually refers to the size of the elements; see Section 4.3). The finite element formulation
of the problem is then

Find u, € Vh such that a(u;., Dh) = (f, Dh) VD}, e V;, (340)

Of course, (3.40) is the principle of virtual displacements applied with the functions
contained in Vj, and also corresponds to the minimization of the total potential energy within
this space of trial functions. Therefore, (3.40) corresponds to the use of the Ritz method

$The symbols V and € mean, respectively, “for all” and “an element of.”
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described in Section 3.3.3. We discuss the finite element formulation extensively in
Chapter 4.

However, let us note here that the same solution approach can also be used directly
for any analysis problem for which we have the governing differential equation(s). The
procedure would be: weigh the governing differential equation(s) in the domain with
suitable test function(s); integrate the resulting equation(s) with a transformation using
integration by parts (or more generally the divergence theorem; see Example 4.2); and
substitute the natural boundary conditions—as we did to find (3.33).

We obtain in this way the principle of virtual displacements for the general analysis
of solids and structures (see Example 4.2), the “principle of virtual temperatures” for the
general heat flow and temperature analysis of solids (see Example 7.1), and the “principle
of virtual velocities” for general fluid flow analysis (see Section 7.4.2).

To demonstrate the use of the above notation, consider the following examples.

EXAMPLE 3.25: Consider the analysis problem in Example 3.22. Write the problem formu-
lation in the form (3.40) and identify the finite element basis functions used when employing
the displacement assumptions (b) and (c) in the example.

Here the bilinear form a(.,.) is

180
_ du;. dv;,
alun, vx) = J; Tx EA - dx

and we have the linear form
(f, vs) = 10004 |19
With the displacement assumption (b) we use
up = arx + ax?
Hence V, is a two-dimensional space, and the two basis functions are
o)) = x and o = x?

With the displacement assumption (c) we use

X
uh=ﬁu3; 0=x=<100
x — 100 x — 100

uh=(l- 20 )u3+( 20 )uc; 100 = x < 180

and the two basis functions for V, are
= for0 <= x <100
oV — 100 -
h - —
22100 100 = x < 180
80

and p® =X 100 100 = x = 180

80

Clearly, all these functions satisfy the conditions in (3.39). If we use (3.40), the equations in (g)
and (j) in Example 3.22 are generated.
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EXAMPLE 3.26: Consider the analysis problem in Example 3.23. Write the problem formula-
tion in the form (3.40) and identify the element basis functions used when employing the
temperature assumption given in the example.

Here the problem formulation is

Find 6, € V; such that  a(6s, yu) = (f, yn) Vi € Vi (a)
L
where a0, Yn) = f din k el dx
o dx dx

(f, o) = f ng® dx + qon |,y

Here 6, and s correspond to temperature distributions in the slab. With the assumption in
Example 3.23 we have for V, the three basis functions

6 =1, 0P = x; 0 = x2

Using (a) the governing equations given in (c) in Example 3.23 are obtained. Note that in this
formulation we have not yet imposed the essentia] boundary condition (which is achieved later,
as in Example 3.23).

3.3.5 Finite Difference Differential and Energy Methods

A classical approach to finding a numerical solution to the governing equations of a math-
ematical continuum model is to use finite differences (see, for example, L. Collatz [A]), and
it is valuable to be familiar with this approach because such knowledge will reinforce our
understanding of the finite element procedures. In a finite difference solution, the deriva-
tives are replaced by finite difference approximations and the differential and variational
formulations of mathematical models can be solved.

As an example, consider the analysis of the uniform bar in Fig. 3.2 with the governing
differential equation (see Example 3.17 and Section 3.3.4),

fB
and the boundary conditions
u=0 atx =0 (3.42)
du
FA— =R atx =L (3.43)
dx

Using an equal spacing / between finite difference stations, we can write (see Fig. 3.3)

Ui+ — Ui U — Ui—1
ullm/z = -__h -3 u,‘i—1/2 = _h - (3.44)

- W2 — W2

and u', ;

(3.45)

so that u"[, = #(u;wl - 2u; + u,-_l) (346)
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Young's modulus £

4 Cross-sectional area A
7
Z
g»——x — B — — —— — —— — =R
7]
7
Y/ %%%7797777%777%777%777%,
Z
/1
(a) Bar to be analyzed,
fB(x) = ax
h2 h |
i-1 i i+1
—.— — — - —® -
i-1 i+]
| |
I h I h 1

{b) Finite difference stations i—1,/, i+ 1
(locations i- 1, i + 1 are not stations)

(
+ n-1 n n+1
—_——_— e - — — —— — ——

A}

h ) h
(c) Fictitious finite difference station n + 1 outside bar

Figure 3.3 Finite difference analysis of a bar

The relation in (3.46) is called the central difference approximation. If we substitute (3.46)
into (3.41), we obtain

EA
T(—um + 2u; — U) = ff}h (3.47)

where f7 is the load f?(x) at station i and f?h can be thought of as the total load applied at
that finite difference station.

Assume now that we use a total of n + 1 finite difference stations on the bar, with
station { = O at the fixed end and station i = n at the other end. Then the boundary
conditions are

up = 0 (3.48)

Un+1 — Un—1
FA——— =R 3.49
and 5k (3.49)
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where we have introduced the fictitious station n» + 1 outside the bar [see Fig. 3.3(c)],
merely to impose the boundary condition (3.43).

For the finite difference solution we apply (3.47) at all stations i = 1, .. ., nand use
the boundary conditions (3.48) and (3.49) to obtain

2 -1 M ow] [ R, ]
-1 2 -1 Uz Ry
-1 2 -1 Us Rs
EA . o : (3.50)
h . . .
’_1 2 _1 Up—1 Rn-l
| -1 Y[ ] | R
where Ri = fPh,i=1,...,n—1,and R, = ff h/2 + R.

We note that the equations in (3.50) are identical to the equations that would be
obtained using a series of n spring elements, each of stiffness EA/h . The loads at the nodes
corresponding to £#(x) would be obtained by using the distributed load value at node i and
multiplying that value by the contributing length (4 for the interior nodes and /2 for the
end node.)

The same coefficient matrix is also obtained if we use the Ritz method with the
variational formulation of the mathematical model and specific Ritz functions. The varia-
tional indicator is (see Example 3.19)

1 (* *
n= Ef EA(W')* dx — f uf® dx — Rutle-s (3.51)
0 (]

and the specific Ritz functions are depicted in Fig. 3.4. While the same coefficient matrix

is obtained, the load vector is different unless the loading is constant along the length of the
bar.

Typical Ritz “hat” function

(1—%) uj for0<¢é<h

u(d =

(1+-i—> u; for-h<é<0

Figure 3.4 Typical Ritz function or Galerkin basis function used in analysis of bar problem
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The same equations as in the Ritz solution are of course also obtained using the
Galerkin method given in Section 3.3.4 (i.e., the principle of virtual work) with the basis
functions in Fig. 3.4.

The preceding discussion indicates that the finite difference method can also be used
to generate stiffness matrices, and that in some cases the resulting equations obtained in a
Ritz analysis and in a finite difference solution are identical or almost identical.

Table 3.1 summarizes some widely used finite difference approximations, also called
finite difference stencils or molecules. Let us demonstrate the use of these stencils in two
examples.

TABLE 3.1 Finite difference approximations for various differentiations

Finite difference
Differentiation approximation Molecules

dw Wi+1 — Wi
, 2h

Wi = 2w + winy
Lol waTIitwn ®

O
d3 ,'+_2,~ +2,~..— §—
_dx_v;'li Wis2 W+12h3W1 Wi—2 Q e 9 °
& 20

Wirz — 4w + 6w; — 4w + wis
| -

° h
Vol —4wi; + Wi+ Wi + owin +owog o Q‘ G

h2

Véw|i) [20wi; — 8(Wis1; + Wioy;
+ wije1 + wijo) + 2(Wis e
+ Wirje1 + Wicrjo1 + Wi -1)

+ Wiva; + Wica; + Wijea
wij—2)/h*

Uniform spacing h; error in each case is o(h2). Point { or (i, j) is being considered; and i = - - - denotes points
in the x-direction; j = - - - denotes points in the y-direction.
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EXAMPLE 3.27: Consider the simply supported beam in Fig. E3.27. Use conventional finite
differencing to establish the system equilibrium equations.

The finite difference grid used for the beam analysis is shown in the figure. In the
conventional finite difference analysis the differential equation of equilibrium and the geometric
and natural boundary conditions are considered; i.e., we approximate by finite differences at
each interior station,

d*w
B~ @

and use the conditions that w = QO and w”" = Qatx = 0and x = L.

Flexural
R, rigidity E/

i 1/
1 % ..

. s

Figure E3.27 Finite difference stations for simply supported beam
Using central differencing, (a) is approximated at station i by
El
m{wi-z — 4wy + 6w — 4wy + W1+2} =R (b)

where R; = ¢;L/S and is the concentrated load applied at station i. The condition that w” is zero
at station i is approximated using

Wiy — 2W1 + Wiv = 0 (C)

Applying (b) at each finite difference station, i = 1, 2, 3, 4, and using condition (c) at the
support points, we obtain the system of equations

S -4 1 0 w, R,

125E11 -4 6 -4 1{|w,|_|&
L 1 -4 6 —-4|lw ]| |R
0 1 -4 5§ wy R,

where the coefficient matrix of the displacement vector can be regarded as a stiffness matrix.

EXAMPLE 3.28: Consider the plate shown in Fig. E3.28.

1. Calculate the center point transverse deflection when the plate is uniformly loaded under
static conditions with the distributed load p per unit area. Use only one finite difference
station in the interior of the plate.

2, If the load p is applied dynamically, i.e., p = p(f), establish an equation of motion
governing the behavior of the plate.
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|
L
Transverse losd /} I

p per unit erea

! lwi __w ws For Table 3.1:
l L wiE Wy
Flexural rigidity D l I wo = W q
Mass per unit area m | w3 W3,

Figure E3.28 Simply supported plate

The governing differential equation of the plate is (see, for example, S. Timoshenko and
S: Woinowsky-Krieger [A])

Viw =

Tl=

where w is the transverse displacement. The boundary conditions are that on each edge of the
plate the transverse displacement and the moment across the edge are zero.

We use the finite difference stencil for V*w given in Table 3.1, with the center point of the
molecule placed at the center of the plate. The displacements corresponding to the coefficients
—8 and +2 are zero, and the displacements corresponding to the coefficients +1 are expressed
in terms of the center displacement. For example, the zero moment condition gives (refer to

Fig. E3.28)
w, — 2W2 + w3 = 0

and because w, = 0, w3 = —w,

Therefore, the governing finite difference equation is

_p(LY

. 16D _ _ (LY
and we obtain [(_I:/—Z_)E] wi = R; R = p( 2)

Note that with this relation we in essence represent the plate by a single spring of stiffness
k = 64D/L? and the total load acting on the spring is given by R. The deflection w, thus
calculated is only about 4 percent different from the analytically calculated “exact” value.
For the dynamic analysis, we use d’ Alembert’s principle and subtract from the externally
applied load R the inertia load Mw,, where M represents a mass in some sense equivalent to the
distributed mass of the plate
L 2
u=n(3)

Hence the dynamic equilibrium equation is

L? D
mz~w1 + _LTwl =R
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In these two examples and in the analysis of the bar in Fig. 3.2, the differential
equations of equilibrium have been approximated by finite differences. When the differen-
tial equations of equilibrium are used to solve a mathematical model, it is necessary to
approximate by finite differences and impose on the coefficient matrix both the essential
and the natural boundary conditions. In the analysis of the beam and the plate considered
in Examples 3.27 and 3.28, these boundary conditions could easily be imposed (the zero
displacements on the boundaries are the essential boundary conditions and the zero mo-
ment conditions across the boundaries are the natural boundary conditions). However, for
complex geometries the imposition of the natural boundary conditions can be difficult to
achieve since the topology of the finite difference mesh restricts the form of differencing that
can be carried out, and it may be difficult to obtain a symmetric coefficient matrix in a
rigorous manner (see A. Ghali and K. J. Bathe [A]).

The difficulties associated with the use of the differential formulations have given
impetus to the development of finite difference analysis procedures based on the principle
of minimum total potential energy, referred to as the finite difference energy method (see,
for example, D. Bushnell, B. O. Almroth, and F. Brogan [A}). In this scheme the displace-
ment derivatives in the total potential energy, I1, of the system are approximated by finite
differences, and the minimum condition of II is used to calculate the unknown displace-
ments at the finite difference stations. Since the variational formulation of the problem
under consideration is employed, only the essential (geometric) boundary conditions must
be satisfied in the differencing. Furthermore, a symmetric coefficient matrix is always
obtained.

As might well be expected, the finite difference energy method is very closely related
to the Ritz method, and in some cases the same algebraic equations are generated.

An advantage of the finite difference energy method lies in the effectiveness with
which the coefficient matrix of the algebraic equations can be generated. This effectiveness
is due to the simple scheme of energy integration employed. However, the Galerkin method
implemented in the form of the finite element procedures discussed in the forthcoming
chapters is a much more general and powerful technique, and this of course is the reason
for the success of the finite element method.

It is instructive to examine the use of the finite difference energy method in some
examples.

EXAMPLE 3.29: Consider the cantilever beam in Fig. E3.29. Evaluate the tip deflection using
the conventional finite difference method and the finite difference energy method.

Finite difference R

2 stations * FlezuralEl
rigidity

; / \ / gidty =

e e s

. t. f. . t. 1

wq w2 w3 wy L/a wg We

L

Figure E3.29 Finite difference stations on cantilever beam
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The finite difference mesh used is shown in the figure. Using the conventional finite
difference procedure and central differencing as in Example 3.27, we obtain the equilibrium
equations

7 —4 1 0f w2
64EI|—-4 6 —4 1| |ws
L? 1 -4 § =2f|ws
0 1 -2 1 Ws

(@

o OO

It may be noted that in addition to the equations employed in Example 3.27 the conditions
w' = 0 at the fixed end and w"” = 0 at the free end are also used. For w' and w" equal to zero
at station i, we employ, respectively,

Wit — Wi-g = 0
Wira = 2Wiy + 2wicp — Wiz = 0
Using the finite difference energy method, the total potential energy II is given as
L
El
II = ——f [W"(x)]? dx — Rw
2 o x = }L

To evaluate the integral we need to approximate w” (x). Using central differencing, we obtain for
station i,

”

w; (W,’+1 - 2W,' + W,'—l) (b)

-1
(L/4y

An approximate solution can now be obtained by evaluating II at the finite difference stations
using (b) and replacing the integral by a summation process; i.e., we use the approximation

n=%n. +%(H2+H3+H4) +l—;H5—Rw4 ©
1 Wi-1
1 El
where I, = E[WH w;, wial =2 m[l -2 1]} w
1 Wit)

Therefore, we can write, in analogy with the finite element analysis procedures (see Section 4.2),
IT; = 3U'B/C,B;U

where B; is a generalized strain-displacement transformation matrix, C; is the stress-strain
matrix, and U is a vector listing all nodal point displacements. Using the direct stiffness method
to calculate the total potential energy as given in (c) and employing the condition that the total
potential energy is stationary (i.e., 8II = 0), we obtain the equilibrium equations

7 —4 1 Wy 0
- 6 —4 1 w3 0
64El
| 1 -4 55 =3 05flw|=|R @
1 -3 3 -1 ws 0
05 -1 0.5]| we 0

where the condition of zero slope at the fixed end has already been used.
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The close similarity between the equilibrium equations in (a) and (d) should be noted.
Indeed, if we eliminate ws from the equations in (d), we obtain the equations in (a). Hence, using
the finite difference energy method and the conventional finite difference method, we obtain in
this case the same equilibrium equations.

As an example, let R = 1, EI = 103 and L = 10. Then we obtain, using the equations
in (a) or (d),
0.023437
0.078125
0.14843
0.21875

The exact answer for the tip deflection is ws = 0.2109375. Hence the finite difference analysis
gives a good approximate solution.

EXAMPLE 3.30: The rod shown in Fig. E3.30 is subjected to a heat flux input of ¢° at its right

end and a constant temperature 6, at its left end and is in steady-state conditions. The variational
indicator is

1 (" (ae )2
II=- K—] Adx — N A, 6 .
2 J;) ox q LUL ( )
2 L .
Alx)=Ag {1+ X —~— = g
( L) "////////////// L s
@ b0 x — Ax) e
TTIITT7777 p—
Section BB B//// Y7777 777777777,

Insulated around
circumference

*%_.{

8o 61 67 63 6,

g% = prescribed heat flow
input per unitarea at x=L

k = conductivity (constant)

Figure E3.30 Rod in heat transfer condition; finite difference stations used

Use the finite difference method to obtain an approximate solution for the temperature distribu-
tion.

Let us use five equally spaced finite difference stations as shown in Fig. E3.30. The finite
difference approximation of the integral in (a) is then

L
= Z{Hl/z + Iy + ILspp + T} — g®AL6,

oo st o o]



138 Some Basic Concepts of Engineering Analysis Chap. 3

and the values Il5,, ITs/,, and I1, ; are similarly evaluated. Calculating I1, invoking 6I1 = 0, and
imposing the boundary condition that 6, is known, we thus obtain

202 —121 ) %Mo%
kAo |—121 290 —169 6| _ 0
16L -169 394 -225|l6| | o
—225 2251 16, 4A0q"
Now assume that §, = 0. Then the solution is
6, 0.79
6] _|1.32|Lg°
6| |10k
0, 1.98
which compares as follows with the analytical solution
6, i
6 _ |3’
0, 21 k
0, analytical 2

3.3.6 Exercises

3.15. Establish the differential equation of equilibrium of the problem shown and the (geometric and
force) boundary conditions. Determine whether the operator L., of the problem is symmetric and
positive definite and prove your answer.

| x A(x) = Ag(2 - x/L}
Ay
7 k
e R
| I
| L g
Young's modulus E Rod with varying

cross-sectional area

3.16. Consider the cantilever beam shown, which is subjected to a moment M at its tip. Determine the
variational indicator IT and state the essential boundary conditions. Invoke the stationarity of Il
by using (3.7b) and by using the fact that variations and differentiations are performed using the
same rules. Then extract the differential equation of equilibrium and the natural boundary
conditions. Determine whether the operator L,,, is symmetric and positive definite and prove your
answer.
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Flexural stiffness E/

AN
&

3.17. Consider the heat transfer problem in Example 3.30. Invoke the stationarity of the given varia-
tional indicator by using (3.7b) and by using the fact that variations and differentiations are
performed using the same rules. Establish the governing differential equation of equilibrium and
all boundary conditions. Determine whether the operator L,,, is symmetric and positive definite
and prove your answer.

3.18. Consider the prestressed cable shown in the figure. The variational indicator is

1 (* (dw) t1
M=={ T|— + | = 2dx ~
5 J:; (dx) dx J; 2k(w) dx — Pw,
where w is the transverse displacement and w. is the transverse displacement at x = L. Establish

the differential equation of equilibrium and state all boundary conditions. Determine whether the
operator L., is symmetric and positive definite and prove your answer.

Constant tension T

%~ ~7 L i Frictionless
% roller

Cable on distributed vertical
springs of stiffness k/unit length of cable

—p-- )

AAAA
Yvvy
AAAA
ey
AAAA
vy
AAAA
Yvyy

PP77777 7777777777777 7777777777777777777

3.19. Consider the prestressed cable in Exercise 3.18.

(a) Establish a suitable trial function that can be employed in the analysis of the cable using the
classical Galerkin and least squares methods. Try w(x) = ao + a;x + a,x? and modify the
function as necessary.

(b) Establish the governing equations of the system for the selected trial function using the
classical Galerkin and least squares methods.

3.20. Consider the prestressed cable in Exercise 3.18. Establish the governing equations using the Ritz
method with the trial function w(x) = ao + aix + a,x? (i.e., a suitable modification theoreof).
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3.21. Use the Ritz method to calculate the linearized buckling load of the column shown. Assume that
w = cx?, where c is the unknown Ritz parameter.

i

wix)
Elfx) = Elp{2 - x/L)

3.22. Consider the structure shown.
(a) Use the Ritz method to establish the governing equations for the bending response. Use the
following functions: (i) w = a;x? and (ii) w = b)[1 — cos(mx/2L)).
(b) WithEl, = 100,k = 2,L = 1 estimate the critical load of the column using a Ritz analysis.

k = spring stiffness per unit length of beam

Ellx) = Elp(1 - x/2L)

W///W’V///////”IK//////A

3.23. Consider the slab shown for a heat transfer analysis. The variational indicator for this analysis is

L L
1 [do\?
n = - —_— — B
J:; 2k<dx) dx J; 6q” dx
State the essential and natural boundary conditions. Then perform a Ritz analysis of the problem
using two unknown parameters.
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w1

Prescribed temperature

Infinitely long slab
8 = 20° y ond

in y- and z-directions

Zero heat flux

Inside Outside
ky = conductivity of inner part of slab = 20
k; = conductivity of outer part of slab = 40

q® = heat generated per unit volume in total slab = 100

——

-]

e

L=10

3.24. The prestressed cable shown is to be analyzed. The governing differential equation of equilibrium
is
9w 3w

axr M pe)

with the boundary conditions
w|x=0 = W|x=l_ =0

and the initial conditions
w(x, 0) = 0; %L:(x, 0) =0

(a) Use the conventional finite difference method to approximate the governing differential
equation of equilibrium and thus establish equations governing the response of the cable.

(b) Use the finite difference energy method to establish equations governing the response of the
cable.

(c) Use the principle of virtual work to establish equations governing the response of the cable.

When using the finite difference methods, employ two internal finite difference stations. To

employ the principle of virtual work, use the two basis functions shown.

Uniformly distributed

loading p(t)
a>i Y ) i<E
l wix) \
L L J Constant tension T

| Mass/unitlength m
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\

I/
a{\ R o \}? *«Lls ———1/3 —><—L/3——l
1 2 7

o

Finite difference stations Basis functions for use of
principle of virtual work

3.25. The disk shown is to be analyzed for the temperature distribution. Determine the variational
indicator of the problem and obtain an approximate solution using the Ritz method with the basis
functions shown in Fig. 3.4. Use two unknown temperatures. Compare your results with the exact
analytical solution.

T

g°= 100 Btu/(hr-in?) {prescribed heat flux)
8.,= 70°F (prescribed temperature)

< rp=1.0in
n=3.0in
k = 120 Btu/(hr « in « °F)
h = 0.1 in (thickness of disk)

The top and bottom faces
of the disk are insulated

3.26. Consider the beam analysis problem shown.
(a) Use four finite difference stations on the beam with the differential formulation to establish
equations governing the response of the beam.
(b) Use four finite difference stations on the beam with the variational formulation to establish
equations governing the response of the beam.
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p = load/unit length

92/
T T T T}
) 7

-
Flexural stiffness E/ S Spring stiffness k

AAAA

T,

o

3.27. Use the finite difference energy method with only two unknown temperature values to solve the
problem in Exercise 3.23.

3.28. Use the finite difference energy method with only two unknown temperature values to solve the
problem in Exercise 3.25.

3.29. The computer program STAP (see Chapter 12) has been written for the analysis of truss struc-
tures. However, by using analogies involving variables and equations, the program can also be
employed in the analysis of pressure and flow distributions in pipe networks, current distributions
in dc networks, and in heat transfer analyses. Use the program STAP to solve the analysis
problems in Examples 3.1 to 3.4.

3.30. Use a computer program to solve the problems in Examples 3.1 to 3.4.

3.4 IMPOSITION OF CONSTRAINTS

The analysis of an engineering problem frequently requires that a specific constraint be
imposed on certain solution variables. These constraints may need to be imposed on some
continuous solution parameters or on some discrete variables and may consist of certain
continuity requirements, the imposition of specified values for the solution variables, or
conditions to be satisfied between certain solution variables. Two widely used procedures
are available, namely, the Lagrange multiplier method and the penalty method (see, for
example, D. P. Bertsekas [A]). Applications of these techniques are given in Sections 4.2.2,
4.4.2,44.3,4.5,5.4,6.7.2, and 7.4. Both the Lagrange multiplier and the penalty methods
operate on the variational or weighted residual formulations of the problem to be solved.

3.4.1 An Introduction to Lagrange Multiplier and Penalty
Methods

As a brief introduction to Lagrange multiplier and penalty methods, consider the variational
formulation of a discrete structural model for a steady-state analysis,

Il = JU’KU - U'R (3.52)

. .. I1
with the conditions gﬁ =0 for all i (3.53)
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and assume that we want to impose the displacement at the degree of freedom U; with

U= U} (3.54)
In the Lagrange multiplier method we amend the right-hand side of (3.52) to obtain
IT* = JU'KU — UR + A(U, — U¥) (3.55)
where A is an additienal variable, and invoke 811} = 0, which gives
SUKU — 8UR + ASU, + 8A(U: — U¥) =0 (3.56)

Since 6U and 6A are arbitrary, we obtain

545 (3]

where e; is a vector with all entries equal to zero except its ith entry, which is equal to one.
Hence the equilibrium equations without a constraint are amended with an additional
equation that embodies the constraint condition.

In the penalty method we also amend the right-hand side of (3.52) but without
introducing an additional variable. Now we use

= = JUKU - UR + S, - vpp (3.58)

in which a is a constant of relatively large magnitude, a > max (k;). The condition
S8IT** = 0 now yields

SUTKU —~ 8U'R + a(U; — U¥) 8U; = 0 (3.59)
and K + aee])U =R + alU’e (3.60)

Hence, using this technique, a large value is added to the ith diagonal element of K and a
corresponding force is added so that the required displacement U; is approximately equal
to U* This is a general technique that has been used extensively to impose specified
displacements or other variables. The method is effective because no additional equation is
required, and the bandwidth of the coefficient matrix is preserved (see Section 4.2.2).
We demonstrate the Lagrange multiplier method and penalty procedure in the following
example.

EXAMPLE 3.31: Use the Lagrange multiplier method and penalty procedure to analyze the
simple spring system shown in Fig. E3.31 with the imposed displacement U, = 1/k.
The governing equilibrium equations without the imposed displacement U, are

[—2: _:] [g] - [:] (a)

PN

U'll R‘l U2, R2

Figure E3.31 A simple spring system
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The exact solution is obtained by using the relation U> = 1/k and solving from the first
equation of (a) for U,

1+ R,

= b
U, 2k ®)
1+R
Hence we also have R,=1- 3 -
which is the force required at the U, degree of freedom to impose U, = 1/k.
Using the Lagrange multiplier method, the governing equations are
2k -k O||U R,
-k k 1]jU|=]0
11, ©
0 A -
1 0 p
1 + Rl l + Rl
. = . = -] +
and we obtain U TR A 1 2

Hence the solution in (b) is obtained, and A is equal to minus the force that must be applied at
the degree of freedom U, in order to impose the displacement U, = 1/k. We may note that with
this value of A the first two equations in (¢) reduce to the equations in (a).

Using the penalty method, we obtain

2k —k Uy R,
-k k+a){|U]=

IR

The solution now depends on «, and we obtain

_ . _ LR + 10 _R +20
for a« = 10k: U, ——_——2116 B 2 —Zlk
_ ) _ 101R, + 100 _ R +200
for « = 100k: U, = ok’ U, 201k
_ i _ 1001R, + 1000 _ R, + 2000
and for « = 1000%: U = 2001k 5 Uz 2001k

In practice, the accuracy obtained using e = 1000k is usually sufficient.

This example gives only a very elementary demonstration of the use of the Lagrange
multiplier method and the penalty procedure. Let us now briefly state some more general
equations. Assume that we want to impose onto the solution the m linearly independent
discrete constraints BU = V where B is a matrix of order m X n. Then in the Lagrange
multiplier method we use

II*(U, \) = -;—UTKU — UR + N(BU - V) (3.61)
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where A is a vector of m Lagrange multipliers. Invoking 81I* = 0 we now obtain

[g l:)] [2] - [5] (3.62)

In the penalty method we use
1

H*;*\CU) = 3

U'KU - U'R + i;(BU — V)'(BU — V) (3.63)

and invoking 8I1** = O we obtain
(K + aB™B)U = R + oB"V (3.64)

Of course, (3.57) and (3.60) are special cases of (3.62) and (3.64).

The above relations are written for discrete systems. When a continuous system is
considered, the usual variational indicator I1 (see, for example, Examples 3.18 to 3.20) is
amended in the Lagrange multiplier method with integral(s) of the continuous constraint(s)
times the Lagrange multiplier(s) and in the penalty method with integral(s) of the penalty
factor(s) times the square of the constraint(s). If the continuous variables are then expressed
through trial functions or finite difference expressions, relations of the form (3.62) and
(3.64) are obtained (see Section 4.4).

Although the above introduction to the Lagrange multiplier method and penalty
procedure is brief, some basic observations can be made that are quite generally applicable.
First, we observe that in the Lagrange multiplier method the diagonal elements in the
coefficient matrix corresponding to the Lagrange multipliers are zero. Hence for the solu-
tion it is effective to arrange the equations as given in (3.62). Considering the equilibrium
equations with the Lagrange multipliers, we also find that these multipliers have the same
units as the forcing functions; for example, in (3.57) the Lagrange multiplier is a force.

Using the penalty method, an important consideration is the choice of an appropriate
penalty number. In the analysis leading to (3.64) the penalty number « is explicitly specified
(such as in Example 3.31), and this is frequently the case (see Section 4.2.2). However, in
other analyses, the penalty number is defined by the problem itself using a specific formu-
lation (see Section 5.4.1). The difficulty with the use of a very high penalty number lies in
that the coefficient matrix can become ill-conditioned when the off-diagonal elements are
multiplied by a large number. If the off-diagonal elements are affected by the penalty
number, it is necessary to use enough digits in the computer arithmetical operations to
ensure an accurate solution of the problem (see Section 8.2.6).

Finally, we should note that the penalty and Lagrange multiplier methods are quite
closely related (see Exercise 3.35) and that the basic ideas of imposing the constraints can
also be combined as is done in the augmented Lagrange multiplier method (see M. Fortin
and R. Glowinski [A] and Exercise 3.36).

3.4.2 Exercises
3.31. Consider the system of equations

-

It
L —
|
—
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3.32.

3.33,

3.34.

3.35.

3.36.

Use the Lagrange multiplier method and the penalty method to impose the condition U, = 0.
Solve the equations and interpret the solution.

Consider the system of carts in Example 3.1 withk; = k, R, = 1, R, = 0, R; = 1. Develop the
governing equilibrium equations, imposing the condition U, = Us.

(a) Use the Lagrange multiplier method.

(b) Use the penalty method with an appropriate penalty factor.

In each case solve for the displacements and the constraining force.

Consider the heat transfer problem in Example 3.2 with k = 1 and 6, = 10, 6, = 20. Impose
the condition that 6; = 46, and physically interpret the solution. Use the Lagrange multiplier
method and then the penalty method with a reasonable penalty parameter.

Consider the fluid flow in the hydraulic network in Example 3.3. Develop the governing equations
for use of the Lagrange multiplier method to impose the condition pc = 2pp. Solve the equations
and interpret the solution.

Repeat the solution using the penalty method with an appropriate penalty factor.
Consider the problem KU = R with the m linearly independent constraints BU = V (see (3.61)
and (3.62)). Show that the stationarity of the following variational indicator gives the equations
of the penalty method (3.64),

~ 1 ATA

IT**(U, A) = EU’KU - UR + AT(BU - V) — S

where N is a vector of the m Lagrange multipliers and « is the penalty parameter, a > 0.

Evaluate the Lagrange multipliers in general to be A = a(BU — V), and show that for the

specific case considered in (3.60) A = a(U; — U}).

In the auemented I.agraneian methnd the following functional is used for the problem stated in
Exercise 3.35:

N 1
f*(U, M) = -U'KU - U'R + %(BU — V)T(BU — V) + NT(BU — V); @ = 0

(a) Invoke the stationarity of [1* and obtain the governing equations.

(b) Use the augmented Lagrangian method to solve the problem posed in Example 3.31 for
a = 0, k, and 1000k. Show that, actually, for any value of « the constraint is accurately
satisfied. (The augmented Lagrangian method is used in iterative solution procedures, in
which case using an efficient value for o can be important.)



Hl CHAPTER FOUR I

Formulation of the Finite
Element Method—
Linear Analysis in Solid
and Structural Mechanics

4.1 INTRODUCTION

A very important application area for finite element analysis is the linear analysis of solids
and structures. This is where the first practical finite element procedures were applied and
where the finite element method has obtained its primary impetus of development.

Today many types of linear analyses of structures can be performed in a routine
manner. Finite element discretization schemes are well established and are used in standard
computer programs. However, there are two areas in which effective finite elements have
been developed only recently, namely, the analysis of general plate and shell structures and
the solution of (almost) incompressible media.

The standard formulation for the finite element solution of solids is the displacement
method, which is widely used and effective except in these two areas of analysis. For the
analysis of plate and shell structures and the solution of incompressible solids, mixed
formulations are preferable.

In this chapter we introduce the displacement-based method of analysis in detail. The
principle of virtual work is the basic relationship used for the finite element formulation. We
first establish the governing finite element equations and then discuss the convergence
properties of the method. Since the displacement-based solution is not effective for certain
applications, we then introduce the use of mixed formulations in which not only the displace-
ments are employed as unknown variables. The use of a mixed method, however, requires
a careful selection of appropriate interpolations, and we address this issue in the last part of
the chapter.

Various displacement-based and mixed formulations have been presented in the liter-
ature, and as pointed out before, our aim is not to survey all these formulations. Instead, we

148
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will concentrate in this chapter on some important useful principles of formulating finite
elements. Some efficient applications of the principles discussed in this chapter are then
presented in Chapter 5.

4.2 FORMULATION OF THE DISPLACEMENT-BASED FINITE
ELEMENT METHOD

The displacement-based finite element method can be regarded as an extension of the
displacement method of analysis of beam and truss structures, and it is therefore valuable
to review this analysis process. The basic steps in the analysis of a beam and truss structure
using the displacement method are the following.

1. Idealize the total structure as an assemblage of beam and truss elements that are
interconnected at structural joints.

2, Identify the unknown joint displacements that completely define the displacement
response of the structural idealization.

3. Formulate force balance equations corresponding to the unknown joint displacements
and solve these equations.

4. With the beam and truss element end displacements known, calculate the internal
element stress distributions.

5. Interpret, based on the assumptions used, the displacements and stresses predicted by
the solution of the structural idealization.

In practical analysis and design the most important steps of the complete analysis are
the proper idealization of the actual problem, as performed in step 1, and the correct
interpretation of the results, as in step 5. Depending on the complexity of the actual system
to be analyzed, considerable knowledge of the characteristics of the system and its mechan-
ical behavior may be required in order to establish an appropriate idealization, as briefly
discussed in Chapter 1.

These analysis steps have already been demonstrated to some degree in Chapter 3, but
it is instructive to consider another more complex example.

EXAMPLE 4.1: The piping system shown in Fig. E4.1(a) must be able to carry a large trans-
verse load P applied accidentally to the flange connecting the small- and large-diameter pipes.
“Analyze this problem.”

The study of this problem may require a number of analyses in which the local kinematic
behavior of the pipe intersection is properly modeled, the nonlinear material and geometric
behaviors are taken into account, the characteristics of the applied load are modeled accurately,
and so on. In such a study, it is usually most expedient to start with a simple analysis in which
gross assumptions are made and then work toward a more refined model as the need arises (see
Section 6.8.1).
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t .

(a) Piping system

Element 2
Element 1 P J Element 3
Node 1 \ l Node 3
Y /N Su—— 8l _
SRS,
0.50L
Node 2
Node 4
~ L 1t 2L 1" " Element 4

|
(b} Elements and nodal points |

U
'L ! ,LU3 U5
U, Uy Us
Uy

(c) Global degrees of freedom of unrestraint structure

Figure E4.1 Piping system and idealization

Assume that in a first analysis we primarily want to calculate the transverse displacement
at the flange when the transverse load is applied slowly. In this case it is reasonable to model the
structure as an assemblage of beam, truss, and spring elements and perform a static analysis.

The model chosen is shown in Fig. E4.1(b). The structural idealization consists of two
beams, one truss, and a spring element. For the analysis of this idealization we first evaluate the
element stiffness matrices that correspond to the global structural degrees of freedom shown in
Fig. E4.1(c). For the beam, spring, and truss elements, respectively, we have in this case
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(12 _6 12 _6
L? L L? L
6
EI 4 - 2
K = I L ) Uy, Uz, Us, U,
symmetric 12 s
L? L
| 4|
12 _12 12 _12]
L2 L L? L
12
EI 16 - 8
K5 = — L H Us, Ua, Us, Us
L 12 12
symmetric = —
L? L
| 16
K§ = ks; U6
EA| 2 -2
K = Tl:__2 2], Us, U

where the subscript on K¢ indicates the element number, and the global degrees of freedom that
correspond to the element stiffnesses are written next to the matrices. It should be noted that in
this example the element matrices are independent of direction cosines since the centerlines of
the elements are aligned with the global axes. If the local axis of an element is not in the direction
of a global axis, the local element stiffness matrix must be transformed to obtain the required
global element stiffness matrix (see Example 4.10).

The stiffness matrix of the complete element assemblage is effectively obtained from the
stiffness matrices of the individual elements using the direct stiffness method (see Examples 3.1
and 4.11). In this procedure the structure stiffness matrix K is calculated by direct addition of
the element stiffness matrices; i.e.,

K= 2K

where the summation includes all elements. To perform the summation, each element matrix K
is written as a matrix K® of the same order as the stiffness matrix K, where all entries in K¢
are zero except those which correspond to an element degree of freedom. For example, for
element 4 we have

7<Degree of freedom
0 =

K =

| t’j
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Therefore, the stiffness matrix of the structure is

[12EI  6EI  12EI  6EI T
- ¢ r 0 0 0
4EI 6EI  2EI
T T I 0 0 0
24EI  6EI 12E1 12E1I
T I
20EI 12EI 8EI
K= T T T 0
i 12El 2AE  12EI  2AE
symmetric IE T Iz i3
16EI
—_— + .
Ttk 0
2AE
I L
and the equilibrium equations for the system are
KU =R

where U is a vector of the system global displacements and R is a vector of forces acting in the
direction of these displacements:

UT=[U|,...,U7]; RT=[R1,...,R7]

Before solving for the displacements of the structure, we need to impose the boundary
conditions that U; = 0 and U, = 0. This means that we may consider only five equations in five
unknown displacements; i.e., .

KU =R (a)
where K is obtained by eliminating from K the first and seventh rows and columns, and
OU'=[UV, Us U Us U} R =[0 -P 0 0 0]

The solution of (a) gives the structure displacements and therefore the element nodal point
displacements. The element nodal forces are obtained by multiplying the element stiffness
matrices K? by the element displacements. If the forces at any section of an element are required,
we can evaluate them from the element end forces by use of simple statics.

Considering the analysis results it should be recognized, however, that although the struc-
tural idealization in Fig. E4.1(b) was analyzed accurately, the displacements and stresses are only
a prediction of the response of the actual physical structure. Surely this prediction will be
accurate only if the model used was appropriate, and in practice a specific model is in general
adequate for predicting certain quantities but inadequate for predicting others. For instance, in
this analysis the required transverse displacement under the applied load is quite likely predicted
accurately using the idealization in Fig. E4.1(b) (provided the load is applied slowly enough, the
stresses are small enough not to cause yielding, and so on), but the stresses directly under the load
are probably predicted very inaccurately. Indeed, a different and more refined finite element
model would need to be used in order to accurately calculate the stresses (see Section 1.2).

This example demonstrates some important aspects of the displacement method of

analysis and the finite element method. As summarized previously, the basic process is that
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the complete structure is idealized as an assemblage of individual structural elements. The
element stiffness matrices corresponding to the global degrees of freedom of the structural
idealization are calculated, and the total stiffness matrix is formed by the addition of the
element stiffness matrices. The solution of the equilibrium equations of the assemblage of
elements yields the element displacements, which are then used to calculate the element
stresses. Finally, the element displacements and stresses must be interpreted as an estimate
of the actual structural behavior, taking into account that a truss and beam idealization was
solved.

Considering the analysis of truss and beam assemblages such as in Example 4.1,
originally these solutions were not called finite element analyses because there is one major
difference in these solutions when compared to a more general finite element analysis of a
two- or three-dimensional probl amely, in the analysis performed in Example 4.1 the
exact element stiffness matrices (*exact” within beam theory) could be calculated. The
stiffness properties of a beam element are physically the element end forces that correspond
to unit element end displacements. These forces can be evaluated by solving the differential
equations of equilibrium of the element when it is subjected to the appropriate boundary
conditions. Since by virtue of the solution of the differential equations of equilibrium, all
three requirements of an exact solution—namely, the stress equilibrium, the compatibility,
and the constitutive requirements—throughout each element are fulfilled, the exact ele-
ment internal displacements and stiffness matrices are calculated. In an alternative ap-
proach, these element end forces could also be evaluated by performing a variational
solution based on the Ritz method or Galerkin method, as discussed in Section 3.3.4. Such
solutions would give the exact element stiffness coefficients if the exact element internal
displacements (as calculated in the solution of the differential equations of equilibrium) are
used as trial functions (see Examples 3.22 and 4.8). However, approximate stiffness
coefficients are obtained if other trial functions (which may be more suitable in practice) are
employed.

When considering more general two- and three-dimensional finite element analyses,
we use the variational approach with trial functions that approximate the actual displace-
ments because we do not know the exact displacement functions as in the case of truss and
beam elements. The result is that the differential equations of equilibrium are not satisfied
in general, but this error is reduced as the finite element idealization of the structure or the
continuum is refined.

The general formulation of the displacement-based finite element method is based on
the use of the principle of virtual displacements which, as discussed in Section 3.3.4, is
equivalent to the use of the Galerkin method, and also equivalent to the use of the Ritz
method to minimize the total potential of the system.

4.2.1 General Derivation of Finite Element Equilibrium
Equations

In this section we first state the general elasticity problem to be solved. We then discuss the
principle of virtual displacements, which is used as the basis of our finite element solution,
and we derive the finite element equations. Next we elaborate on some important consider-
ations regarding the satisfaction of stress equilibrium, and finally we discuss some details
of the process of assemblage of element matrices.
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. Finite element m

Figured4.1 General three-dimensional body with an 8-node three- dimensional element

Problem Statement

Consider the equilibrium of a general three-dimensional body such as that shown in
Fig. 4.1. The body is located in the fixed (stationary) coordinate system X, ¥, Z. Considering
the body surface area, the body is supported on the area S, with prescribed displacements

U« and is subjected to surface tractions % (forces per unit surface area) on the surface area
Sp.!

' We may assume here, for simplicity, that all displacement components on S, are prescribed, in which case
S. U § = S and S, N Sy = 0. However, in practice, it may well be that at a surface point the displacement(s)
corresponding to some direction(s) is (are) imposed, while corresponding to the remaining direction(s) the force
component(s) is (are) prescribed. For example, a roller boundary condition on a three-dimensional body would
correspond to an imposed zero displacement only in the direction normal to the body surface, while tractions are
applied (which are frequently zero) in the remaining directions tangential to the body surface. In such cases, the
surface point would belong to S, and S;. However, later, in our finite element formulation, we shall first remove all
displacement constraints (support conditions) and assume that the reactions are known, and thus consider Sy = §
and S, = 0, and then, only after the derivation of the governing finite element equations, impose the displacement
constraints. Hence, the assumption that all displacement components on S, are prescribed may be used here for ease
of exposition and does not in any way restrict our formulation.
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In addition, the body is subjected to externally applied body forces £ (forces per unit
volume) and concentrated loads R¢ (where i denotes the point of load application). We
introduce the forces R¢ as separate quantities, although each such force could also be
considered surface tractions f% over a very small area (which would usually model the
actual physical situation more accurately). In general, the externally applied forces have
three components corresponding to the X, ¥, Z coordinate axes:

12 N Rix
r=1pl =y Re=([RG @.1)
12 ~ Rz

where we note that the components of £2 and £ vary as a function of X, Y, Z (and for £%
the specific X, Y, Z coordinates of S; are considered).

The displacements of the body from the unloaded configuration are measured in the
coordinate system X, Y, Z and are denoted by U, where

U
UX, Y,Z2)=|V @.2)
w

and U = U% on the surface area S,. The strains corresponding to U are

€ = [Gxx €y €zz Yxy Yrz ‘sz} (4-3)
where €xx = é-g; €y = i ; €2z = w
oX aY 0Z
(4.4)
=V VoW WU
Y  8X 9Z oYy’ X oz

The stresses corresponding to € are
7l = [Txx Tryy Tzz Txyr Tyz TZX} 4.5)
where T =Ce + 7 4.6)

In (4.6), C is the stress-strain material matrix and the vector 7/ denotes given initial stresses
[with components ordered as in (4.5)].

The analysis problem is now the following.
Given

the geometry of the body, the applied loads £, f2, RL, i = 1, 2, . . ., the support
conditions on S,, the material stress-strain law, and the initial stresses in the body.

Calculate

the displacements U of the body and the corresponding strains € and stresses 7.
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In the problem solution considered here, we assume linear analysis conditions, which
require that

The displacements be infinitesimally small so that (4.4) is valid and the equilibrium
of the body can be established (and is solved for) with respect to its unloaded
configuration.

The stress-strain material matrix can vary as a function of X, Y, Z but is constant
otherwise (e.g., C does not depend on the stress state).

We consider nonlinear analysis conditions in which one or more of these assumptions
are not satisfied in Chapters 6 and 7.

To calculate the response of the body, we could establish the governing differential
equations of equilibrium, which then would have to be solved subject to the boundary
conditions (see Section 3.3). However, closed-form analytical solutions are possible only
when relatively simple geometries are considered.

The Principle of Virtual Displacements

The basis of the displacement-based finite element solution is the principle of virtual
displacements (which we also call the principle of virtual work). This principle states that
the equilibrium of the body in Fig. 4.1 requires that for any compatible small® virtual
displacements (which are zero at and corresponding to the prescribed displacements)’
imposed on the body in its state of equilibrium, the total internal virtual work is equal to
the total external virtual work:

Internal virtual ' External virtual work R
work

f &T1dV = f UTr84v + f 05 £5ds + > U R
v I v »[ Sp T i , T (4.7)
I

Stresses in equilibrium with applied loads _
Virtual strains corresponding to virtual displacements U

where the U are the virtual displacements and the € are the corresponding virtual strains
(the overbar denoting virtual quantities).

The adjective “virtual” denotes that the virtual displacements (and corresponding
virtual strains) are not “real” displacements which the body actually undergoes as a conse-
quence of the loading on the body. Instead, the virtual displacements are totally independent

2We stipulate here that the virtual displacements be “small” because the virtual strains corresponding to
these displacements are calculated using the small strain measure (see Example 4.2). Actually, provided this small
strain measure is used, the virtual displacements can be of any magnitude and indeed we later on choose convenient
magnitudes for solution.

3We use the wording “at and corresponding to the prescribed displacements” to mean “at the points and
surfaces and corresponding to the components of displacements that are prescribed at those points and surfaces.”
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from the actual displacements and are used by the analyst in a thought experiment to
establish the integral equilibrium equation in (4.7).
Let us emphasize that in (4.7),

The stresses T are assumed to be known quantities and are the unique stresses* that
exactly balance the applied loads.

The virtual strains € are calculated by the differentiations given in (4.4) from the
assumed virtual displacements U.

The virtual displacements U must represent a continuous virtual displacement field (to
be able to evaluate €), with U equal to zero at and corresponding to the prescribed
displacements on S,; also, the components in U are simply the virtual displacements
U evaluated on the surface S.

All integrations are performed over the original volume and surface area of the body,
unaffected by the imposed virtual displacements.

To exemplify the use of the principle of virtual displacements, assume that we believe
(but are not sure) to have been given the exact solution displacement field of the body. This
given displacement field is continuous and satisfies the displacement boundary conditions
on S,. Then we can calculate € and 7 (corresponding to this displacement field). The vector
7 lists the correct stresses if and only if the equation (4.7) holds for any arbitrary virtual
displacements U that are continuous and zero at and corresponding to the prescribed
displacements on S,. In other words, if we can pick one virtual displacement field U for
which the relation in (4.7) is not satisfied, then this is proof that 7 is not the correct stress
vector (and hence the given displacement field is not the exact solution displacement field).

We derive and demonstrate the principle of virtual displacements in the following
examples.

EXAMPLE 4.2: Derive the principle of virtual displacements for the general three-
dimensional body in Fig. 4.1. )

To simplify the presentation we use indicial notation with the summation convention (see
Section 2.4), with x; denoting the ith coordinate axis (x, = X, x, = Y, x; = Z), u; denoting the
ith displacement component (u; = U, u, = V, u; = W), and a comma denoting differentiation.

The given displacement boundary conditions are u3« on S, and let us assume that we have
no concentrated surface loads, that is, all surface loads are contained in the components f.

The solution to the problem must satisfy the following differential equations (see, for
example, S. Timoshenko and J. N. Goodier [A}):

75+ ff =0  throughout the body (a)
with the natura] (force) boundary conditions
mn = f¥ onS; (b)

and the essential (displacement) boundary conditions
W = ui on S, ©)

where S = S, U S, S, N S = 0, and the n, are the components of the unit normal vector to the
surface S of the body.

“For a proof that these stresses are unique, see Section 4.3.4.
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Consider now any arbitrarily chosen continuous displacements %; satisfying

E,‘ =0 on Su (d)
Then . + O =0
and therefore, f(r;,-, i+ Hwdv=0 ©
v

We call the &; virtual displacements. Note that since the %; are arbitrary, () can be satisfied if (and
only if) the quantity in the parentheses vanishes. Hence (¢) is equivalent to (a).
Using the mathematical identity (r;&%),; = 7 ;@ + 7,%;, we obtain from (e),

f [yw)y — 7yl + ffwjdv =0
v

Next, using the identity [v (ryi),; dV = [s (ryit)n; dS, which follows from the divergence
theorem?® (see, for example, G. B. Thomas and R. L. Finney [A]), we have

f (— iy + fTa)dvV + f (ryu)n; dS = 0 ()

In light of (b) and (d), we obtain

f (—7fh; + f7) dV + f fYuyds =0 ®

S¢
Also, because of the symmetry of the stress tensor (r; = 7;), we have
Tty = T3 @y + w)] = 7€

and hence we obtain from (g) the required result, (4.7),

f 7€ dV = ff?EdV + f foruyds (h)
14 v 5

Note that in (h) we use the tensor notation for the strains; hence, the engineering shear strains
used in (4.7) are obtained by adding the appropriate tensor shear strain components, e.g.,
Yxy = &2 + &,. Also note that by using (b) [and (d)] in (f), we explicitly introduced the natural
boundary conditions into the principle of virtual displacements (h).

EXAMPLE 4.3: Consider the bar shown in Figure E4.3.

(a) Specialize the equation of the principle of virtual displacements (4.7) to this problem.
(b) Solve for the exact response of the mechanical model.

(¢) Show that for the exact displacement response the principle of virtual displacements is
satisfied with the displacement patterns (i) ¥ = ax and (ii) # = ax? where a is a constant.

(d) Assume that the stress solution is
F
Ao

Tex =

Nl

3 The divergence theorem states: Let F be a vector field in volume V; then

J‘Fi.idV=J‘F'l‘ldS
v s

where n is the unit outward normal on the surface S of V.
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A= Ag(2-x/L) l

X u

Y

Young's modulus £
T Force F

A

Al.-.

Figure E4.3 Bar subjected to concentrated load F

i.e., that 7., is the force F divided by the average cross-sectional area, and investigate
whether the principle of virtual displacements is satisfied for the displacement patterns
given in (c).

The principle of virtual displacements (4.7) specialized to this bar problem gives
L
du du
L dx dx dx =u

The governing differential equations are obtained using integration by parts (see Exam-

ple 3.19):
L L
_d du -
O—L udx(EAdx>dx—u

Since # |,=o = O and # is arbitrary otherwise:ve obtain from (b) (S;e Example 3.18 for the
arguments used),

F (a)

x=L

a4 2

dx F ()

x=L

d du
A gy _ . . . .
dx(E dx) 0 differential equation of equilibrium ©)
du -
EA o =F force or natural boundary condition (d)
x=L

Of course, in addition we have the displacement boundary condition u|,-o = 0. Integrating (c)
and using the boundary conditions, we obtain as the exact solution of the mathematical model,

“TEa, "\2 = x/L
Next, using (¢) and ¥ = ux and ¥ = ax? in equation (a), we obtain
L
F X
——— 2 —— —
jo aAo(2 _—y Ao( L) dx = aLF (f)
and
t F x
— S —_— — = 2
fo 2ax 2 = %D AO(Z L) dx = al*F ®

Equations (f) and (g) show that for the exact displacement /stress response the principle of virtual
displacements is satisfied with the assumed virtual displacements.
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Now let us employ the principle of virtual displacements with 7., = % (F/Ao) and use first
% = ax and then ¥ = ax2. We obtain with ¥ = ax,

L
2 F X
22 A -z = gLF
J:)a3 . 0(2 L)dx a

which shows that the principle of virtual displacements is satisfied with this virtual displacement
field. For # = ax?, we obtain

L
2 F x
J; 2aJC§XOA0(2 - i) dx # aL2F

and this equation shows that 7., = 3(F/Ao) is not the correct stress solution.

The principle of virtual displacements can be directly related to the principle that the

total potential IT of the system must be stationary (see Sections 3.3.2 and 3.3.4). We study
this relationship in the following example.

EXAMPLE 4.4: Show how for a linear elastic continuum the principle of virtual displacements
relates to the principle of stationarity of the total potential.

Assuming a linear elastic continnum with zero initial stresses, the total potential of the
body in Fig. 4.1 is

1 T T
) f €’Ce dV — f UTeE qv — f Ut ds — 2 U'RL @
2y v Sf i
where the notation was defined earlier, and we have
7= Ce

with C the stress-strain matrix of the material.
Invoking the stationarity of IT, i.e., evaluating 611 = 0 with respect to the displacements
(which now appear in the strains) and using the fact that C is symmetric, we obtain

f 8e’Ce dV = f SUTTE gV + f SUSES dS + X sU'RL (b)
v v Sf i

However, to evaluate 11 in (a) the displacements must satisfy the displacement boundary condi-
tions, Hence in (b) we consider any variations on the displacements but with zero values at and
corresponding to the displacement boundary conditions, and the corresponding variations in
strains. It follows that invoking the stationarity of 11 is equivalent to using the principle of virtual
displacements, and indeed we may write

o€ = §; U=T0; U = U, U =T
so that (b) reduces to (4.7).

It is important to realize that when the principle of virtual displacements (4.7) is

satisfied for all admissible virtual displacements with the stresses = “properly obtained”
from a continuous displacement field U that satisfies the displacement boundary conditions
on S, all three fundamental requirements of mechanics are fulfilled:

1. Equilibrium holds because the principle of virtual displacements is an expression of

equilibrium as shown in Example 4.2,
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2. Compatibility holds because the displacement field U is continuous and satisfies the
displacement boundary conditions.

3. The stress-strain law holds because the stresses T have been calculated using the
constitutive relationships from the strains € (which have been evaluated from the
displacements U). ;

So far we have assumed that the body being considered is properly supported, i.e., that
there are sufficient support conditions for a unique displacement solution. However, the
principle of virtual displacements also holds when all displacement supports are removed
and the correct reactions (then assumed known) are applied instead. In this case the surface
area Syon which known tractions are applied is equal to the complete surface area S of the
body (and S, is zero)®. We use this basic observation in developing the governing finite
element equations. That is, it is conceptually expedient to first not consider any displace-
ment boundary conditions, develop the governing finite element equations accordingly, and
then prior to solving these equations impose all displacement boundary conditions.

Finite Element Equations

Let us now derive the governing finite element equations. We first consider the response of
the general three-dimensional body shown in Fig. 4.1 and later specialize this general
formulation to specific problems (see Section 4.2.3).

In the finite element analysis we approximate the body in Fig. 4.1 as an assemblage
of discrete finite elements interconnected at nodal points on the element boundaries. The
displacements measured in a local coordinate system x, y, z (to be chosen conveniently)
within each element are assumed to be a function of the displacements at the N finite
element nodal points. Therefore, for element m we have

u"(x, y, 7) = H"(x,,2) U (4.8)

where H™ is the displacement interpolation matrix, the superscript m denotes element m,
and U is a vector of the three global displacement components U;, V;, and W; at all nodal
points, including those at the supports of the element assemblage; i.e., U is a vector of
dimension 3N,

U = [UviW, U:VaW, ... UnViWal (4.9)
We may note here that more generally, we write
U=, v U, ... U) (4.10)

where it is understood that U; may correspond to a displacement in any direction X, ¥, or
Z, or even in a direction not aligned with these coordinate axes (but aligned with the axes
of another local coordinate system), and may also signify a rotation when we consider
beams, plates, or shells (see Section 4.2.3). Since U includes the displacements (and rota-

$For this reason, and for ease of notation, we shall now mostly (i.e., until Section 4.4.2) no longer use the
superscripts Sy and S, but simply the superscript S on the surface tractions and displacements.
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tions) at the supports of the element assemblage, we need to impose, at a later time, the
known values of U prior to solving for the unknown nodal point displacements.

Figure 4.1 shows a typical finite element of the assemblage. This element has eight
nodal points, one at each of its corners, and can be thought of as a “brick” element. We
should imagine that the complete body is represented as an assemblage of such brick
elements put together so as to not leave any gaps between the element domains. We show
this element here merely as an example; in practice, elements of different geometries and
nodal points on faces and in the element interiors may be used.

The choice of element and the construction of the corresponding entries in H*” (which
depend on the element geometry, the number of element nodes/degrees of freedom, and
convergence requirements) constitute the basic steps of a finite element solution and are
discussed in detail later. .

Although all nodal point displacements are listed in U, it should be realized that for
a given element only the displacements at the nodes of the element affect the displacement
and strain distributions within the element.

With the assumption on the displacements in (4.8) we can now evaluate the corre-
sponding element strains,

€"(x, , 2) = B™(x, y, )0 (4.11)

where B™ is the strain-displacement matrix; the rows of B™ are obtained by appropriately
differentiating and combining rows of the matrix H*.

The purpose of defining the element displacements and strains in terms of the com-
plete array of finite element assemblage nodal point displacements may not be obvious now.
However, we will see that by proceeding in this way, the use of (4.8) and (4.11) in the
principle of virtual displacements will automatically lead to an effective assemblage process
of all element matrices into the governing structure matrices. This assemblage process is
referred to as the direct stiffness method.

The stresses in a finite element are related to the element strains and the element initial
stresses using

) = Cmem 4 lm) 4.12)

where C™ is the elasticity matrix of element m and 7/ are the given element initial
stresses. The material law specified in C*™ for each element can be that for an isotropic or
an anisotropic material and can vary from eclement to element.

Using the assumption on the displacements within each*finite element, as expressed in
(4.8), we can now derive equilibrium equations that correspond to the nodal point displace-
ments of the assemblage of finite elements. First, we rewrite (4.7) as a sum of integrations
over the volume and areas of all finite elements:

S| @mramgym =3[ geresm gym
m Jym) m Jvm
(4.13)
+ 2 TS gsm + 3 TR

.....
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where m = 1, 2, . .., k, where k = number of elements. and S{”, . .., S denotes the
element surfaces that are part of the body surface S. For elements totally surrounded by
other elements no such surfaces exist, whereas for elements on the surface of the body one
or more such element surfaces are included in the surface force integral. Note that we
assume in (4.13) that nodal points have been placed at the points where concentrated loads
are applied, although a concentrated load can of course also be included in the surface force
integrals.

It is important to note that since the integrations in (4.13) are performed over the
element volumes and surfaces, for efficiency we may use a different and any convenient
coordinate system for each element in the calculations. After all, for a given virtual displace-
ment field, the internal virtual work is a number, as is the external virtual work, and this
number can be evaluated by integrations in any coordinate system. Of course, it is assumed
that for each integral in (4.13) only a single coordinate system for all variables is employed;
e.g., U™ is defined in the same coordinate system as f?™. The use of different coordinate
systems is in essence the reason why each of the integrals can be evaluated very effectively
in general element assemblages.

The relations in (4.8) and (4.11) have been given for the unknown (real) element
displacements and strains. In our use of the principle of virtual displacements we employ
the same assumptions for the virtual displacements and strains

ux, y, 2) = H"(x, y, 2)U (4.14)

€™(x, y, 2) = B(x, , U (4.15)

In this way the element stiffness (and mass) matrices will be symmetric matrices.
If we now substitute into (4.13), we obtain

TJT[Z B™ICmB™ dV""’]ﬁ = I_‘JTHE HT £80m) dV"")}

m Jvim m Jvim

+ { HST S dS"")} (4.16)
m Jst, L sgm

{2 [ peree ava} + v
m vim)

where the surface displacement interpolation matrices H*™ are obtained from the displace-
ment interpolation matrices H™ in (4.8) by substituting the appropriate element surface
coordinates (see Examples 4.7 and 5.12) and R is a vector of concentrated loads applied
to the nodes of the element assemblage.

We should note that the ith component in Rc is the concentrated nodal force that
corresponds to the ith displacement component in U. In (4.16) the nodal point displacement
vectors U and U of the element assemblage are independent of element m and are therefore
taken out of the summation signs.

To obtain from (4.16) the equations for the unknown nodal point displacements, we
apply the principle of virtual displacements n times by imposing unit virtual displacements



164 Formulation of the Finite Element Method Chap. 4

in turn for all components of U. In the first application U = e),” in the second application
1n P 1C pp

A

U = e;, and so on, until in the nth application U = e,, so that the result is

KU = R @.17)

where we do not show the identity matrices I due to the virtual displacements on each side
of the equation and

R = RB + Rs - R] + Rc (4.18)

and, as we shall do from now on, we denote the unknown nodal point displacements as U;
ie., U=U.
The matrix K is the stiffness matrix of the element assemblage,

K= BOTCMBm gyim
m L Vim) | (4.19)

= K™

The load vector R includes the effect of the element body forces,

Ry =2 | HOTgam gym
m  Jyim i (420)

= RL"‘)

the effect of the element surface forces,

Rs = 2 HSMTESm) J§0m)
m Jsim,. s " 4.21)

I
= Rg"‘)

the effect of the element initial stresses,

R =2 | B™gm gym
m e | (4.22)
= Rs"‘)

and the nodal concentrated loads Rc.

7 For the definition of the vector e;, see the text following (2.7).



Sec. 4.2 Formulation of the Displacement-Based Finite Element Method 165

We note that the summation of the element volume integrals in (4.19) expresses the
direct addition of the element stiffness matrices K™ to obtain the stiffness matrix of the
total element assemblage. In the same way, the assemblage body force vector R; is calcu-
lated by directly adding the element body force vectors R§”; and Rs and R, are similarly
obtained. The process of assembling the element matrices by this direct addition is called
the direct stiffness method.

This elegant writing of the assemblage process hinges upon two main factors: first, the
dimensions of all matrices to be added are the same and, second, the element degrees of
freedom are equal to the global degrees of freedom. In practice of course only the nonzero
rows and columns of an element matrix K™ are calculated (corresponding to the actual
element nodal degrees of freedom), and then the assemblage is carried out using for each
element a connectivity array LM (see Example 4.11 and Chapter 12). Also, in practice, the
element stiffness matrix may first be calculated corresponding to element local degrees of
freedom not aligned with the global assemblage degrees of freedom, in which case a
transformation is necessary prior to the assemblage [see (4.41)].

Equation (4.17) is a statement of the static equilibrium of the element assemblage. In
these equilibrium considerations, the applied forces may vary with time, in which case the
displacements also vary with time and (4.17) is a statement of equilibrium for any specific
point in time. (In practice, the time-dependent application of loads can thus be used to
model multiple-load cases; see Example 4.5.) However, if in actuality the loads are applied
rapidly, measured on the natural frequencies of the system, inertia forces need to be
considered; i.e., a truly dynamic problem needs to be solved. Using d’ Alembert’s principle,
we can simply include the element inertia forces as part of the body forces. Assuming that
the element accelerations are approximated in the same way as the element displacements
in (4.8), the contribution from the total body forces to the load vector R is (with the X, ¥,
Z coordinate system stationary)

R; = 2 . HT[f50) — p(m)Hm)"j] avem (4.23)

where 2™ no longer includes inertia forces, U lists the nodal point accelerations (i.e., is the
second time derivative of U), and p™ is the mass density of element m. The equilibrium
equations are, in this case,

MU + KU=R (4.24)

where R and U are time-dependent. The matrix M is the mass matrix of the structure,

M=2X| pmH™H®" gy
m Jvm (4.25)

J
= M®™

In actually measured dynamic responses of structures it is observed that energy is
dissipated during vibration, which in vibration analysis is usually taken account of by
introducing velocity-dependent damping forces. Introducing the damping forces as addi-
tional contributions to the body forces, we obtain corresponding to (4.23),

Ry = > HT[f5m — peHAU — ™H™U] dVe™ (4.26)
m vim)
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In this case the vectors f*" no longer include inertia and velocity-dependent damping
forces, U is a vector of the nodal point velocities (i.e., the first time derivative of U), and
k™ is the damping property parameter of element m. The equilibrium equations are, in this
case,

MU + CU + KU =R 4.27)

where C is the damping matrix of the structure; i.e., formally,

C=2| K "HMTH™ Jym (4.28)
m J v |
= Cm

In practice it is difficult, if not impossible, to determine for general finite element
assemblages the element damping parameters, in particular because the damping properties
are frequency dependent. For this reason, the matrix C is in general not assembled from
element damping matrices but is constructed using the mass matrix and stiffness matrix of
the complete element assemblage together with experimental results on the amount of
damping. Some formulations used to construct physically significant damping matrices are
described in Section 9.3.3.

A complete analysis, therefore, consists of calculating the matrix K (and the matrices
M and C in a dynamic analysis) and the load vector R, solving for the response U from
(4.17) [or U, U, U from (4.24) or (4.27)], and then evaluating the stresses using (4.12). We
should emphasize that the stresses are simply obtained using (4.12)—hence only from the
initial stresses and element displacements—and that these values are not corrected for
externally applied element pressures or body forces, as is common practice in the analysis
of frame structures with beam elements (see Example 4.5 and, for example, S. H. Crandall,
N. C. Dahl, and T. J. Lardner [A]). In the analysis of beam structures, each element
represents a one-dimensional stress situation, and the stress correction due to distributed
loading is performed by simple equilibrium considerations. In static analysis, relatively long
beam elements can therefore be employed, resulting in the use of only a few elements (and
degrees of freedom) to represent a frame structure. However, a similar scheme would
require, in general two- and three-dimensional finite element analysis, the solution of
boundary value problems for the (large) element domains used, and the use of fine meshes
for an accurate prediction of the displacements and strains is more effective. With such fine
discretizations, the benefits of even correcting approximately the stress predictions for the
effects of distributed element loadings are in general small, although for specific situations
of course the use of a rational scheme can result in notable improvements.

To illustrate the above derivation of the finite element equilibrium equations, we
consider the following examples.

EXAMPLE 4.5: Establish the finite element equilibrium equations of the bar structure shown
in Fig. E4.5. The mathematical model to be used is discussed in Examples 3.17 and 3.22. Use
the two-node bar element idealization given and consider the following two cases:

1. Assume that the loads are applied very slowly when measured on the time constants
(natural periods) of the structure.

2. Assume that the loads are applied rapidly. The structure is initially at rest.
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In the formulation of the finite element equilibrium equations we employ the general
equations (4.8) to (4.24) but use that the only nonzero stress is the longitudinal stress in the bar.
Furthermore, considering the complete bar as an assemblage of 2 two-node bar elements corre-
sponds to assuming a linear displacement variation between the nodal points of each element.

The first step is to construct the matrices H™ and B™ for m = 1, 2. We recall that
although the displacement at the left end of the structure is zero, we first include the displacement
at that surface in the construction of the finite element equilibrium equations.

Corresponding to the displacement vector UT = [U;, U, Us], we have

® — _L> X ]
H [(1 100 100 0
[ 1 1
(1) — —_——
B | 100 100 0]

x x
@ = 1 -=) X
H _0 ( 80) 80]

[ 1 1
@ = - =
B _0 80 80]

The material property matrices are
C® = E; C?=E

where E is Young’s modulus for the material. For the volume integrations we need the
cross-sectional areas of the elements. We have

AV =1cmk; AP = (1 + 4i0>2 cm?

When the loads are applied very slowly, a static analysis is required in which the stiffness
matrix K and load vector R must be calculated. The body forces and loads are given in Fig. E4.5.
We therefore have

1] " 7
i :
100 80
1 11 x)z 1 [ 1 1]
= —_— - — + + =) |-— ——
K (I)E,[, 100[ 100 100 O]d" Efo (1 20) | "%0|1° "8 w0/¥
1
0] | 80,
g[ 110 sel® 0 0
or K=W0 -1 1 0 +?4_0- 0 1 -1
| 0 00 0 -1 1
[ 24 -24 0
- E -24 154 -13 (a)
240

0 -13 13
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and also,
x
1 - 100 0 )
_ 100 x % V1 -=|/1
Rp = {(1) J; 00 (1) dx + J; (1 + 4—()) . 80 (T(—)>dx}fz(t)
0 30
] 150
=3 186 | (1) (b
68
0
Re = 0 |A@) ©
100

To obtain the solution at a specific time ¢*, the vectors R and R must be evaluated correspond-
ing to t*, and the equation

KU |,=,* = RB|,=,: + RC|,=,4 (d)

yields the displacements at *. We should note that in this static analysis the displacements at time
t* depend only on the magnitude of the loads at that time and are independent of the loading
history.

Considering now the dynamic analysis, we also need to calculate the mass matrix. Using
the displacement interpolations and (4.25), we have

x
L
M=(1)pj X [(1 -——) — 0] dx
0 100 100 100
0
[ 0
80 x \? x x x
+pJ; (1+4—0>1—%[0 (1—8—0) %]dx
x
| %0
200 100 0
Hence M=‘—g 100 584 336
0 336 1024

Damping was not specified; thus, the equilibrium equations now to be solved are
MU(7) + KU() = Re(s) + Rc(r) ©

where the stiffness matrix K and load vectors Ry and R¢ have already been given in (a) to (c).
Using the initial conditions

U|r=o =0 fjl:=o =0 69

these dynamic equilibrium equations must be integrated from time 0 to time #* in order to obtain
the solution at time ¢* (see Chapter 9).
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To actually solve for the response of the structure in Fig. E4.5(a), we need to impose
U, = 0 for all time ¢. Hence, the equations (d) and (e) must be amended by this condition (see
Section 4.2.2). The solution of (d) and (€) then yields U.(r), Us(r), and the stresses are obtained
using

7 = C"B™U@);, m=1,2 @

These stresses will be discontinuous between the elements because constant element strains are
assumed. Of course, in this example, since the exact solution to the mathematical model can be
computed, stresses more accurate than those given by (g) could be evaluated within each
element.

In static analysis, this increase in accuracy could simply be achieved, as in beam theory,
by adding a stress correction for the distributed element loading to the values given in (g).
However, such a stress correction is not straightforward in general dynamic analysis (and in any
two- and three-dimensional practical analysis), and if a large number of elements is used to
represent the structure, the stresses using (g) are sufficiently accurate (see Section 4.3.6).

EXAMPLE 4.6: Consider the analysis of the cantilever plate shown in Fig. E4.6. To illustrate
the analysis technique, use the coarse finite element idealization given in the figure (in a practical
analysis more finite elements must be employed (see Section 4.3). Establish the matrices H?,
B, and C?,

The cantilever plate is acting in plane stress conditions. For an isotropic linear elastic
material the stress-strain matrix is defined using Young’s modulus E and Poisson’s ratio » (see
Table 4.3),

1 v 0
E v 1 0
@) =
¢ 1 -2 0 0 1—-v
2

The displacement transformation matrix H® of element 2 relates the element internal
displacements to the nodal point displacements,

@
[u(xv )’)] = H(Z)U (a)
o(x, y)
where U is a vector listing all nodal point displacements of the structure,
Ur=[U, U, Us Us ... Uy Us) (b)

(As mentioned previously, in this phase of analysis we are considering the structural model
without displacement boundary conditions.) In considering element 2, we recognize that only the
displacements at nodes 6, 3, 2, and 5 affect the displacements in the element. For computational
purposes it is convenient to use a convention to number the element nodal points and correspond-
ing element degrees of freedom as shown in Fig E4.6(c). In the same figure the global structure
degrees of freedom of the vector U in (b) are also given.

To derive the matrix H® in (a) we recognize that there are four nodal point displacements
each for expressing u(x, y) and v(x, y). Hence, we can assume that the local element displace-
ments % and v are given in the following form of polynomials in the local coordinate variables
x and y:

u(x,y) = ay + axx + azy + asxy

o(x,y) = B + Box + Bsy + Baxy ©
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(c) Typical two-dimensional four-node element defined in local coordinate system

Figure E4.6 Finite clement plane stress analysis

The unknown coefficients ai, . .

., PBs, which are also called the generalized coordinates, will

be expressed in terms of the unknown element nodal point displacements u;, . . ., us and

v1, . . . , 4. Defining

ﬁT = [u;

we can write (c) in matrix form:

Uz U3 Us é 1 U2 U3 04] (d)

Loy = o= ©
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_[® 0 ] -
where ‘1)—-[0 ol b=[1 x y x]
and o"=[a; av as a, i B B B PBa
Equation (¢) must hold for all nodal points of the element; therfore, using (d), we have
i = Aa )
A
in which A= [0‘ 21]
1 1 1 1
1 -1 1 -1
and ATl o a1
1 1 -1 -1

Solving from (f) for & and substituting into (), we obtain
H = ®A™! (8)

where the fact that no superscript is used on H indicates that the displacement interpolation
matrix is defined corresponding to the element nodal point displacements in (d),

_ 1[(1 +x00+y I-01+y I-2090-y 1+x001-y)

4 0 0 0 0 b
0 0 0 0 ] b

I+x00+y A-x10+y A-x1-y T+x1-y

The displacement functions in H could also have been established by inspection. Let H;
be the (i, j)th element of H; then Hy; corresponds to a function that varies linearly in x and y [as
required in ()}, is unity atx = 1,y = 1, and is zero at the other three element nodes. We discuss
the construction of the displacement functions in H based on these thoughts in Section 5.2.

With H given in (h) we have

H

Us U3 /7] V2 Uy U4
U Uz 4 Us Usi U U} U Us | Us Uo }
H® = [0 0 :' Hs Hy E Hy, Hw:' 0 0 E Hy, Hgs E
0 0 |\ Hs Hy i Hp Hx! O 0 | Hy Hy |
u; v, <Element degrees of freedom @)
Un U Us Uy Us<—Assemblage degrees
\ Hh Hs + O 0V ...zeros...O0 of freedom
' Hy His 1 O 0! ...zeros...O]

The strain-displacement matrix can now directly be obtained from (g). In plane stress
conditions the element strains are

€ = [e, € Vol

where €x = —; €y =
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Using (g) and recognizing that the elements in A~! are independent of x and y, we obtain

B = EA™!
010y 0000
where E=10 00 0 0 0 1 x
001 x 010y
Hence, the strain-displacement matrix corresponding to the local element degrees of
freedom is
J A+ —1+y —A-y A=y
B= 2 0 0 0 0
Q+x) (Q-x) -(1-x -1+
0 0 0 0

1+ x) A-x —-1-x -(1+1x 6]
IT+y —Q+y 1=y @-y
The matrix B could also have been calculated directly by operating on the rows of the matrix H
in (h).
Let Bj; be the (i, j)th element of B; then we now have

00 E Bz By, E B, B E 00 E By Bis i By Bis E 00 E
B®=[0 0 E Bz By E B:; B E 00 E By By E By B E 00 E
0 O ! By By | By B : O O ! By By | By Bss 1 0 0 |

0

...zeroes...0

0

where the element degrees of freedom and assemblage degrees of freedom are ordered as in (d)
and (b).

EXAMPLE 4.7: A linearly varying surface pressure distribution as shown in Fig. E4.7 is
applied to element (m) of an element assemblage. Evaluate the vector R¢” for this element.

The first step in the calculation of R{” is the evaluation of the matrix H™. This matrix
can be established using the same approach as in Example 4.6. For the surface displacements we
assume

¥ = a; + apx + azx?

S — 2 (a)
v° = B + ﬁzx + [33x

where (as in Example 4.6) the unknown coefficients a, . . . , B; are evaluated using the nodal
point displacements. We thus obtain
[us(x)] - B

05(x)
l'-irz[ul U Uz E v U2 03]
and

= [%x(l +x) =ix(1—-x) (1-x% 0 0 0 ]
a 0 0 0 Ix(1 +x) —ix1 -2 (1-2x3)



174

Formulation of the Finite Element Method

Thickness = 0.5 cm

(a) Element layout

vi= Uy

uy = Uy

(b) Local-global degrees of freedom

Figure E4.7 Pressure loading on element (m)

The vector of surface loads is (with p; and p. positive)

g5 = [ 1+ xpt + 401 - x)p‘i]
=31+ 0pt — 1 — x)p3

To obtain R we first evaluate

+1
Rs = o.sf B 5 dx

-1

Chap. 4
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[ pt
D4
2(pt + pY)

—pi

—p3

| —2(pt + p3)]

to obtain Rs

G| ==

Thus, corresponding to the global degrees of freedom given in Fig. E4.7, we have

Uo Un Uiz Us Ui Uis
ROT=40 ... 0 i pt —p3s ' 0 0! 2(pt+p9 —-20ps+p3 ' 0
U, U3+ Assemblage degrees of freedom
0! pt —pii 0 ... 0]

The Assumption About Stress Equilibrium

We noted earlier that the analyses of truss and beam assemblages were originally not
considered to be finite element analysis because the “exact” element stiffness matrices can
be employed in the analyses. These stiffness matrices are obtained in the application of the
principle of virtual displacements if the assumed displacement interpolations are in fact the
exact displacements that the element undergoes when subjected to the unit nodal point
displacements. Here the word “exact” refers to the fact that by imposing these displacements
on the element, all pertinent differential equations of equilibrium and compatibility and the
constitutive requirements (and also the boundary conditions) are fully satisfied in static
analysis.

In considering the analysis of the truss assemblage in Example 4.5, we obtained the
exact stiffness matrix of element 1. However, for element 2 an approximate stiffness matrix
was calculated as shown in the next example.

EXAMPLE 4.8: Calculate for element 2 in Example 4.5 the exact element internal displace-
ments that correspond to a unit element end displacement u, and evaluate the corresponding
stiffness matrix. Also, show that using the element displacement assumption in Example 4.5,
internal element equilibrium is not satisfied.

Consider element 2 with a unit displacement imposed at its right end as shown in Fig. E4.8.
The element displacements are calculated by solving the differential equation (see Exam-
ple 3.22),

df du\
EE(AZ’) =0 (a)

subject to the boundary conditions #],-o = 0 and u|.—s0 = 1.0. Substituting for the area A and
integrating the relation in (a), we obtain

-




176 Formulation of the Finite Element Method Chap. 4

X

}q—so em ——>] Figure E4.8 Element 2 of bar analyzed
in Example 4.5

These are the exact element internal displacements. The element end forces required to subject
the bar to these displacements are

du
ki = —FEA —
12 dx |y
du ©
k22 = EA —
22 x|,
Substituting from (b) into (c) we have
3E 3E
k2 = %; kiz = _%
Hence we have, using the symmetry of the element matrix and equilibrium to establish k,; and
ki,
3 1 -1
K= %E[_l 1] @

The same result is of course obtained using the principle of virtual displacements with the
displacement (b).

We note that the stiffness coefficient in (d) is smaller than the corresponding value
obtained in Example 4.5 (3E/80 instead of 13 E/240). The finite element solution in Example 4.5
overestimates the stiffness of the structure because the assumed displacements artificially con-
strain the motion of the material particles (see Section 4.3.4). To check that the internal equi-
librium is indeed not satisfied, we substitute the finite element solution (given by the displacement
assumption in Example 4.5) into (a) and obtain

d x\V 1
- 4+ =) —
£ (1 %0) m) * 0

The solution of truss and beam structures, using the exact displacements correspond-
ing to unit nodal point displacements and rotations to evaluate the stiffness matrices, gives
analysis results that for the selected mathematical model satisfy all three requirements of
mechanics exactly: differential equilibrium for every point of the structure (including nodal
point equilibrium), compatibility, and the stress-strain relationships. Hence, the exact
(unique) solution for the selected mathematical model is obtained.

We may note that such an exact solution is usually pursued in static analysis, in which
the exact stiffness relationships are obtained as described in Example 4.8, but an exact
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solution is much more difficult to reach in dynamic analysis because in this case the
distributed mass and damping effects must be included (see, for example, R. W. Clough and

J. Penzien [A]).

However, although in a general (static or dynamic) finite element analysis, differential
equilibrium is not exactly satisfied at all points of the continuum considered, two important
properties are always satisfied by the finite element solution using a coarse or a fine mesh.

These properties are (see Fig. 4.2)

1. Nodal point equilibrium
2. Element equilibrium.

- )
- 7

D R

~

g-1 | . q
AL I
# —— —p— \f‘
: s ~
Sum of forces FF™ equilibrate —————! * ,1 j r
H \ 7 !
externally applied loads \_or . !
\ / //
\\ ! /
~ e ‘<
m-1 { m
\
A
\
-

Figure 4.2 Nodal point and element equilibrium in a finite element analysis

B

Forces F™ are

_’_/ in equilibrium
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Namely, consider that a finite element analysis has been performed and that we calculate
for each finite element m the element nodal point force vectors

F™ = J' BITm) gyim (4.29)
Vim)

where 7™ = C™e™, Then we observe that according to property 1,

At any node, the sum of the element nodal point forces is in equilibrium with the
externally applied nodal loads (which include all effects due to body forces, surface
tractions, initial stresses, concentrated loads, inertia and damping forces, and reac-
tions).

And according to property 2,

Each element m is in equilibrium under its forces F™.

Property 1 follows simply because (4.27) expresses the nodal point equilibrium
and we have
2 F™ = KU (4.30)
The element equilibrium stated in property 2 is satisfied provided the finite element
displacement interpolations in H™ satisfy the basic convergence requirements, which in-
clude the condition that the element must be able to represent the rigid body motions (see
Section 4.3). Namely, let us consider element m subjected to the nodal point forces F™ and
impose virtual nodal point displacements corresponding to the rigid body motions. Then for
each virtual element rigid body motion with nodal point displacements @, we have

-ﬁ' TF‘(’") = J

(B™F)Tm gy = f €mxm gy = g
vim)

V(m)
because here € ™ = 0. Using all applicable rigid body motions we therefore find that the
forces F™ are in equilibrium.

Hence, a finite element analysis can be interpreted as a process in which

1. The structure or continuum is idealized as an assemblage of discrete elements con-
nected at nodes pertaining to the elements.

2. The externally applied forces (body forces, surface tractions, initial stresses, concen-
trated loads, inertia and damping forces, and reactions) are lumped to these nodes
using the virtual work principle to obtain equivalent externally applied nodal point
forces.

3. The equivalent externally applied nodal point forces (calculated in 2) are equilibrated
by the element nodal point forces that are equivalent (in the virtual work sense) to the
element internal stresses; i.e., we have

2 Fm =R

4. Compatibility and the stress-strain material relationship are satisfied exactly, but

instead of equilibrium on the differential level, only global equilibrium for the com-
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plete structure, at the nodes, and of each element m under its nodal point forces F™
is satisfied.

Consider the following example.

EXAMPLE 4.9: The finite element solution to the problem in Fig. E4.6, with P = 100, E =
2.7 X 105, v = 0.30, r = 0.1, is given in Fig. E4.9. Clearly, the stresses are not continuous
between elements, and equilibrium on the differential level is not satisfied. However,

1. Show that £, F™ = R and calculate the reactions.
2. Show that the element forces F for element 4 are in equilibrium.

The fact that 3,, F™ = R follows from the solution of (4.17), and R consists of the sum
of all nodal point forces. Hence, this relation can also be used to evaluate the reactions.
Referring to the nodal point numbering in Fig. E4.6(b), we find

for node 1:
reactions R, = 100.15
R, = 41.36
for node 2:
reactions R, = 2.58 — 2.88 = —0.30
R, = 16.79 + 5.96 = 22.74 (because of rounding)
for node 3:
reactions R, = —99.85
R, = 35.90
for node 4:
horizontal force equilibrium: —42.01 + 42.01 = 0
vertical force equilibrium: —22.90 + 22.90 = 0
for node 5:

horizontal force equilibrium: —60.72 — 12.04 + 44.73 + 28.03 = 0
vertical force equilibrium: —35.24 — 35.04 + 19.10 + 51.18 = 0
for node 6:
horizontal force equilibrium: 57.99 — 57.99 = 0
vertical force equilibrium: —6.81 + 6.81 = 0

And for nodes 7, 8, and 9, force equilibrium is obviously also satisfied, where at node 9 the
element nodal force balances the applied load P = 100.

Finally, let us check the overall force equilibrium of the model:
horizontal equilibrium:

100.15 — 0.30 — 99.85 = 0

vertical equilibrium:

41.36 + 22.74 + 3590 — 100 = 0
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Figure E4.9 Solution results for problem considered in Example 4.6 (rounded to digits shown)
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(d) Exploded view of elements showing element nodal point forces equivalent {in the
virtual work sense) to the element stresses. The nodal point forces are at each
node in equilibrium with the applied forces (including the reactions)

Figure E4.9 (continued)
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moment equilibrium (about node 2):
~100 X 4 + 100.15 X 2 + 99.85 X2 =0

It is important to realize that this force equilibrium will hold for any finite element mesh, however

coarse the mesh may be, provided properly formulated elements are used (see Section 4.3).
Now consider element 4:

horizontal equilibrium:

0 — 57.99 + 28.03 + 29.97 = 0 (because of rounding)
vertical equilibrium:
~100 + 6.81 + 51.18 + 42,01 = 0
moment equilibrium (about its local node 3):
—100 X 2 + 57.99 X2 + 4201 X2 =0

Hence the element nodal forces are in equilibrium.
Element Local and Structure Global Degrees of Freedom

The derivations of the element matrices in Example 4.6 and 4.7 show that it is expedient to
first establish the matrices corresponding to the local element degrees of freedom. The
construction of the finite element matrices, which correspond to the global assemblage
degrees of freedom [used in (4.19) to (4.25)] can then be directly achieved by identifying
the global degrees of freedom that correspond to the local element degrees of freedom.
However, considering the matrices H™, B™, K™, and so on, corresponding to the global
assemblage degrees of freedom, only those rows and columns that correspond to element
degrees of freedom have nonzero entries, and the main objective in defining these specific
matrices was to be able to express the assemblage process of the element matrices in a
theoretically elegant manner. In the practical implementation of the finite element method,
this elegance is also present, but all element matrices are calculated corresponding only to
the element degrees of freedom and are then directly assembled using the correspondence
between the local element and global assemblage degrees of freedom. Thus, with only the
element local nodal point degrees of freedom listed in i@, we now write (as in Example 4.6)

u = Hi @.31)

where the entries in the vector u are the element displacements measured in any convenient
local coordinate system. We then also have

€ = Bii (4.32)

Considering the relations in (4.31) and (4.32), the fact that no superscript is used on
the interpolation matrices indicates that the matrices are defined with respect to the local
element degrees of freedom. Using the relations for the element stiffness matrix, mass
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matrix, and load vector calculations as before, we obtain

K= J; B’CB aV (4.33)
M = J; pH™H dV (4.34)
Rs = JL H'f5 4V (4.35)
Rs = J; HfS as (4.36)
R = J; B! aV (4.37)

where all variables are defined as in (4.19) to (4.25), but corresponding to the local element
degrees of freedom. In the derivations and discussions to follow, we shall refer extensively
to the relations in (4.33) to (4.37). Once the matrices given in (4.33) to (4.37) have been
calculated, they can be assembled directly using the procedures described in Example 4.11
and Chapter 12.

In this assemblage process it is assumed that the directions of the element nodal point
displacements i in (4.31) are the same as the directions of the global nodal point displace-
ments U, However, in some analyses it is convenient to start the derivation with element
nodal point degrees of freedom il that are not aligned with the global assemblage degrees
of freedom. In this case we have

u = Hii (4.38)
and

i=Ti (4.39)
where the matrix T transforms the degrees of freedom 1 to the degrees of freedom @ and
(4.39) corresponds to a first-order tensor transformation (see Section 2.4); the entries in
column j of the matrix T are the direction cosines of a unit vector corresponding to the jth

degree of freedom in @ when measured in the directions of the @ degrees of freedom.
Substituting (4.39) into (4.38), we obtain

H = HT (4.40)
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Thus, identifying all finite element matrices corresponding to the degrees of freedom @ with
a curl placed over them, we obtain from (4.40) and (4.33) to (4.37),

K =TKT; M =TMT @.41)
R = TTﬁB; Rs = Trﬁs; 1= Trﬁl

We note that such transformations are also used when boundary displacements must
be imposed that do not correspond to the global assemblage degrees of freedom (see
Section 4.2.2). Table 4.1 summarizes some of the notation that we have employed.

We demonstrate the presented concepts in the following examples.

TABLE 4.1 Summary of some notation used

@ u™ =H"0oru™ =HU
where u™ = displacements within element m as a function of the element coordinates
U = nodal point displacements of the total element assemblage [from equation (4.17)
onward we simply use U].
®) u=Hi
where u = u™ and it is implied that a specific element is considered
@ = nodal point displacements of the element under consideration; the entries of i are
those displacements in U that belong to the element.
© u=Hi
where @i = nodal point displacements of an element in a coordinate system other than the
global system (in which U is defined).

EXAMPLE 4.10: Establish the matrix H for the truss element shown in Fig. E4.10. The
directions of local and global degrees of freedom are shown in the figure.
Here we have

L L 1@
- - 0 =+ 0 N
[u(x)] 1 (2 ") (2 x) o o
= — . a
o(x) L L L )
0 <2 x) 0 <2 + x) 5
i cos @ sin « 0 0 u |
and 01 _ —sina cos a 0 0 v
U, 0 0 cosa sinaf| u
02 0 0 —sina cos « 02 |
Thus, we have
L L i
<__ B x) 0 <_ + x) 0 cos @ sina 0 0
H = l 2 2 —sin @ cos & 0 0
L 0 (é _ x) 0 <£ + x) 0 0 cosa sina
2 2 0 0 —sin @ cos &

It should be noted that for the construction of the strain-displacement matrix B (in linear
analysis), only the first row of H is required because only the normal strain €.. = du/dx is
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.

X  Figure E4.10 Truss element

considered in the derivation of the stiffness matrix. In practice, it is effective to use only the first
row of the matrix H in (2) and then transform the matrix K as given in (4.41).

EXAMPLE 4.11: Assume that the element stiffness matrices corresponding to the element
displacements shown in Fig. E4.11 have been calculated and denote the elements as shown @,
, @, and @ Assemble these element matrices directly into the global structure stiffness
matrix with the displacement boundary conditions shown in Fig. E4.11(a). Also, give the con-
nectivity arrays LM for the elements.

In this analysis all element stiffness matrices have already been established corresponding
to the degrees of freedom aligned with the global directions. Therefore, no transformation as
given in (4.41) is required, and we can directly assemble the complete stiffness matrix.

Since the displacements at the supports are zero, we need only assemble the structure
stiffness matrix corresponding to the unknown displacement components in U. The connectivity
array (LM array) for each element lists the global structure degrees of freedom in the order of
the element local degrees of freedom, with a zero signifying that the corresponding column and
row of the element stiffness matrix are not assembled (the column and row correspond to a zero
structure degree of freedom) (see also Chapter 12).

U Us U Ui Us Global displacements
u v U L2 us vs us vg~—Local displacements
[a11  an s ais air awx] wm U,
ax a ce dz Q27 Az vy Us
Uz
L2
KA =
Us
de1 Q62 e ds6 Qde71 QAes vs U
arn  darn e Qe a77  dars us U,
| dg1 ds2 Qge Qag7 dgs] U4 Us
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stress Bleam t
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(a) Structural assemblage and degrees of freedom

(b) Individual elements

Figure E4.11 A simple element assemblage

Us U; Us Us Us U, U, Us;
Wy Uy Uz U2 U (2 U U2
by, by by by u, Us Cii €2 €13 Cyy
K. = by byp by by | v Uy K.= | 2 o o
y by, by by bi u U, €31 C32 €33 Cy
by by by by, vy Us Ca1 Ca2 Ca3 Cyq
Us U; Us
Uy U1 01 Uz U2 02
_ ) 1 w
Uy
6,

das  das dyg u Us
dss dss dse v2 Uy
d64 d65 d66 _ 02 US

Uy
U
U
U2

Chap. 4

U,
U,
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and the equation K = = K™ gives

U, U Us Ui Us Us U, U
[aes  as1 as2 as7 Qs Zeros 11U
ais an t a2+ Ca a ais €1 (73 U.
G G2 + C3 Gn + Caa ax a2 Ca1 Ca2 Us
drs  an an an + bys an + by by by, U,
K=]as asa asz ag7 + bsy ass + bas by bs L 1Us
Ci3 Cia by b by + cu bio+ cin das Us

+ dy + dss

C23 Cu b2 by by + ¢ bn+ cn ds U,
| symmetric about diagonal I des dss des Jd Us

The LM arrays for the elements are

for element A: IM=[2 3 0 0 0 1 4 5]
for element B: IM=[6 7 4 5]

for element C: IM=[6 7 2 3]

for element D: IM=[0 0 0 6 7 8]

We note that if the element stiffness matrices and LM arrays are known, the total structure
stiffness matrix can be obtained directly in an automated manner (see also Chapter 12).

4.2.2 Imposition of Displacement Boundary Conditions

We discussed in Section 3.3.2 that in the analysis of a continuum we have displacement (also
called essential) boundary conditions and force (also called natural) boundary conditions.
Using the displacement-based finite element method, the force boundary conditions are
taken into account in evaluating the externally applied nodal point force vector. The vector
Rc assembles the concentrated loads including the reactions, and the vector Rs contains the
effect of the distributed surface loads and distributed reactions.

Assume that the equilibrium equations of a finite element system without the imposi-
tion of the displacement boundary conditions as derived in Section 4.2.1 are, neglecting

damping,
Maa Mab I”Ja Kaa Kab ] [Ua ] [Ra :I
<A+ = 4.42
[Mba Mbb][Ub] [Kba Koo || Us R, (4.42)
where the U, are the unknown displacements and the U, are the known, or prescribed,
displacements. Solving for U,, we obtain
M. U, + KU, = R, — Koy Uy — Mo U, (4.43)

Hence, in this solution for U,, only the stiffness and mass matrices of the complete assem-
blage corresponding to the unknown degrees of freedom U, need to be assembled (see
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Example 4.11), but the load vector R, must be modified to include the effect of imposed
nonzero displacements. Once the displacements U, have been evaluated from (4.43), the
reactions can be calculated by first writing [(using (4.18)]

R, =R+ R;— R} +R2+R, (4.44)

where R, R%, R?, and R% are the known externally applied nodal point loads not including
the reactions and R, denotes the unknown reactions. The superscript b indicates that of Rs,
Rs, R;, and Rc in (4.17) only the components corresponding to the U, degrees of freedom
are used in the force vectors. Note that the vector R, may be thought of as an unknown
correction to the concentrated loads. Using (4.44) and the second set of equations in (4.42),
we thus obtain

R, = My, U, + My, U, + KoU, + KU, — R — RZ + R? — R% (4.45)

Here, the last four terms are a correction due to known internal and surface element loading
and any concentrated loading, all directly applied to the supports.
We demonstrate these relations in the following example.

EXAMPLE 4.12: Consider the structure shown in Fig. E4.12. Solve for the displacement
response and calculate the reactions.

P p (force/length)

V
{ Y 1 1 1 6
2
< L .7
El 7 7
| N 2E! é
r L - 1
L 1
El=107
L =100
p =0.01
P=10

(a) Cantilever beam

Uy Us Us
T Uz T U4 T U6

Element 1 I Element 2 , T

(b} Discretization

Figure E4.12 Analysis of cantilever beam
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We consider the cantilever beam as an assemblage of two beam elements. The governing
equations of equilibrium (4.42) are (using the matrices in Example 4.1)

[12 6 12 6 1o T .
L» L L[* L b P
6 6
= -2 2
. 47 U, 0
_l2 6 3% 6 24 1211, _pL
EIf L2 L L* L L* L N 2
L] 6 6 12 B pL?
I 2 7 -7 4l T
24 12 24 12 pL
T oz | |77 R
12 12 pL?
= 4 -= 3 = | R
i L L | \_U‘*_ | 12 R |”6_

Here U] = (Us Us) and U, = 0. Using (4.43), we obtain, for the case of EI = 107, L = 100,
»=001,P =10,

Ul =[—165 1.33 —479 0.83] X 1073
and then using (4.45), we have
2
R = [—250]

In using (4.42) we assume that the displacement components employed in Sec-
tion 4.2.1 actually contain all prescribed displacements [denoted as U, in (4.42)]. If this is
not the case, we need to identify all prescribed displacements that do not correspond to
defined assemblage degrees of freedom and transform the finite element equilibrium equa-
tions to correspond to the prescribed displacements. Thus, we write

U=TO (4.46)

where U is the vector of nodal point degrees of freedom in the required directions. The
transformation matrix T is an identity matrix that has been altered by the direction cosines
of the components in U measured in the original displacement directions [see (2.58)]. Using
(4.46) in (4.42), we obtain

MU + KU = R (4.47)
where M = T’MT; K = T’KT; R =TR (4.48)

We should note that the matrix multiplications in (4.48) involve changes only in those
columns and rows of M, K, and R that are actually affected and that this transformation
is equivalent to the calculations performed in (4.41) on a single element matrix. In practice,
the transformation is carried out effectively on the element level just prior to adding the
element matrices to the matrices of the total assemblage. Figure 4.3 gives the transforma-
tion matrices T for a typical nodal point in two- and three-dimensional analysis when
displacements are constrained in skew directions. The unknown displacements can now be
calculated from (4.47) using the procedure in (4.42) and (4.43).
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)\'
\ A Transformed
Yk degrees
*L Global of freedom
degrees _
> of freedom Y U (free)
X A
‘n/fL"
>— L
V (restrained) u
T-|c08@ -sina
sina cosa
V4
v A
Y /
X
Zw w
X 0 > U v
Y,V

cos (X, X) cos (X,\_7) cos (X,g)
T= [cos(Y, X) cos(¥, V) cos(¥,2)
cos(Z, X) cos(Z Y) cos(Z 2)

Figure 4.3 Transformation to skew boundary conditions

In an alternative approach, the required displacements can also be imposed by adding
to the finite element equilibrium equations (4.47) the constraint equations that express the
prescribed displacement conditions. Assume that the displacement is to be specified at
degree of freedom i, say U; = b; then the constraint equation

kU = kb (4.49)

is added to the equilibrium equations (4.47), where k > k;. Therefore, the solution of the
modified equilibrium equations must now give U; = b, and we note that because (4.47) was
used, only the diagonal element in the stiffness matrix was affected, resulting in a numeri-
cally stable solution (see Section 8.2.6). Physically, this procedure can be interpreted as
adding at the degree of freedom i a spring of large stiffness £ and specifying a load which,
because of the relatively flexible element assemblage, produces at this degree of freedom the
required displacement b (see Fig. 4.4). Mathematically, the procedure corresponds to an
application of the penalty method discussed in Section 3.4.

In addition to specified nodal point displacement conditions, some nodal point dis-
placements may also be subjected to constraint conditions. Considering (4.24), a typical
constraint equation would be

U, (4.50)
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element

o
Spring —

Figure 4.4 Skew boundary condition
imposed using spring element

where the U; is a dependent nodal point displacement and the U,; are r; independent nodal
point displacements. Using all constraint equations of the form (4.50) and recognizing that
these constraints must hold in the application of the principle of virtual work for the actual
nodal point displacements as well as for the virtual displacements, the imposition of the
constraints corresponds to a transformation of the form (4.46) and (4.47), in which T is now
a rectangular matrix and U contains all independent degrees of freedom. This transforma-
tion corresponds to adding a,. times the ith columns and rows to the g;th columns and rows,
forj = 1,..., r and all i considered. In the actual implementation the transformation is
performed effectively on the element level during the assemblage process.

Finally, it should be noted that combinations of the above displacement boundary
conditions are possible, where, for example, in (4.50) an independent displacement compo-
nent may correspond to a skew boundary condition with a specified displacement. We
demonstrate the imposition of displacement constraints in the following examples.

EXAMPLE 4.13: Consider the truss assemblage shown in Fig. E4.13. Establish the stiffness
matrix of the structure that contains the constraint conditions given.

The independent degrees of freedom in this analysis are Uy, U, and U,. The element
stiffness matrices are given in Fig. E4.13, and we recognize that corresponding to (4.50), we

EA; EA, EA,
Uy u3 %] (2]
| L3 -t {_2 It L.I =

K;

Displacement conditions: u3 = 2u,

U4=5

_ EA

1 -1
I |- 1

Figure E4.13 Truss assemblage
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have i = 3, oy = 2, and ¢, = 1. Establishing the complete stiffness matrix directly during the
assemblage process, we have

% _ _E_Al 0 4EA; _ 2EA, 0
L, L, L, L,
K= |- % E_A.l +1 2EA, %
L, L, L, L,
0 0 0 0 0 0
4EA; 0 - 2EA;
Ls Ls 0 00
+ 0 0 0 +]1]0 0 O
_ 2EA; 0 _Eé 0 0 %
L3 L3
where k> EA,

3

EXAMPLE 4.14: The frame structure shown in Fig. E4.14(a) is to be analyzed. Use symmetry
and constraint conditions to establish a suitable model for analysis.

P—».

Va

Fixed shaft 64 ) t;"‘ Uy

1 i’ P

N
oy

——
L
);\

l <—P
(a) Frame structure (b} One-quarter of structure

Figure E4.14  Analysis of a cyclicly symmetric structure

The complete structure and applied loading display cyclic symmetry, so that only one-
quarter of the structure need be considered, as shown in Fig. E4.14(b), with the following
constraint conditions:

Us = V4

Vs = —Us

05': 04
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This is a simple example demonstrating how the analysis effort can be reduced considerably
through the use of symmetry conditions. In practice, the saving through the use of cyclic
symmetry conditions can in some cases be considerable, and indeed only by use of such condi-
tions may the analysis be possible.

In this analysis, the structure and loading show cyclic symmetry. An analysis capability can
also be developed in which only a part of the structure is modeled for the case of a geometrically
cyclic symmetric structure with arbitrary loading (see, for example, W. Zhong and C. Qiu [A]).

4.2.3 Generalized Coordinate Models for Specific Problems

In Section 4.2.1 the finite element discretization procedure and derivation of the equi-
librium equations was presented in general; i.e., a general three-dimensional body was
considered. As shown in the examples, the general equations derived must be specialized
in specific analyses to the specific stress and strain conditions considered. The objective in
this section is to discuss and summarize how the finite element matrices that correspond to
specific problems can be obtained from the general finite element equations (4.8) to (4.25).

Although in theory any body may be understood to be three-dimensional, for practical
analysis it is in many cases imperative to reduce the dimensionality of the problem. The first
step in a finite element analysis is therefore to decide what kind of problem?® is at hand. This
decision is based on the assumptions used in the theory of elasticity mathematical models
for specific problems. The classes of problems that are encountered may be summarized as
(1) truss, (2) beam, (3) plane stress, (4) plane strain, (5) axisymmetric, (6) plate bending,
(7) thin shell, (8) thick shell, and (9) general three-dimensional. For each of these problem
cases, the general formulation is applicable; however, only the appropriate displacement,
stress, and strain variables must be used. These variables are summarized in Tables 4.2 and
4.3 together with the stress-strain matrices to be employed when considering an isotropic
material. Figure 4.5 shows various stress and strain conditions considered in the formula-
tion of finite element matrices.

TABLE 4.2 Corresponding kinematic and static variables in various problems

Displacement
Problem components Strain vector €™ Stress vector 77

Bar u [exx] [Txx]
Beam w [Kxx] [Mxx]
Plane stress u,v [exs €y ¥sy] [7ex Tyy Tay)
Plane strain uv [exx €yy 'YXy] [TH Tyy TX}']
Axisymmetric u,v [Exx Eyy Vxy e.-_z] [Txx Tyy Txy ng]
Three-dimensional u, v, w [€xx €y €2 YViy Vo Vex) [Tex Ty ez Try Tyz Tex)
Plate bending w [Kex K5y Ky] M. My, M,.,]
Notati du v du v ?*w " ?*w « *Pw

OLAHON: €cx = ——, €y = ——, Yoy = — F =, ..., Kex = =5, Ky = =, Ky = .

= oax” T ay Yoy dy ax oax? Y ey ¥ ax dy

In Examples 4.5 to 4.10 we already developed some specific finite element matrices.
Referring to Example 4.6, in which we considered a plane stress condition, we used for the
u and v displacements simple linear polynomial assumptions, where we identified the

8We use here the parlance commonly used in engineering analysis but recognize that “choice of problem”
really corresponds to “choice of mathematical model” (see Section 1.2).
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TABLE 4.3 Generalized stress-strain matrices for isotropic materials and the problems in Table 4.2

Problem Material matrix C
Bar E
Beam EI
1 v 0
E
Plane stress v 1 0
1 -2
1-v
00
2
_ Y -
1 0
1—v
E(1 -
Plane strain ( Y Y 1 0
Q+va-2v|1-w»
1-2v
0
| 2(1 — v)
[ v
1 0
1-v 1—v
v
1 ! 0 1
_ - v - v
Axisymmetric __E_(l_i_
1+n1-29)| 0 1 -2
2(1 —»)
v v
0
1-v 1 -v»
_ v Y -
1
1—-v 1-v
v v
1
1-v 1-v
v v )
. EQ1 - v 1—-v 1-v
Three-dimensional —_—
a1+ »1 -2y 1—-2v
2(1 —v)
1 -2y
Elements not 2(1 —v)
shown are zeros 1-2v
| 2(1 - V)J

Plate bending

1 v 0

Eh? v 1 0
12(1 — v?) 1—-v

2

Notation: E = Young’s modulus, v = Poisson’s ratio, # = thickness of plate, I = moment of inertia
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unknown coefficients in the polynomials as generalized coordinates. The number of un-
known coefficients in the polynomials was equal to the number of element nodal point
displacements. Expressing the generalized coordinates in terms of the element nodal point
displacements, we found that, in general, each polynomial coefficient is not an actual
physical displacement but is equal to a linear combination of the element nodal point
displacements.

Finite element matrices that are formulated by assuming that the displacements vary
in the form of a function whose unknown coefficients are treated as generalized coordinates
are referred to as generalized coordinate finite element models. A rather natural class of
functions to use for approximating element displacements are polynomials because they are
commonly employed to approximate unknown functions, and the higher the degree of the
polynomial, the better the approximation that we can expect. In addition, polynomials are
easy to differentiate; i.e., if the polynomials approximate the displacements of the structure,
we can evaluate the strains with relative ease.

Using polynomial displacement assumptions, a very large number of finite elements
for practically all problems in structural mechanics have been developed.

The objective in this section is to describe the formulation of a variety of generalized
coordinate finite element models that use polynomials to approximate the displacement
fields. Other functions could in principle be used in the same way, and their use can be
effective in specific applications (see Example 4.20). In the presentation, emphasis is given
to the general formulation rather than to numerically effective finite elements. Therefore,
this section serves primarily to enhance our general understanding of the finite element
method. More effective finite elements for general application are the isoparametric and
related elements described in Chapter 5.

In the following derivations the displacements of the finite elements are always de-
scribed in the local coordinate systems shown in Fig. 4.5. Also, since we consider one
specific element, we shall leave out the superscript (m) used in Section 4.2.1 [see (4.31)].

For one-dimensional bar elements (truss elements) we have

wx) = o + apx + azx® + - - - 4.51)

where x varies over the length of the element, u is the local element displacement, and a;,
o, . . . , are the generalized coordinates. The displacement expansion in (4.51) can also be
used for the transverse and longitudinal displacements of a beam.

For two-dimensional elements (i.e., plane stress, plane strain, and axisymmetric
elements), we have for the ¥ and v displacements as a function of the element x and y
coordinates,

ulx,y) = on + oox + o3y + asxy + asx® + - - -
o(x,y) = B + Box + By + Baxy + Bsx? 4+ - -+

(4.52)

where ay, a2, . . ., and B, B, . . ., are the generalized coordinates.
In the case of a plate bending element, the transverse deflection w is assumed as a
function of the element coordinates x and y; i.e.,

wx,y) = % + vox + Y3y + yaxy + ysx? 4+ - - - (4.53)

where 1, v, . . . , are the generalized coordinates.
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{c) Plane strain condition: long dam subjected to water pressure
Figure 4.5 Various stress and strain conditions with illustrative examples
Finally, for elements in which the u, v, and w displacements are measured as a
function of the element x, y, and z coordinates, we have, in general,
ux,y,2) = o +oex + o3y + a2z + asxy + - - -
0(x,,2) = B+ Box + B3y + Paz + Bsxy + - - (4.54)
wx,%n2) =n+ pxt yy+ vzt oyxy o

where au, a2, ..., Bi1, B2, . . ., and ¥, ¥, . . . are now the generalized coordinates.
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Figure 4.5 (continued)
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As in the discussion of the plane stress element in Example 4.6, the relations (4.51)
to (4.54) can be written in matrix form,

u = Pa (4.55)

where the vector u corresponds to the displacements used in (4.51) to (4.54), the elements
of ® are the corresponding polynomial terms, and e is a vector of the generalized coordi-
nates arranged in the appropriate order.

To evaluate the generalized coordinates in terms of the element nodal point displace-
ments, we need to have as many nodal point displacements as assumed generalized coordi-
nates. Then, evaluating (4.55) specifically for the nodal point displacements @ of the
element, we obtain

i = Aa (4.56)
Assuming that the inverse of A exists, we have
a=A (4.57)

The element strains to be considered depend on the specific problem to be solved.
Denoting by € a generalized strain vector, whose components are given for specific prob-
lems in Table 4.2, we have

€ = Ea (4.58)

where the matrix E is established using the displacement assumptions in (4.55). A vector
of generalized stresses 7 is obtained using the relation

T = Ce (4.59)

where C is a generalized elasticity matrix. The quantities 7 and C are defined for some
problems in Tables 4.2 and 4.3. We may note that except in bending problems, the general-
ized 7, €, and C matrices are those that are used in the theory of elasticity. The word
“generalized” is employed merely to include curvatures and moments as strains and
stresses, respectively. The advantage of using curvatures and moments in bending analysis
is that in the stiffness evaluation an integration over the thickness of the corresponding
element is not required because this stress and strain variation has already been taken into
account (see Example 4.15).

Referring to Table 4.3, it should be noted that all stress-strain matrices can be derived
from the general three-dimensional stress-strain relationship. The plane strain and axisym-
metric stress-strain matrices are obtained simply by deleting in the three-dimensional
stress-strain matrix the rows and columns that correspond to the zero strain components.
The stress-strain matrix for plane stress analysis is then obtained from the axisymmetric
stress-strain matrix by using the condition that 7, is zero (see the program QUADS in
Section 5.6). To calculate the generalized stress-strain matrix for plate bending analysis, the
stress-strain matrix corresponding to plane stress conditions is used, as shown in the
following example.

EXAMPLE 4.15: Derive the stress-strain matrix C used for plate bending analysis (see
Table 4.3).
The strains at a distance z measured upward from the midsurface of the plate are
[ Pw *Pw 20*w ]
-z b4

ax fayr Yaxay
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In plate bending analysis it is assumed that each layer of the plate acts in plane stress condition
and positive curvatures correspond to positive moments (see Section 5.4.2). Hence, integrating
the normal stresses in the plate to obtain moments per unit length, the generalized stress-strain
matrix is
1 v 0
+h/2
E 1 0
C=J- 221_V2 ’ l1-v dz
—h/2
00
2
1 v 0
Eh® v 1 0
o C=mi-» 1-»
00 3

Considering (4.55) to (4.59), we recognize that, in general terms, all relationships for
evaluation of the finite element matrices corresponding to the local finite element nodal
point displacements have been defined, and using the notation of Section 4.2.1, we have

H= @A™ (4.60)
B = EA"! (4.61)

Let us now consider briefly various types of finite elements encountered, which are
subject to certain static or kinematic assumptions.

Truss and beam elements. Truss and beam elements are very widely used in
structural engineering to model, for example, building frames and bridges [see Fig. 4.5(a)
for an assemblage of truss elements).

As discussed in Section 4.2.1, the stiffness matrices of these elements can in many
cases be calculated by solving the differential equations of equilibrium (see Example 4.8),
and much literature has been published on such derivations. The results of these derivations
have been employed in the displacement method of analysis and the corresponding approx-
imate solution techniques, such as the method of moment distribution. However, it can be
effective to evaluate the stiffness matrices using the finite element formulation, i.e., the
virtual work principle, particularly when considering complex beam geometries and geo-
metric nonlinear analysis (see Section 5.4.1).

Plane stress and plane strain elements. Plane stress elements are employed to
model membranes, the in-plane action of beams and plates as shown in Fig. 4.5(b), and so
on. In each of these cases a two-dimensional stress situation exists in an xy plane with the
stresses 7., Tyz, and 7., equal to zero. Plane strain elements are used to represent a slice (of
unit thickness) of a structure in which the strain components €, ¥,., and ¥, are zero. This
situation arises in the analysis of a long dam as illustrated in Fig. 4.5(c).

Axisymmetric elements. Axisymmetric elements are used to model structural
components that are rotationally symmetric about an axis. Examples of application are
pressure vessels and solid rings. If these structures are also subjected to axisymmetric loads,
a two-dimensional analysis of a unit radian of the structure yields the complete stress and
strain distributions as illustrated in Fig. 4.5(d).
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On the other hand, if the axisymmetric structure is loaded nonaxisymmetrically, the
choice lies between a fully three-dimensional analysis, in which substructuring (see Sec-
tion 8.2.4) or cyclic symmetry (see Example 4.14) is used, and a Fourier decomposition of
the loads for a superposition of harmonic solutions (see Example 4.20).

Plate bending and shell elements. The basic proposition in plate bending and
shell analyses is that the structure is thin in one dimension, and therefore the following
assumptions can be made [see Fig. 4.5(e)]:

1. The stress through the thickness (i.e., perpendicular to the midsurface) of the
plate/shell is zero.

2. Material particles that are originally on a straight line perpendicular to the midsurface
of the plate/shell remain on a straight line during deformations. In the Kirchhoff
theory, shear deformations are neglected and the straight line remains perpendicular
to the midsurface during deformations. In the Reissner/Mindlin theory, shear deforma-
tions are included, and therefore the line originally normal to the midsurface in
general does not remain perpendicular to the midsurface during the deformations (see
Section 5.4.2).

The first finite elements developed to model thin plates in bending and shells were
based on the Kirchhoff plate theory (see R. H. Gallagher [A]). The difficulties in these
approaches are that the elements must satisfy the convergence requirements and be rela-
tively effective in their applications. Much research effort was spent on the development of
such elements; however, it was recognized that more effective elements can frequently be
formulated using the Reissner/Mindlin plate theory (see Section 5.4.2).

To obtain a shell element a simple approach is to superimpose a plate bending stiffness
and a plane stress membrane stiffness. In this way flat shell elements are obtained that can
be used to model flat components of shells (e.g., folded plates) and that can also be
employed to model general curved shells as an assemblage of flat elements. We demonstrate
the development of a plate bending element based on the Kirchhoff plate theory and the
construction of an associated flat shell element in Examples 4.18 and 4.19.

EXAMPLE 4.16: Discuss the derivation of the displacement and strain-displacement interpo-
lation matrices of the beam shown in Fig. E4.16.

The exact stiffness matrix (within beam theory) of this beam could be evaluated by solving
the beam differential equations of equilibrium, which are for the bending behavior

d? d*w bh?®
@(Eld_&) =0; EI = EE (a)
and for the axial behavior
d du
—|EA—} =0 A = bh b
d§< dg) ®

where E is Young’s modulus. The procedure is to impose a unit end displacement, with all other
end displacements equal to zero, and solve the appropriate differential equation of equilibrium
of the beam subject to these boundary conditions. Once the element internal displacements for
these boundary conditions have been calculated, appropriate derivatives give the element end
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Figure E4.16 Beam element with varying section

forces that together constitute the column of the stiffness matrix corresponding to the imposed
end displacement. It should be noted that this stiffness matrix is only “exact” for static analysis
because in dynamic analysis the stiffness coefficients are frequency-dependent.

Alternatively, the formulation given in (4.8) to (4.17) can be used. The same stiffness
matrix as would be evaluated by the above procedure is obtained if the exact element internal
displacements [that satisfy (a) and (b)] are employed to construct the strain-displacement matrix.
However, in practice it is frequently expedient to use the displacement interpolations that corre-
spond to a uniform cross-section beam, and this yields an approximate stiffness matrix. The
approximation is generally adequate when A, is not very much larger than 4, (hence when a
sufficiently large number of beam elements is employed to model the complete structure). The
errors encountered in the analysis are those discussed in Section 4.3, because this formulation
corresponds to displacement-based finite element analysis.

Using the variables defined in Fig. E4.16 and the “exact” displacements (Hermitian func-
tions) corresponding to a prismatic beam, we have

BAPRETI R,
. 6_7)(§ _ f_z)wz + 7,(2§ - 3§—2)02

Hence,

8] o
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For (c) we ordered the nodal point displacements as follows
i [u1W1 6, u2W202]

Considering only normal strains and stresses in the beam, i.e., neglecting shearing defor-
mations, we have as the only strain and stress components

du
€ = d—g; Tee = Eeg
and hence . . o .
1! 691 2§): (—4 6§):1: 6n(1 25): (2 6§)]
uS— _—— | - _._+__. Ve ) e e — = | —_—— =
B [LlL(L )i N7 )L L\L )i N\L @

The relations in (c) and (d) can be used directly to evaluate the element matrices defined in (4.33)

to (4.37); e.g.,
L /2
K = Eb f J- BB dy d¢
0 ~h/2
where h=h + (h — hl)lé,

This formulation can be directly extended to develop the element matrices corresponding
to the three-dimensional action of the beam element and to include shear deformations (see
K. J. Bathe and S. Bolourchi [A]).

EXAMPLE 4.17: Discuss the derivation of the stiffness, mass, and load matrices of the axisym-
metric three-node finite element in Fig. E4.17.

This element was one of the first finite elements developed. For most practical applications,
much more effective finite elements are presently available (see Chapter 5), but the element is
conveniently used for instructional purposes because the equations to be dealt with are relatively
simple.

The displacement assumption used is

ulx, y) = a, + apx + a3y

o(x, y) = B, + Box + Bay

Therefore, a linear displacement variation is assumed, just as for the derivation of the four-node
plane stress element considered in Example 4.6 where the fourth node required that the term xy
be included in the displacement assumption. Referring to the derivations carried out in Example
4.6, we can directly establish the following relationships:

U

1773

[u(x, y)] _gul®

o(x, y) vy

V2

1 x y 000
h = -1
where H[OOley]A
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Figure E4.17 Axisymmetric three-node element
1 X2Y3 — X3Ya X3y — X1y3s X1Y2 — X2y
Hence AT = LA Y2 = y3 yi— Yi—y
X3 — X2 X1 — X3 X2 — X1
where det Ay = xi(y2 — y3) + x2ys — y1) + x:(y — y2)

We may note that det A, is zero only if the three element nodal points lie on a straight line. The
strains are given in Table 4.2 and are

QMmoo _w o _w_u
XX x 3 yy ay 3 YXy ay dx ) 27 aZ X
Using the assumed displacement polynomials, we obtain
]
€. ” 01 0000
000 0O0°1
€y Us
=B|, I B=|0 0 1 0 1 0OJA!'=EA"
Yay Ui 1
& 0 ~12000
x x
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Using the relations (4.33) to (4.37), we thus have

000 3| 1 d 0 d
X 1—v» 1-v»
EQ1 - ) e 1z 1 0 1r
K=A‘T{ —= ¥ oo 1?2 v v
A0+ vA -2y x 0 0 1 -2 0
0000 20 — )
0 010 v v 0 )
01 00__1—V 1—-—v
01 0 0 00
00 00 01
0 01 0 1 Olxdx dy}A’l (a)
Iy 2000
X X

where 1 radian of the axisymmetric element is considered in the volume integration. Similarly,
we have

Gl
x 0
B
RB=A”TJ- y 0 I:J;;:dexdy
A0 1|0f%
0 x
0 ¥]
0 0 0 -ﬂ
X
1 0 0 1f]|k
Y[
R,=A‘TJ- 0 0 1 =|| "|lxdxdy (b)
A X Tfry
0 0 0 0]l
001 0
|0 1 0 O]
[1 0
x 0
— AT y Ol x y 0 0 O] }—1
M pA{LOl[OOOIxyxdxdyA
0 x

where the mass density p is assumed to be constant.

For calculation of the surface load vector Ry, it is expedient in practice to introduce
auxiliary coordinate systems located along the loaded sides of the element. Assume that the side
2-3 of the element is loaded as shown in Fig. E4.17. The load vector R; is then evaluated using
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as the variable s,

0 0 |
)
l—z 0
2 0
_ L b s s
RS—S 0 0 §x21—z +xaz ds

S
0 1-7

S
| 0 L |

Considering these finite element matrix evaluations the following observations can be
made. First, to evaluate the integrals, it is possible to obtain closed-form solutions; alternatively,
numerical integration (discussed in Section 5.5) can be used. Second, we find that the stiffness,
mass, and load matrices corresponding to plane stress and plane strain finite elements can be
obtained simply by (1) not including the fourth row in the strain-displacement matrix E used in
(a) and (b), (2) employing the appropriate stress-strain matrix C in (a), and (3) using as the
differential volume element 4 dx dy instead of x dx dy, where 4 is the thickness of the element
(conveniently taken equal to 1 in plane strain analysis). Therefore, axisymmetric, plane stress,
and plane strain analyses can effectively be implemented in a single computer program. Also, the
matrix E shows that constant-strain conditions ¢,., €,,, and 7., are assumed in either analysis.

The concept of performing axisymmetric, plane strain, and plane stress analysis in an
effective manner in one computer program is, in fact, presented in Section 5.6, where we discuss
the efficient implementation of isoparametric finite element analysis.

EXAMPLE 4.18: Derive the matrices d(x, y), E(x, y), and A for the rectangular plate bending
element in Fig. E4.18.

This element is one of the first plate bending elements derived, and more effective plate
bending elements are already in use (see Section 5.4.2),

As shown in Fig. E4.18, the plate bending element considered has three degress of freedom

per node. Therefore, it is necessary to have 12 unknown generalized coordinates, ai, . . . , ai2,
w,
6%
: ~
—

Node 1

Figure E4.18 Rectangular plate bending element.
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in the displacement assumption for w. The polynomial used is
w=a + ax + asy + aux? + asxy + asy? + anx® + asx?y
+ agxy® + aigy® + anx’y + anpxy?
Hence,
ey =[1 x y x* xy y* x> 2y x»? y Xy x'] @
We can now calculate dw/dx and dw/ay:

pria + 2a4x + asy + 3ax? + 2asxy + avy? + 3anx%y + apy? (b)
and
2
7;! =@ + asx + 206y + asx? + 2aoxy + 3auoy? + anx® + 3anxy? ©
y

Using the conditions

; aw
wl' = (w)xi,y,-; o.‘r = (a_y)
Xt Yi

, i=1,...,4
. W
5-(-%).,
we can construct the matrix A, obtaining
W] [ ]
. o
Wa :
0;
Sl=A
0:4
0!
[65] o]
where
1 x oy & oxm oy A sy oxyk oy xin xyb |
1 x Yo X3 x.;y,a yi xi x3ys  xy: yi  xiye  xevi
0 0 1 0 x 2y» 0 xi 2ay 3y xi 3x,y%
A=|- : @
0 0 1 0 J;,; 2y, 0 x3 2xsys 3¥3 x3 3x4y3
0 -1 0 -2x;, -y 0 =-3x} —-2xav -yt 0 =3xpy -»
0 ~1 0 ~2x4 —‘y., 0 -3x} ~2xy —y; 0 -=3xiy —yid

which can be shown to be always nonsingular.
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To evaluate the matrix E, we recall that in plate bending analysis curvatures and moments
are used as generalized strains and stresses (see Tables 4.2 and 4.3). Calculating the required
derivatives of (b) and (c), we obtain

3*w
—aF=2a4+6a7x+2asy+6a”xy
Fw
7=2a6+2a9x+6a10y+6a,2xy (C)
2T 2oy + dagx + dany + Ganx® + Gany?
ax ay as QgX oy a1 X iy
Hence we have
0 00200 6x 2y 0 0 6xy ©
E=J0 0 0 002 0 0 2x 6y 0 6xy (f)
0000 20 0 4x 4y 0 6x* 6y°

With the matrices ®, A, and E given in (a), (d), and (f) and the material matrix C in
Table 4.3, the element stiffness matrix, mass matrix, and load vectors can now be calculated.

An important consideration in the evaluation of an element stiffness matrix is whether the
element is complete and compatible. The element considered in this example is complete as
shown in (e) (i.e., the element can represent constant curvature states), but the element is not
compatible. The compatibility requirements are violated in a number of plate bending elements,
meaning that convergence in the analysis is in general not monotonic (see Section 4.3).

EXAMPLE 4.19: Discuss the evaluation of the stiffness matrix of a flat rectangular shell
element.

A simple rectangular flat shell element can be obtained by superimposing the plate bending
behavior considered in Example 4.18 and the plane stress behavior of the element used in
Example 4.6. The resulting element is shown in Fig. E4.19. The element can be employed to
model assemblages of flat plates (e.g., folded plate structures) and also curved shells. For actual
analyses more effective shell elements are available, and we discuss here only the element in
Fig. E4.19 in order to demonstrate some basic analysis approaches.

Let Kz and Ky, be the stiffness matrices, in the local coordinate system, corresponding to
the bending and membrane behavior of the element, respectively. Then the shell element stiffness
matrix K is

~

ﬁs = 15&’2 (a)
20x20 ~
0 Ky
8X8
The matrices RM and K were discussed in Examples 4.6 and 4.18, respectively.

This shell element can now be directly employed in the analysis of a variety of shell
structures. Consider the structures in Fig. E4.19, which might be idealized as shown. Since we
deal in these analyses with six degrees of freedom per node, the element stiffness matrices
corresponding to the global degrees of freedom are calculated using the transformation given

in (441) -
— TTR*
Ko, = TR ®
where 2!:()(%‘4 = | 20%% 0

0 0 ©

4x4
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No stiffness

o, - *
—yyv' Oy
v
u Oy u

o,)‘

Shell element Plate element Plane stress element

{(a) Basic shell element with local five degrees of freedom at a node

(b) Analysis of folded plate structure

(c) Analysis of slightly curved shell
Figure E4.19 Use of a flat shell element

and T is the transformation matrix between the local and global element degrees of freedom. To
define K§ corresponding to six degrees of freedom per node, we have amended Ks on the
right-hand side of (c) to include the stiffness coefficients corresponding to the local rotations 6,
(rotations about the z-axis) at the nodes. These stiffness coefficients have been set equal to zero
in (c). The reason for doing so is that these degrees of freedom have not been included in the
formulation of the element; thus the element rotation 6, at a node is not measured and does not
contribute to the strain energy stored in the element,

The solution of a model can be obtained using K ¥ in (c) as long as the elements surround-
ing a node are not coplanar. This does not hold for the folded plate model, and considering the
analysis of the slightly curved shell in Fig. E4.19(c), the elements may be almost coplanar
(depending on the curvature of the shell and the idealization used). In these cases, the global
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stiffness matrix is singular or ill-conditioned because of the zero diagonal elements in K#¥and
difficulties arise in solving the global equilibrium equations (see Section 8.2.6). To avoid this
problem it is possible to add a small stiffness coefficient corresponding to the 6, rotation; i.e.,
instead of K¥ in (c) we use

Ry o= |5 O @
0 kI

4x4

where k is about one-thousandth of the smallest diagonal element of Ks. The stiffness coefficient
k must be large enough to allow accurate solution of the finite element system equilibrium
equations and small enough not to affect the system response significantly. Therefore, a large
enough number of digits must be used in the floating-point arithmetic (see Section 8.2.6).

A more effective way to circumvent the problem is to use curved shell elements with five
degrees of freedom per node where these are defined corresponding to a plane tangent to the
midsurface of the shell. In this case the rotation normal to the shell surface is not a degree of
freedom (see Section 5.4.2).

In the above element formulations we used polynomial functions to express the
displacements. We should briefly note, however, that for certain applications the use of other
functions such as trigonometric expressions can be effective. Trigonometric functions, for
example, are used in the analysis of axisymmetric structures subjected to nonaxisymmetric
loading (see E. L. Wilson [A]), and in the finite strip method (see Y. K. Cheung [A]). The
advantage of the trigonometric functions lies in their orthogonality properties. Namely, if
sine and cosine products are integrated over an appropriate interval, the integral can be
zero. This then means that there is no coupling in the equilibrium equations between the
generalized coordinates that correspond to the sine and cosine functions, and the equi-
librium equations can be solved more effectively. In this context it may be noted that the best
functions that we could use in the finite element analysis would be given by the eigenvectors
of the problem because they would give a diagonal stiffness matrix. However, these func-
tions are not known, and for general applications, the use of polynomial, trigonometric, or
other assumptions for the finite element displacements is most natural.

The use of special interpolation functions can of course also lead to efficient solution
schemes in the analysis of certain fluid flows (see, for example, A. T. Patera [Al).

We demonstrate the use of trigonometric functions in the following example.

EXAMPLE 4.20: Figure E4.20 shows an axisymmetric structure subjected to a nonaxisymmet-
ric loading in the radial direction. Discuss the analysis of this structure using the three-node
axisymmetric element in Example 4.17 when the loading is represented as a superposition of
Fourier components.

The stress distribution in the structure is three-dimensional and could be calculated using
a three-dimensional finite element idealization. However, it is possible to take advantage of the
axisymmetric geometry of the structure and, depending on the exact loading applied, reduce the
computational effort very significantly.

The key point in this analysis is that we expand the externally applied loads R,(8,y) in the
Fourier series:

Pc Ps
R = 2 RS cos ph + 2 R sin ph (a)
p=1

pr=1
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3-node
triangular

Ry, 6)
’ element

u = radial displacement
v = axial displacement
w = circumferential displacement

First symmetric load term First antisymmetric load term

{b) Representation of nonaxisymmetric loading
Figure E4.20 Axisymmetric structure subjected to nonaxisymmetric loading
where p. and p. are the total number of symmetric and antisymmetric load contributions about
6 = 0, respectively. Figure E4.20(b) illustrates the first terms in the expansion of (a).
The complete analysis can now be performed by superimposing the responses due to the

symmetric and antisymmetric load contributions defined in (a). For example, considering the
symmetric response, we use for an element

Pc
u(x,y, 6) = 21 cos pf H&"
"

Pe
v(x, y 0) = 21 cos pf Hv* ®
-

Pe
w(x,y, 0) = > sin po HW?
p=1
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where for the triangular elements, referring to Example 4.17,
H=[1 x y]A{! ©

and the &, %, and W are the element unknown generalized nodal point displacements corre-
sponding to mode p.

We should note that we superimpose in (b) the response measured in individual harmonic
displacement distributions. Using (b), we can now establish the strain-displacement matrix of the
element. Since we are dealing with a three-dimensional stress distribution, we use the expression
for three-dimensional strain distributions in cylindrical coordinates:

u
or
av
ay
u Low
r r o8
€= du do @
By | or
w13
dy r a0
ow l1dou w
ki
where € = [e, €y €0 Yo Yo Yol ©

Substituting from (b) into (d) we obtain a strain-displacement matrix B, for each value of
p, and the total strains can be thought of as the superposition of the strain distributions contained
in each harmonic.

The unknown nodal point displacements can now be evaluated using the usual procedures.
The equilibrium equations corresponding to the generalized nodal point displacements U?, V¥,

Wr,i=1,...,N(Nisequal to the total number of nodes) and p = 1, . . ., p, are evaluated
as given in (4.17) to (4.22), where we now have
U =[U7T U7 ... U] )
and
U=y v wriup . W ®

In the calculations of K and Rs we note that because of the orthogonality properties

2m
J sin nB sin mf dé = 0 n+m
0

o (h)
J cos nfcos mbdo = 0 n+Fm

0

the stiffness matrices corresponding to the different harmonics are decoupled from each other.
Hence, we have the following equilibrium equations for the structure:

KPUP = R p=1...,p: @)

where K? and R are the stiffness matrix and load vector corresponding to the pth harmonic.
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Solution of the equations in (i) gives the generalized nodal point displacements of each element,
and (b) then yields all element internal displacements.

In the above displacement solution we considered only the symmetric load contributions.
But an analogous analysis can be performed for the antisymmetric load harmonics of (a) by
simply replacing in (b) to (i) all sine and cosine terms by cosine and sine terms, respectively. The
complete structural response is then obtained by superimposing the displacements corresponding
to all harmonics.

Although we have considered only surface loading in the discussion, the analysis can be
extended using the same approach to include body force loading and initial stresses.

Finally, we note that the computational effort required in the analysis is directly propor-
tional to the number of load harmonics used. Hence, the solution procedure is very efficient if
the loading can be represented using only a few harmonics (e.g., wind loading) but may be
inefficient when many harmonics must be used to represent the loading (e.g., a concentrated
force).

4.2.4 Lumping of Structure Properties and Loads

A physical interpretation of the finite element procedure of analysis as presented in the
previous sections is that the structure properties—stiffness and mass—and the loads,
internal and external, are lumped to the discrete nodes of the element assemblage using the
virtual work principle. Because the same interpolation functions are employed in the

fe
elong
edge 2-1
1
3.0
20~
1.0
x
e 2.0 >
V2 \4]
24 Node 11
- - U1
uz
1.0
A" f
o o Uy
3 s 4
Plane stress element,
B thickness = 0.5
f,i |
slong
edge 3-4 |10 | :gge;_;_"
"X

R=10.5 0.5 0.5 0.5 0.0 0.0 0.0 0.0]

Figure 4.6 Body force distribution and corresponding lumped body force vector Rz of a
rectangular element
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calculation of the load vectors and the mass matrix as in the evaluation of the stiffness
matrix, we say that “consistent” load vectors and a consistent mass matrix are evaluated.
In this case, provided certain conditions are fulfilled (see Section 4.3.3), the finite element
solution is a Ritz analysis.

It may now be recognized that instead of performing the integrations leading to the
consistent load vector, we may evaluate an approximate load vector by simply adding to the
actually applied concentrated nodal forces Rc additional forces that are in some sense
equivalent to the distributed loads on the elements. A somewhat obvious way of constructing
approximate load vectors is to calculate the total body and surface forces corresponding to
an element and to assign equal parts to the appropriate element nodal degrees of freedom.
Consider as an example the rectangular plane stress element in Fig. 4.6 with the variation
of the body force shown. The total body force is equal to 2.0, and hence we obtain the
lumped body force vector given in the figure.

In considering the derivation of an element mass matrix, we recall that the inertia
forces have been considered part of the body forces. Hence we may also establish an
approximate mass matrix by lumping equal parts of the total element mass to the nodal
points. Realizing that each nodal mass essentially corresponds to the mass of an element
contributing volume around the node, we note that using this procedure of lumping mass,
we assume in essence that the accelerations of the contributing volume to a node are
constant and equal to the nodal values.

An important advantage of using a lumped mass matrix is that the matrix is diagonal,
and, as will be seen later, the numerical operations for the solution of the dynamic equations
of equilibrium are in some cases reduced very significantly.

EXAMPLE 4.21: Evaluate the lumped body force vector and the lumped mass matrix of the
element assemblage in Fig. E4.5.
The lumped mass matrix is

100 %00 80 2 000
M=pJ’ (1)0%0dx+pJ’ (l+-—> 0 § 0])dx
0 0 00 0 40 0 0 i
150 0 0
or M=§ 0 670 0
0 0 520

Similarly, the lumped body force vector is

R; = (J:OO(I) i 1) dx + J:w (1 +%>2 g (—11—0>dx>f2(t)
0 }
) 150
=3 25022 f2(2)

It may be noted that, as required, the sums of the elements in M and R in both this
example and in Example 4.5 are the same.
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When using the load lumping procedure it should be recognized that the nodal point
loads are, in general, calculated only approximately, and if a coarse finite element mesh is
employed, the resulting solution may be very inaccurate. Indeed, in some cases when
higher-order finite elements are used, surprising results are obtained. Figure 4.7 demon-

strates such a case (see also Example 5.12).

T y Thickness = 1 cm

/,
7 P
T > p = 300 N/em?
2cmZy — > E=3x 107 N/cm?
> v=03
- 6cm -
(a) Problem
Ty
V/ Integration
- » P p%int Fox Ty Fxy
° T
A 4p A 300.00| 0.0 0.0
% B xX¢—> 7 B 300.00| 0.0 0.0
_ C x _p c 300.00| 0.0 0.0
T3
(b) Finite element model (All stresses have units of N/cm?)
with consistent loading
Ty
Z Integration
P > g pgc'al}nt Foox Ty Oxy
A X
A 301.41| -7.85 | -24.72
—% g xX¢—>—r B 296.74| 955 | 0.0
. X g P c 301.41) -7.85 | 2472
T2

{c) Finite element model
with lumped loading

Figure 4.7 Some sample analysis results with and without consistent loading

(All stresses have units of Nfcm?)
(3 X 3 Gauss points are used, see Table 5.7)

Considering dynamic analysis, the inertia effects can be thought of as body forces.
Therefore, if a lumped mass matrix is employed, little might be gained by using a consistent
load vector, whereas consistent nodal point loads should be used if a consistent mass matrix

is employed in the analysis.

4.2.5 Exercises

4.1. Use the procedure in Example 4.2 to formally derive the principle of virtual work for the

one-dimensional bar shown.
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,/ A(x)

X, u e — R
t
} L {

E = Young's modulus

The differential equations of equilibrium are

Ea(Aa—“>+ff=0

ax dx
EA ﬂ =R
ax x=L

4.2. Consider the structure shown.
(a) Write down the principle of virtual displacements by specializing the general equation (4.7)

to this case.
(b) Use the principle of virtual work to check whether the exact solution is
72 24x\ F
=f[{=4 — ] —
7 (73 73L> A

Use the following three virtual displacements: (i) u(x) = aox, (i) u(x) = aox?,
(iii) u(x) = aox.
(¢) Solve the governing differential equations of equilibrium,

a du
E—|A—) =
6x< E)x) 0
EA E)E =F
ax x=L

(d) Use the three different virtual displacement patterns given in part (b), substitute into the
principle of virtual work using the exact solution for the stress [from part (c)], and explicitly
show that the principle holds.

— x

(O O1AVANO)

AT

e

F = total force exerted on right end
E = Young's modulus
A(x) = Apl1 - x/4L)
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4.3. Consider the bar shown.
(a) Solve for the exact displacement response of the structure.
(b) Show explicitly that the principle of virtual work is satisfied with the displacement patterns
(i) # = ax and (ii) ¥ = ax>
(¢) Identify a stress 7., for which the principle of virtual work is satisfied with pattern (ii) but
not with pattern (i).

A= Ap(4-3x/L)

£ = constant force per unit length
Young's modulus £

4.4. For the two-dimensional body shown, use the principle of virtual work to show that the body
forces are in equilibrium with the applied concentrated nodal loads.

f2=10(1 + 2x) N/m’
f2=20(1 + y) N/m®
R =60N

Ry=45N

Ry =15N

Unit thickness
2m

B
fY
8 Tm

C
X

Ry —

Ry Ry
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4.5. Idealize the bar structure shown as an assemblage of 2 two-node bar elements.
(a) Calculate the equilibrium equations KU = R,
(b) Calculate the mass matrix of the element assemblage.

Ny
3
©
=

/

— 18 | == 20Acf,

/ f8(x) = 0.1f, force/unit volume

—] E = Young's modulus
A0(1 - 17/120)'. n <60 p =mass denslty

t\\\\\\\\l\\\\\\S
x

>
i

f‘lx
10.0

t Time

4.6. Consider the disk with a centerline hole of radius 20 shown spinning at a rotational velocity of
o radians/second.

20 i‘ 60 80

30 I_XTU___—_——___—__—__T_—-‘-

| /= Young's modulus

| p = mass density
v = Poisson's ratio

Idealize the structure as an assemblage of 2 two-node elements and calculate the steady-state
(pseudostatic) equilibrium equations. (Note that the strains are now du/dx and u/x, where u/x
is the hoop strain.)
4.7. Consider Example 4.5 and the state at time ¢t = 2.0 with U,(f) = O at all times.
(a) Use the finite element formulation given in the example to calculate the static nodal point
displacements and the element stresses.
(b) Calculate the reaction at the support.
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(c) Let the calculated finite element solution be # €. Calculate and plot the error r measured in
satisfying the differential equation of equilibrium, i.e.,

o ou F"-)]
= E|—|A + f2A
4 [ax ( ox f
(d) Calculate the strain energy of the structure as evaluated in the finite element solution and
compare this strain energy with the exact strain energy of the mathematical model.

4.8. The two-node truss element shown, originally at a uniform temperature, 20°C, is subjected to a
temperature variation

0 = (10x + 20)°C

Calculate the resulting stress and nodal point displacement. Also obtain the analytical solution,
assuming a continuum, and briefly discuss your results.

: 2 E = 200,000
g; A=1

a=1x10" (per °C)

4.9. Consider the finite element analysis illustrated.

5 psi
Young's modulus E .
Poisson's rstio v = 0.30 2 psi
4 Us Uy t t Uz
U —-Ua Usp
3in
U1 U3 U U11
U
I 4 in J Y 4in ! Y 4 in | ~1o

Plane stress condition (thickness t).
All elements sre 4-node elements

(a) Begin by establishing the typical matrix B of an element for the vector @’ =
[ul U, Wy V2 Us U3 Us Ua)

(b) Calculate the elements of the K matrix, Ku,u,, Kusv;» Ku,ug, and Kygu,, of the structural
assemblage.

(c) Calculate the nodal load Ry due to the linearly varying surface pressure distribution.
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A2 AV
d
2 1 o
3in
AV AV
u3 u,
3 L 7 -
f———————— 4 in —————»

4.10. Consider the simply supported beam shown.
(a) Assume that usual beam theory is employed and use the principle of virtual work to evaluate
the reactions R, and R,.

(b) Now assume that the beam is modeled by a four-node finite element. Show that to be able
to evaluate R, and R, as in part (a) it is necessary that the finite element displacement
functions can represent the rigid body mode displacements.

P

- a —1: b—

R1 Ry

4.11. The four-node plane stress element shown carries the initial stresses
75, = 0 MPa
75 = 10 MPa
75, = 20 MPa
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(a) Calculate the corresponding nodal point forces R;.

(b) Evaluate the nodal point forces Rs equivalent to the surface tractions that correspond to the
element stresses. Check your results using elementary statics and show that Ry is equal to R,
evaluated in part (a). Explain why this result makes sense.

(c) Derive a general result: Assume that any stresses are given, and R, and R; are calculated.
What conditions must the given stresses satisfy in order that R; = Rs, where the surface
tractions in Rs are obtained from equation (b) in Example 4.2?

- 60 mm

30 mm

Young's modulus £
Poisson's rstio v
Thickness = 0.5 mm

4.12. The four-node plane strain element shown is subjected to the constant stresses

Tox = 20 psi
Ty = 10 psi
Ty = 10 psi

Calculate the nodal point displacements of the element.

|I 3in :I

X

Young's modulus E = 30 x 10° psi
Poisson's ratio v = 0.30
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4.13. Consider element 2 in Fig. E4.9.

(a) Show explicitly that

F® = j BOT 1@ gy®
)

(b) Show that the element nodal point forces F® are in equilibrium.
4.14. Assume that the element stiffness matrices K4 and Kz corresponding to the element displace-

ments shown have been calculated. Assemble these element matrices directly into the global
structure stiffness matrix with the displacement boundary conditions shown.

Uy

Structural assemblage

and degrees of freedom

as,

as;
Laﬂ

az
an
asz
Qs
asz

ae2

as
az
ass
as3
asa

Aaes

Qs
Az
257
Qaq
Aasq

Qsa

7777+

as
azs
ass
Qys
ass

Aes

V3

aie
(251
ase
Qe
ase

Qass

V2
u2

b 14
b 24
bsa
bas
bss

| V2 4]

2 L 2

U
A
Individual elements

us
U bll b12 b13
v by bn bx
Uz K, = by bxn by
U2 i by by ba
Us bsy, bsx bs3
v3 by bex bes

bes
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bis
bas
bss
bus
b55
bes

61

1

b 16
b 26
b36
bas
bss

bes

4]

U
1
6,
uz
U2

6

221

Uy

4.15. Assume that the element stiffness matrices K, and Ky corresponding to the element displace-
ments shown have been calculated. Assemble these element matrices directly into the global
structure stiffness matrix with the displacement boundary conditions shown.

Uz

U

NN

NN\

Ka=

Ks =

bey .

an -

cee 818 | Uy

H 1]

. L]

ﬂssj va

cee beg |

: 14}

61

s beg | 62
-
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4,16. Consider Example 4.11. Assume that at the support A, the roller allows a displacement only along
a slope of 30 degrees to the horizontal direction. Determine the modifications necessary in the
solution in Example 4.11 to obtain the structure matrix K for this situation.
(a) Consider imposing the zero displacement condition exactly.

(b) Consider imposing the zero displacement condition using the penalty method.

»

2y

Quadrilateral plane
stress element

A

t

30°

Y

|

4.17. Consider the beam element shown. Evaluate the stiffness coefficients k;, and k».
(a) Obtain the exact coefficients from the solution of the differential equation of equilibrium
(using the mathematical model of Bernoulli beam theory).

(b) Obtain the coefficients using the principle of virtual work with the Hermitian beam functions

(see Example 4.16).

n

hix) = hg(1+ x/L)

!

hto Uz,‘q—ig—’x

us

:

Young's modulus £
Unit thickness

Uy

Ug
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4.18. Consider the two-element assemblage shown.
(a) Evaluate the stiffness coefficients X, X4 for the finite element idealization.
(b) Calculate the load vector of the element assemblage.

< 4.0 -
A2
3
3 1 1
Element 1
4.0
Yi
1.0 Element 2
A Us AU
Y %J N
4 2. &
T R .
X
p
E = 200,000
v=03

Plane stress, thickness = 0.1

4.19. Consider the two-element assemblage in Exercise 4.18 but now assume axisymmetric condi-
tions. The y-axis is the axis of revolution.
(a) Evaluate the stiffness coefficients X;,, K4 for the finite element idealization.
(b) Evaluate the corresponding load vector.
4.20. Consider Example 4.20 and let the loading on the structure be R, = fi(¢) cos 6.
(a) Establish the stiffness matrix, mass matrix, and load vector of the three-node element

y.v |
f(t)
\ 1
1 -
¢ - xlorr), u
zw 2 3
-t 10 —{: 1-——|
E = 200,000
v=03

p = mass density
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shown. Establish explicitly all matrices you need but do not perform any multiplications
and integrations.
(b) Explain (by physical reasoning) that your assumptions on u, v, w make sense.

4.21. An inviscid fluid element (for acoustic motions) can be obtained by considering only volumetric

strain energy (since inviscid fluids provide no resistance to shear). Formulate the finite element
fluid stiffness matrix for the four-node plane element shown and write out all matrices required.
Do not actually perform any integrations or matrix multiplications. Hint: Remember that
p=—BAV/Vandt" =[r, 7, 7, Tl =[—-p —p 0 —plandAV/V = ¢, + ¢,

Thickness t
Bulk modulus 8

r———c' —
w
F-3

4.22, Consider the element assemblages in Exercises 4.18 and 4.19. For each case, evaluate a

lumped mass matrix (using a uniform mass density p) and a lumped load vector.

4.23. Use a finite element program to solve the model shown of the problem in Example 4.6.

(a) Print out the element stresses and element nodal point forces and draw the “exploded
element views” for the stresses and nodal point forces as in Example 4.9,

(b) Show that the element nodal point forces of element 5 are in equilibrium and that the
element nodal point forces of elements 5 and 6 equilibrate the applied load.

(c) Print out the reactions and show that the element nodal point forces equilibrate these
reactions.

(d) Calculate the strain energy of the finite element model.

P=100

Eight constant-strsin trisngles
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4.24. Use a finite element program to solve the model shown of the problem in Example 4.6. Print out
the element stresses and reactions and calculate the strain energy of the model. Draw the
“exploded element views” for the stresses and nodal point forces. Compare your results with
those for Exercise 4.23 and discuss why we should not be surprised to have obtained different
results (although the same kind and same number of elements are used in both idealizations).

P=100

Eight constant-strain triangles

43 CONVERGENCE OF ANALYSIS RESULTS

Since the finite element method is a numerical procedure for solving complex engineering
problems, important considerations pertain to the accuracy of the analysis results and the
convergence of the numerical solution. The objective in this section is to address these
issues. We start by defining in Section 4.3.1 what we mean by convergence. Then we
consider in a rather physical manner the criteria for monotonic convergence and relate these
criteria to the conditions in a Ritz analysis (introduced in Section 3.3.3). Next, some
important properties of the finite element solution are summarized (and proven) and the
rate of convergence is discussed. Finally, we consider the calculation of stresses and the
evaluation of error measures that indicate the magnitude of the error in stresses at the
completion of an analysis.

We consider in this section displacement-based finite elements leading to monotoni-
cally convergent solutions. Formulations that lead to a nonmonotonic convergence are
considered in Sections 4.4 and 4.5.

4.3.1 The Model Problem and a Definition of Convergence

Based on the preceding discussions, we can now say that, in general, a finite element
analysis requires the idealization of an actual physical problem into a mathematical model
and then the finite element solution of that model (see Section 1.2). Figure 4.8 summarizes
these concepts. The distinction given in the figure is frequently not recognized in practical
analysis because the differential equations of motjon of the mathematical model are not
dealt with, and indeed the equations may be unknown in the analysis of a complex problem,
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Actual Physical Problem

Geometric domain
Material

Loading

Boundary conditions

l

Mathematical Model (which corresponds to a mechanical idealization)

Kinematics, e.g., truss 3
plane stress
three-dimensional
gétr;:hhoff plate vields:
. ) o Governing differential
Material, e.g.,  isotropic linear equation(s) of motion
elastic e.g.
Mooney-Rivlin rubber >
etc. 8 (EA B_u) = - plx)
Loading, e.g., concentrated ax 9x
centrifugal and principle of
etc. virtual work equation
Boundary prescribed (see Example 4.2)
Conditions, e.g., displecements
etc. J
Finite Element Solution Yields:
Approximate solution of the
Choice of elements and solution procedures mathematical model (that is,

approximate response of mechanical
idealization)

Figure 4.8 Finite element solution process

such as the response prediction of a three-dimensional shell. Instead, in a practical analysis,
a finite element idealization of the physical problem is established directly. However, to
study the convergence of the finite element solution as the number of elements increases,
itis valuable to recognize that a mathematical model is actually implied in the finite element
representation of the physical problem. That is, a proper finite element solution should
converge (as the number of elements is increased) to the analytical (exact) solution of the
differential equations that govern the response of the mathematical model. Furthermore,
the convergence behavior displays all the characteristics of the finite element scheme be-
cause the differential equations of motion of the mathematical model express in a very
precise and compact manner all basic conditions that the solution variables (stress, dis-
placement, strain, and so on) must satisfy. If the differential equations of motion are not
known, as in a complex shell analysis, and/or analytical solutions cannot be obtained, the
convergence of the finite element solutions can be measured only on the fact that all basic
kinematic, static, and constitutive conditions contained in the mathematical model must
ultimately (at convergence) be satisfied. Therefore, in all discussions of the convergence of
finite element solutions we imply that the convergence to the exact solution of a mathemat-
ical model is meant.

Here it is important to recognize that in linear elastic analysis there is a unique exact
solution to the mathematical model. Hence if we have a solution that satisfies the governing
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mathematical equations exactly, then this is the exact solution to the problem (see Sec-
tion 4.3.4).

In considering the approximate finite element solution to the exact response of the
mathematical model, we need to recognize that different sources of errors affect the finite
element solution results. Table 4.4 summarizes various general sources of errors. Round- off
errors are a result of the finite precision arithmetic of the computer used; solution errors in
the constitutive modeling are due to the linearization and integration of the constitutive
relations; solution errors in the calculation of the dynamic response arise in the numerical
integration of the equations of motion or because only a few modes are used in a mode
superposition analysis; and solution errors arise when an iterative solution is obtained
because convergence is measured on increments in the solution variables that are small but
not zero. In this section, we will discuss only the finite element discretization errors, which
are due to interpolation of the solution variables. Thus, in essence, we consider in this
section a model problem in which the other solution errors referred to above do not arise:
a linear elastic static problem with the geometry represented exactly with the exact calcula-
tion of the element matrices and solution of equations, i.e., also negligible round-off
errors. For ease of presentation, we assume that the prescribed displacements are zero.
Nonzero displacement boundary conditions would be imposed as discussed in Sec-
tion 4.2.2, and such boundary conditions do not change the properties of the finite element
solution.

For this model problem, let us restate for purposes of our discussion the basic equation
of the principle of virtual work governing the exact solution of the mathematical model

f €71 dv= f TSy ds + f a’fe av (4.62)
\4 Sf \4

TABLE 4.4 Finite element solution errors

Error Error occurrence in See section
Discretization Use of finite element 421
interpolations for geome- 423,53
try and solution variables
Numerical Evaluation of finite 5.5
integration element matrices using 6.8.4
in space numerical integration
Evaluation of Use of nonlinear material 6.6.3
constitutive, models 6.6.4
relations”
Solution of Direct time integration, 9.2-9.4
dynamic equi-  mode superposition
librium
equations
Solution of Gauss-Seidel, conjugate 8.3, 84
finite element gradient, Newton-Raphson, 9.5
equations by quasi-Newton methods, 104
iteration eigensolutions
Round-off Setting up equations and 8.2.6

their solution
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We recall that for T to be the exact solution of the mathematical model, (4.62) must
hold for arbitrary virtual displacements U (and corresponding virtual strains € ), with @zero
at and corresponding to the prescribed displacements. A short notation for (4.62) 1s

Find the displacements u (and corresponding stresses 7) such that

a(u,v) = (f, v) for all admissible v (4.63)

Here a(:,") is a bilinear form and (f,) is a linear form®>—these forms depend on the mathe-
matical model considered—u is the exact displacement solution, v is any admissible virtual
displacement [“admissible” because the functions v must be continuous and zero at and
corresponding to actually prescribed displacements (see (4.7)], and f represents the forcing
functions (loads % and f®). Note that the notation in (4.63) implies an integration process.
The bilinear forms a(-,-) that we consider in this section are symmetric in the sense that
a(u, v) = a(v, u).

From (4.63) we have that the strain energy corresponding to the exact solution u is
1/2 a(u, u). We assume that the material properties and boundary conditions of our model
problem are such that this strain energy is finite. This is not a serious restriction in practice
but requires the proper choice of a mathematical model. In particular, the material proper-
ties must be physically realistic and the load distributions (externally applied or due to
displacement constraints) must be sufficiently smooth. We have discussed the need of
modeling the applied loads properly already in Section 1.2 and will comment further on it
in Section 4.3 .4.

Assume that the finite element solution is u,: this solution lies of course in the finite
element space given by the displacement interpolation functions (% denoting here the size
of the generic element and hence denoting a specific mesh). Then we define “convergence”
to mean that

alu —w,u—-u)—0 ash—0 (4.64)

or, equivalently [see (4.90)], that
a(u;, us) — a(u, u) ash—0

Physically, this statement means that the strain energy calculated by the finite element
solution converges to the exact strain energy of the mathematical model as the finite element
mesh is refined. Let us consider a simple example to show what we mean by the bilinear
form a(,-).

® The bilinearity of af(:,-) refers to the fact that for any constants 7y, and 7y,
a(yiu; + g, v) = yia(u,, v) + yau,, v)
a(u, v, + v2v2) = malu, vi) + yau, vy)

and the linearity of (f,) refers to the fact rthat for any constants y, and y,,

& vvi+9v) = Nl vi) + 1l v).
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EXAMPLE 4.22: Assume that a simply supported prestressed membrane, with (constant)
prestress tension T, subjected to transverse loading p is to be analyzed (see Fig. E4.22). Establish
for this problem the form (4.63) of the principle of virtual work.

Hinged on all edges

Z
y 471» Tension T,

Figure E4.22 Prestressed membrane

The principle of virtual work gives for this problem

M
dx ax
T dxdy = w d
-Lff a_v_vxy prxdy
ay dy

where w(x, y) is the transverse displacement. The left-hand side of this equation gives the bilinear
form a(v, ), with v = W, u = w, and the integration on the right-hand side gives (f, v).

Depending on the specific (properly formulated) displacement-based finite elements
used in the analysis of the model problem defined above, we may converge monotonically
or nonmonotonically to the exact solution as the number of finite elements is increased. In
the following discussion we consider the criteria for the monotonic convergence of solutions.
Finite element analysis conditions that lead to nonmonotonic convergence are discussed in
Section 4 .4.

4.3.2 Criteria for Monotonic Convergence

For monotonic convergence, the elements must be complete and the elements and mesh must
be compatible. If these conditions are fulfilled, the accuracy of the solution results will
increase continuously as we continue to refine the finite element mesh. This mesh re-
finement should be performed by subdividing a previously used element into two or more
elements; thus, the old mesh will be “embedded” in the new mesh. This means mathemat-
ically that the new space of finite element interpolation functions will contain the previously
used space, and as the mesh is refined, the dimension of the finite element solution space
will be continuously increased to contain ultimately the exact solution.

The requirement of completeness of an element means that the displacement functions
of the element must be able to represent the rigid body displacements and the constant
strain states.
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The rigid body displacements are those displacement modes that the element must be
able to undergo as a rigid body without stresses being developed in it. As an example, a
two-dimensional plane stress element must be able to translate uniformly in either direction
of its plane and to rotate without straining. The reason that the element must be able to
undergo these displacements without developing stresses is illustrated in the analysis of the
cantilever shown in Fig. 4.9: the element at the tip of the beam—for any element size—
must translate and rotate stress-free because by simple statics the cantilever is not subjected
to stresses beyond the point of load application.

The number of rigid body modes that an element must be able to undergo can usually
be identified without difficulty by inspection, but it is instructive to note that the number of
element rigid body modes is equal to the number of element degrees of freedom minus the
number of element straining modes (or natural modes). As an example, a two-noded truss
has one straining mode (constant strain state), and thus one, three, and five rigid body modes
in one-, two-, and three-dimensional conditions, respectively. For more complex finite

-,
N
,A
~ 7

(a) Rigid body modes of a plane stress element

Distributed
foad p

AN

Rigid body translation
and rotation;

element must be
stress-free for any
element size

N\

(b) Analysis to illustrate the rigid body mode
conditon

Figure 4.9 Use of plane stress element in analysis of cantilever
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elements the individual straining modes and rigid body modes are displayed effectively by
representing the stiffness matrix in the basis of eigenvectors. Thus, solving the eigenproblem

Kb = rd (4.65)
we have (see Section 2.5)

K® = ®A (4.66)
where @ is a matrix storing the eigenvectors ¢, . . ., &, and A is a diagonal matrix storing

the corresponding eigenvalues, A = diag(A;). Using the eigenvector orthonormality prop-
erty we thus have

PKd = A 4.67)

We may look at A as being the stiffness matrix of the element corresponding to the
eigenvector displacement modes. The stiffness coefficients Ai,. . ., A, display directly how
stiff the element is in the corresponding displacement mode. Thus, the transformation in
(4.67) shows clearly whether the rigid body modes and what additional straining modes are
present.'’® As an example, the eight eigenvectors and corresponding eigenvalues of a four-
node element are shown in Fig. 4.10.

The necessity for the constant strain states can be physically understood if we imagine
that more and more elements are used in the assemblage to represent the structure. Then
in the limit as each element approaches a very small size, the strain in each element
approaches a constant value, and any complex variation of strain within the structure can
be approximated. As an example, the plane stress element used in Fig. 4.9 must be able to
represent two constant normal stress conditions and one constant shearing stress condition.
Figure 4.10 shows that the element can represent these constant stress conditions and, in
addition, contains two flexural straining modes.

The rigid body modes and constant strain states that an element can represent can also
be directly identified by studying the element strain-displacement matrix (see Exam-
ple 4.23).

The requirement of compatibility means that the displacements within the elements
and across the element boundaries must be continuous. Physically, compatibility ensures
that no gaps occur between elements when the assemblage is loaded. When only transla-
tional degrees of freedom are defined at the element nodes, only continuity in the displace-
ments u, v, or w, whichever are applicable, must be preserved. However, when rotational
degrees of freedom are also defined that are obtained by differentiation of the transverse
displacement (such as in the formulation of the plate bending element in Example 4.18), it
is also necessary to satisfy element continuity in the corresponding first displacement
derivatives. This is a consequence of the kinematic assumption on the displacements over
the depth of the plate bending element; that is, the continuity in the displacement w and the
derivatives ow/dx and/or dw/dy along the respective element edges ensures continuity of
displacements over the thickness of adjoining elements.

Compatibility is automatically ensured between truss and beam elements because
they join only at the nodal points, and compatibility is relatively easy to maintain in

'9Note also that since the finite element analysis overestimates the stiffness, as discussed in Section 4.3.4,
the “smaller” the eigenvalues, the more effective the element.
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Figure 4,10 Eigenvalues and eigenvectors of four-node plane stress element
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two-dimensional plane strain, plane stress, and axisymmetric analysis and in three-
dimensional analysis, when only u, v, and w degrees of freedom are used as nodal point
variables. However, the requirements of compatibility are difficult to satisfy in plate bend-
ing analysis, and particularly in thin shell analysis if the rotations are derived from the
transverse displacements. For this reason, much emphasis has been directed toward the
development of plate and shell elements, in which the displacements and rotations are
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variables (see Section 5.4). With such elements the compatibility requirements are just as
easy to fulfill as in the case of dealing only with translational degrees of freedom.

Whether a specific element is complete and compatible depends on the formulation
used, and each formulation need be analyzed individually. Consider the following simple
example.

EXAMPLE 4.23: Investigate if the plane stress element used in Example 4.6 is compatible and
complete.
We have for the displacements of the element,

u(x,y) = ay + aox + asy + agxy
o(x, y) = By + Box + Biy + Baxy

Observing that the displacements within an element are continuous, in order to show that
the element is compatible, we need only investigate if interelement continuity is also preserved
when an element assemblage is loaded. Consider two elements interconnected at two node points
(Fig. E4.23) on which we impose two arbitrary displacements. It follows from the displacement
assumptions that the points (i.e., the material particles) on the adjoining element edges displace
linearly, and therefore continuity between the elements is preserved. Hence the element is

compatible,
. U = U3 ;2/- V3
Node 3 g _ocmo=o="""" \;I """""""""
2.3 i) 2 Particles on element edges
’ { remeln together
!
*e
[}
)
,‘ Vi= Vy
i /
A T 1,4 ; ~~~~~~~~~~~~~ ;
ol
U= Uy
X, u

Figure E4.23 Compatibility of plane stress element

Considering completeness, the displacement functions show that a rigid body translation
in the x direction is achieved if only a, is nonzero. Similarly, a rigid body displacement in the
y direction is imposed by having only 8, nonzero, and for a rigid body rotation a; and 8, must
be nonzero only with 8; = —a;3. The same conclusion can also be arrived at using the matrix
E that relates the strains to the generalized coordinates (see Example 4.6). This matrix also
shows that the constant strain states are possible. Therefore the element is complete.




234 Formulation of the Finite Element Method Chap. 4

4.3.3 The Monotonically Convergent Finite Element
Solution: A Ritz Solution

We observed earlier that the application of the principle of virtual work is identical to using
the stationarity condition of the total potential of the system (see Example 4.4). Considering
also the discussion of the Ritz method in Section 3.3.3, we can conclude that monotonically
convergent displacement-based finite element solutions are really only applications of this
method. In the finite element analysis the Ritz functions are contained in the element
displacement interpolation matrices H™, m = 1, 2,. . ., and the Ritz parameters are the
unknown nodal point displacements stored in U. As we discuss further below, the mathe-
matical conditions on the displacement interpolation functions in the matrices H™, in order
that the finite element solution be a Ritz analysis, are exactly those that we identified earlier
using physical reasoning. The correspondence between the analysis methods is illustrated
in Examples 3.22 and 4.5.
Considering the Ritz method of analysis with the finite element interpolations, we
have
I1 = }U'KU — U'R (4.68)

where II is the total potential of the system. Invoking the stationarity of IT with respect to
the Ritz parameters U; stored in U and recognizing that the matrix K is symmetric, we
obtain

KU =R (4.69)

The solution of (4.69) yields the Ritz parameters, and then the displacement solution in the
domain considered is

u™ = H™U: m=1,2... (4.70)

The relations in (4.68) to (4.70) represent a Ritz analysis provided the functions used
satisfy certain conditions. We defined in Section 3.3.2 a C™! variational problem as one
in which the variational indicator of the problem contains derivatives of order m and lower.
We then noted that for convergence the Ritz functions must satisfy the essential (or geomet-
ric) boundary conditions of the problem 1nv?olv1ng derivatives up to order (m — 1), but that
the functions do not need to satisfy the natural (or force) boundary conditions involving
derivatives of order m to (2m — 1) because these conditions are implicitly contained in the
variational indicator II. Therefore, in order for a finite element solution to be a Ritz analysis,
the essential boundary conditions must be completely satisfied by the finite element nodal
point displacements and the displacement interpolations between the nodal points. How-
ever, in selecting the finite element displacement functions, no special attention need be
given to the natural boundary conditions because these conditions are imposed with the
load vector and are satisfied approximately in the Ritz solution. The accuracy with which
the natural or force boundary conditions are satisfied depends on the specific Ritz functions
employed, but this accuracy can always be increased by using a larger number of functions,
i.e., a larger number of finite elements to model the problem.

In the classical Ritz analysis the Ritz functions extend over the complete domain
considered, whereas in the finite element analysis the individual Ritz functions extend only
over subdomains (finite elements) of the complete region. Hence, there must be a question
as to what conditions must be fulfilled by the finite element interpolations with regard to
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continuity requirements between adjacent subdomains. To answer this question we consider
the integrations that must be performed to evaluate the coefficient matrix K. We recognize
that in considering a C™"! problem we need continuity in at least the (m — 1)st derivatives
of the Ritz trial functions in order that we can perform the integrations across the element
boundaries. However, this continuity requirement corresponds entirely to the element
compatibility conditions that we discussed in Section 4.3.2. For example, in the analysis of
fully three-dimensional problems only the displacements between elements must be contin-
uous, whereas in the analysis of plate problems formulated using the Kirchhoff plate theory
we also need continuity in the first derivatives of the displacement functions.

In summary, therefore, for a C™~! problem [C™~! = continuity on trial functions and
their derivatives up to order (m — 1)], in the classical Ritz analysis the trial functions are

.selected to satisfy exactly all boundary conditions that involve derivatives up to order
(m — 1). The same holds in finite element analysis, but in addition, continuity in the trial
functions and their derivatives up to order (m — 1) must be satisfied between elements in
order for the finite element solution to correspond to a Ritz analysis.

Although the classical Ritz analysis procedure and the displacement-based finite
element method are theoretically identical, in practice, the finite element method has
important advantages over a conventional Ritz analysis. One disadvantage of the conven-
tional Ritz analysis is that the Ritz functions are defined over the whole region considered.
For example, in the analysis of the cantilever in Example 3.24, the Ritz functions spanned
from x = 0 to x = L. Therefore, in the conventional Ritz analysis, the matrix K is a full
matrix, and as pointed out in Section 8.2.3, the numerical operations required for solution
of the resulting algebraic equations are considerable if many functions are used.

A particular difficulty in a conventional Ritz analysis is the selection of appropriate
Ritz functions since the solution is a linear combination of these functions. In order to solve
accurately for large displacement or stress gradients, many functions may be needed.
However, these functions also unnecessarily extend over the regions in which the displace-
ments and stresses vary rather slowly and where not many functions are needed.

Another difficulty arises in the conventional Ritz analysis when the total region of
interest is made up of subregions with different kinds of strain distributions. As an example,
consider a plate that is supported by edge beams and columns. In such a case, the Ritz
functions used for one region (e.g., the plate) are not appropriate for the other regions (i.e.,
the edge beams and columns), and special displacement continuity conditions or boundary
relations must be introduced.

~ The few reasons given already show that the conventional Ritz analysis is, in general,
not particularly computer-oriented, except in some cases for the development of special-
purpose programs. On the other hand, the finite element method has to a large extent
removed the practical difficulties while retaining the advantageous properties of the con-
ventional Ritz method. With regard to the difficulties mentioned above, the selection of Ritz
functions is handled by using an adequate element library in the computer program. The use
of relatively many functions in regions of high stress and displacement gradients is possible
simply by using many elements, and the combination of domains with different kinds of
strain distributions is possible by using different kinds of elements to idealize the domains.
It is this generality of the finite element method, and the good mathematical foundation,
that have made the finite element method the very widely used analysis tool in today’s
engineering environments.
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4.3.4 Properties of the Finite Element Solution

Let us consider the general linear elasticity problem and its finite element solution and
identify certain properties that are useful for an understanding of the finite element method.
We shall use the notation summarized in Table 4.5.

The elasticity problem can be written as follows (see, for example, G. Strang and G. F.
Fix [A], P. G. Ciarlet [A], or F. Brezzi and M. Fortin [A]).

Find u € V such that

am,v)y=(Ffv) VvevV (4.71)

where the space V is defined as
V= {v| v € L(Vol); ‘;—i € L Vo), i,j = 1,2, 3,05, = 0,i = 1,2, 3} (4.72)

J

Here L*(Vol) is the space of square integrable functions in the volume, “Vol”, of the body
being considered,

3
L¥(Vol) = {wl w is defined in Vol and j (E (w,)2> dvol = | w2 < +w} (4.73)
Vol \i=1

TABLE 4.5 Notation used in discussion of the properties and convergence of finite element
solutions

Symbol Meaning
a(.,.) Bilinear form corresponding to model problem being considered (see Example 4.22)
f Load vector
u Exact displacement solution to mathematical model; an element of the space V
v Displacements; an element of the space V
u, Finite element solution, an element of the space Vj,
Va Finite element displacements; an element of the space Vi
A4 For all
€ An element of
V, Vi Spaces of functions [see (4.72) and (4.84)]
Vol Volume of body considered
L? Space of a square integrable functions [see (4.73)]
€, Error between exact and finite element solution, ¢, = U — u,
3 There exists
C Contained in
; Contained in but not equal to
Il e Energy norm [see (4.74)]
inf We take the infimum.

sup We take the supremum.
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Hence, (4.72) defines a space of functions corresponding to a general three-dimensional
analysis. The functions in the space vanish on the boundary S,, and the squares of the
functions and of their first derivatives are integrable. Corresponding to V, we use the energy
norm

I vl = a(v, v) (4.74)

which actually corresponds to twice the strain energy stored in the body when the body is
subjected to-the displacement field v.

We assume in our discussion that the structure considered in (4.71) is properly
supported, corrresponding to the zero displacement conditions on S,, so that || v|| is greater
than zero for any v different from zero.

In addition, we shall also use the Sobolev norms of orderm = QO and m = 1 defined as

m=0:

3
(vl = j ( ] W) dvol 475)

i=

[ > (3@)2] dVol (4.76)

i=1, j=1 axj

mmm=mmw+j

Vol

For our elasticity problem the norm of order 1 is used,'' and we have the following two
important properties for our bilinear form a.

Continuity:

dM >O0suchthat Vv, v, EV, |a(v|, Vz)l =M ” Vi ”1 ” V2”1 (477)

Ellipticity:

Ja>0suchthat Vv E YV, a(v,v) = a| v} (4.78)

where the constants a and M depend on the actual elasticity problem being considered,
including the material constants used, but are independent of v.

"'In our discussion, we shall also use the Poincaré-Friedrichs inequality, namely, that for the analysis
problems we consider, for any v we have

[ (B erpo=e (5 (5)

where c is a constant (see, for example, P. G. Ciarlet [A)).
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The continuity property is satisfied because reasonable norms are used in (4.77), and
the ellipticity property is satisfied because a properly supported (i.e., stable) structure is
being considered (see P. G. Ciarlet [A] for a mathematical proof). Based on these properties
we have

al vl = @, v)* = af v (4.79)
where ¢; and ¢, are constants independent of v, and we therefore have that the energy norm
is equivalent to the 1-norm (see Section 2.7). In mathematical analysis the Sobolev norms
are commonly used to measure rates of convergence (see Section 4.3.5), but in practice the

energy norm is frequently more easily evaluated [see (4.97)]. Because of (4.79), we can say
that convergence can also be defined, instead of using (4.64), as

lu—wfi—0 ak—0

and the energy norm in problem solutions will converge with the same order as the 1-norm.
We examine the continuity and ellipticity of a bilinear form a in the following example.

EXAMPLE 4.24: Consider the problem in Example 4.22. Show that the bilinear form a
satisfies the continuity and ellipticity conditions.
Continuity follows because'?

ad
alwn, ws) = j T(@m% . al)i) dx dy
A

dx Ox dy dy

=G GG - GJ] e

=G+ G]ee }
() + T} <o

Ellipticity requires that

s~ [T+ (]
o] [ ) () o -t

However, the Poincaré-Friedrichs inequality,

[ (2] + (2] e

where c is a constant, ensures that (a) is satisfied.

> Here we use the Schwarz inequality, which says that for vectorsaandb, | a * b| = | a|| b, where| - |
is defined in (2.148).
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The above statements on the elasticity problem encompass one important point
already mentioned earlier: the exact solution to the problem must correspond to a finite
strain energy, see (4.64) and (4.79). Therefore, for example,—strictly—we do not endeavor
to solve general two- or three-dimensional elasticity problems with the mathematical
idealization of point loads (the solution for a point load on a half space corresponds to
infinite strain energy, see for instance S. Timoshenko and J. N. Goodier [A)). Instead, we
represent the loads in the elasticity problem closer to how they actually act in nature, namely
as smoothly distributed loads, which however can have high magnitudes and act over very
small areas. Then the solution of the variational formulation in (4.71) is the same as the
solution of the differential formulation. Of course, in our finite element analysis so long as
the finite elements are much larger than the area of load application, we can replace the
distributed load over the area with an equivalent point load, merely for efficiency of
solution; see Section 1.2 and the example in Fig. 1.4.

An important observation is that the exact solution to our elasticity problem is unique.
Namely, assume that u, and u, are two different solutions; then we would have

a(u,v) = (f, v) Vveyv (4.80)
and a(u, v) = (£, v) Vvev (4.81)
Subtracting, we obtain '

au; — Uz, v) =0 Vvev (4.82)

and takingv = u, — u,, we havea(u; — u,,u; — ) = 0. Using (4.79) withv =u, — uy,
we obtain ||u, — w, ||, = 0, which means u, = u,, and hence we have proven that our
assumption of two different solutions is untenable.

Now let Vi be the space of finite element displacement functions (which correspond
to the displacement interpolations contained in all element displacement interpolation
matrices H™) and let v, be any element in that space (i.e., any displacement pattern that
can be obtained by the displacement interpolations). Let u, be the finite element solution;
hence u, is also an element in V, and the specific element that we seek. Then the finite
element solution of the problem in (4.71) can be written as

Find u, € V, such that
(4.83)

a(us, vi) = E,vi)  VVEV

The space V, is defined as

3(on):
Vi = {v,,| Vi € L(Vol); % € LA(Vol), i,j = 1,2,3; (oakls, = 0,i = 1,2, 3} (4.84)
J

and for the elements of this space we use the energy norm (4.74) and the Sobolev norm
(4.76). Of course, V, C V.

The relation in (4.83) is the principle of virtual work for the finite element discretiza-
tion corresponding to V,. With this solution space, the continuity and ellipticity conditions
(4.77) and (4.78) are satisfied, using v, € V,, and a positive definite stiffness matrix is
obtained for any V.
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We should note that V; corresponds to a given mesh, where i denotes the generic
element size, and that in the discussion of convergence we of course consider a sequence of
spaces Vi (a sequence of meshes with decreasing 4). We illustrate in Figure 4.11 the
elements of V, for the discretization dealt with in Example 4.6.

Nodal Element
point number
number

Figure 4.11  Aerial view of basis functions for space V;, used in analysis of cantilever plate
of Example 4.6. The displacement functions are plotted upwards for ease of display, but each
function shown is applicable to the u and v displacements. An element of V; is any linear
combination of the 12 displacement functions. Note that the functions correspond to the
element displacement interpolation matrices H®™, discussed in Example 4.6, and that the
displacements at nodes 1, 2 and 3 are zero.
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Considering the finite element solution u, and the exact solution u to the problem, we
have the following important properties.

Property 1. Let the error between the exact solution u and the finite element
solution u, be e,

e, =u— u, (4.85)
Then the first property is

a(e,,, Vh) =0 v v eV, (486)

The proof is obtained by realizing that the principle of virtual work gives
a(u, Vh) = (f, V;.) Vv,.EV, (487)
and a(u;,, Vh) = (f, Vh) v v, eV, (488)

so that by subtraction we obtain (4.86). We may say that the error is “orthogonal ina(. , .)”
to all v, in V,. Clearly, as the space V;, increases, with the larger space always containing the
smaller space, the solution accuracy will increase continuously. The next two properties are
based on Property 1.

Property 2. The second property is

a(uy, wy) < a(u, u) (4.89)

We prove this property by considering
a(u, u) = a(w, + ey, uy + €)

a(uy, up) + 2a(uy, e) + ales, e (4.90)

a(uy, wy) + aley, e,)

where we have used (4.86) with v, = u,. The relation (4.89) follows because a(e;, e,) > 0
for any e, # 0 (since for the properly supported structure ||v|z > 0 for any nonzero v).

Hence, the strain energy corresponding to the finite element solution is always smaller
than or equal to the strain energy corresponding to the exact solution.

Property 3. The third property is

a(e;., e;,) = a(u - Vp U — V;,) \v/ v, EV, (491)

For the proof we use that for any w, in Vj, we have

a(e;. + Wy, €, + Wh) = a(e,., e;,) + a(w;., W;,) (492)
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Hence, a(e;,, e = a(e;. + Wy, € + W) (4.93)

Choosing w, = u, — v gives (4.91).

This third property says that the finite element solution u, is chosen from all the
possible displacement patterns v, in V, such that the strain energy corresponding tou — u,
is the minimum. Hence, in that sense, the “energy distance” between u and the elements in
Vi is minimized by the solution u, in V.

Using (4.91) and the ellipticity and continuity of the bilinear form, we further obtain

aflu—w |} =<a@ - v, u—u)
= inf a(u — vp, U — vp) (4.94)
V4EV,

= M inf = valli flu = vall

where “inf” denotes the infimum (see Table 4 5). If we let d(u, V;) = hm la = v, we
recognize that we have the property

o — wl, = cdu, Vi) (4.95)

where ¢ is a constant, c = V M/a, independent of 4 but dependent on the material proper-
ties."® This result is referred to as Cea’s lemma (see, for example, P. G. Ciarlet [A]).

The above three properties give valuable insight into how the finite element solution
is chosen from the displacement patterns possible within a given finite element mesh and
what we can expect as the mesh is refined.

We note, in particular, that (4.95), which is based on Property 3, states that a
sufficient condition for convergence with our sequence of finite element spaces is that for
anyu € V we have lims—¢inf|ju — vi|li = 0. Also, (4.95) can be used to measure the rate
of convergence as the mesh is refined by introducing an upper bound on how d(u, V)
changes with the mesh refinement (see Section 4.3.5).

Further, Properties 2 and 3 say that at the finite element solution the error in strain
energy is minimized within the possible displacement patterns of a given mesh and that the
strain energy corresponding to the finite element solution will approach the exact strain
energy (from below) as increasingly finer meshes are used (with the displacement patterns
of the finer mesh containing the displacement patterns of the previous coarser mesh).

We can also relate these statements to earlier observations that in a finite element
solution the stationarity of the total potential is established (see Section 4.3.2). That is, for
a given mesh and any nodal displacements U.,,, we have

My

any

= 1IJanyI(IJany - UanyR (4-96)

13 There is a subtle point in considering the property (4.95) and the condition (4.156) discussed later; namely,
while (4.95) is always valid for any values of bulk and shear moduli, the constant ¢ becomes very large as the bulk
modulus increases, and the property (4.95) is no longer useful. For this reason, when the bulk modulus « is very
large, we need the new property (4.156) in which the constant is independent of x, and this leads to the inf-sup
condition.
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The finite element solution U is obtained by invoking the stationarity of II to obtain
KU =R

At the finite element displacement solution U we have the total potential I and strain
energy U

I = -iUTR; =1UR (4.97)

Therefore, to evaluate the strain energy corresponding to the finite element solution, we
only need to perform a vector multiplication.

To show with this notation that within the given possible finite element displacements
(i.e., within the space V;) II is minimized at the finite element solution U, let us calculate
IT at U + €, where € is any arbitrary vector,

Iy+e = 3(U + €)"K@U + €) — (U + €)'R
My + €(KU — R) + 1e"Ke (4.98)
=1I IU + %ETKE

where we used that KU = R and the fact that K is a symmetric matrix. However, since K
is positive definite, IT |y is the minimum of 1 for the given finite element mesh. As the mesh
is refined, IT will decrease and according to (4.97) U will correspondingly increase.

Considering (4.89), (4.91), and (4.97), we observe that in the finite element solution
the displacements are (on the “whole”) underestimated and hence the stiffness of the
mathematical model is (on the “whole”) overestimated. This overestimation of the stiffness
is (physically) a result of the “internal displacement constraints” that are implicitly imposed
on the solution as a result of the displacement assumptions. As the finite element discretiza-
tion is refined, these “internal displacement constraints” are reduced, and convergence to
the exact solution (and stiffness) of the mathematical model is obtained.

To exemplify the preceding discussion, Figure 4.12 shows the results obtained in the
analysis of an ad hoc test problem for two-dimensional finite element discretizations. The
problem is constructed so as to have no singularities. As we discuss in the next section, in
this case the full (maximum) order of convergence is obtained with a given finite element
in a sequence of uniform finite element meshes (in each mesh all elements are of equal
square size).

Figure 4.12 shows the convergence in strain energy when a sequence of uniform
meshes of nine-node elements is employed for the solutions. The meshes are constructed by
starting with a 2 X 2 mesh of square elements of unit side length (for which 2 = 1), then
subdividing each element into four equal square elements (for which A = 3,) to obtain the
second mesh, and continuing this process. We clearly see that the error in the strain energy
decreases with decreasing element size h, as we would expect according to (4.91). We
compare the order of convergence seen in the finite element computations with a theoreti-
cally established value in the next section.
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v, v A
-1, +1) (+1, +1)
E = 200,000
v=0.30
X u
-1,-1 (+1,-1)

N elements per side, N=2, 4, 8,...

(a) Square domain considered

u=2¢1(1-x2 (1= y?) e cos kx
v=2c1{1-x2(1-y2) e¥ sin kx
¢y =constant; k=5

(b) Exact in-plane displacements

Obtain the finite element solution for the body loads ff and fs, where

B~ (atxx + ﬂy)

ax oy
T T
8- (_zz . _V:)
ay ax

and 7y, 7y,, Tx, are the stresses corresponding to the exact in-plane displacements given in (b).

{c) Test problem

Figure 4.12  Ad-hoc test problem for plane stress (or plane strain, axisymmetric) elements.
We use, for h small, E — E, = ¢ h* and hence log (E — E;) = log ¢ + a log h (see also
(4.101)). The numerical solutions give a = 3.91.

4.3.5 Rate of Convergence

In the previous sections we considered the conditions required for monotonic convergence
of the finite element analysis results and discussed how in general convergence is reached,
but we did not mention the rate at which convergence occurs.

As must be expected, the rate of convergence depends on the order of the polynomials
used in the displacement assumptions. In this context the notion of complete polynomials is
useful.

Figure 4.13 shows the polynomial terms that should be included to have complete
polynomials in x and y for two-dimensional analysis. It is seen that all possible terms of the
form x“y® are present, where @ + B = k and k is the degree to which the polynomial is
complete. For example, we may note that the element investigated in Example 4.6 uses a
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h=2/N, N=2,4,8,...

-1 0

- N w -
rl:—r-nmr[—r-mnm—rrrrnnr'r"rrmruumw IIHIHT

logyo h

{d) Solution for plane stress problem

Figure 4.12 (continued)

polynomial displacement that is complete to degree 1 only. Figure 4.13 also shows impor-
tant notation for polynomial spaces. The spaces P, correspond to the complete polynomials
up to degree k. They can also be thought of as the basis functions of triangular elements:
the functions in P; correspond to the functions of the linear displacement (constant strain)
triangle (see Example 4.17); the functions in P, correspond to the functions of the parabolic
displacement (linear strain) triangle (see Section 5.3.2); and so on.

In addition, Fig. 4.13 shows the polynomial spaces Q«, kK = 1, 2, 3, which correspond
to the 4-node, 9-node, and 16-node elements, referred to as Lagrangian elements because
the displacement functions of these elements are Lagrangian functions (see also Sec-
tion 5.5.1).

In considering three-dimensional analysis of course a figure analogous to Fig. 4.13
could be drawn in which the variable z would be included.

Let us think about a sequence of uniform meshes idealizing the complete volume of
the body being considered. A mesh of a sequence of uniform meshes consists of elements
of equal size—square elements when the polynomial spaces Q: are used. Hence, the
parameter 4 can be taken to be a typical length of an element side. The sequence is obtained
by taking a starting mesh of elements and subdividing each element with a natural pattern
to obtain the next mesh, and then repeating this process. We did this in solving the ad hoc
test problem in Fig. 4.12. However, considering an additional analysis problem, for exam-
ple, the problem in Example 4.6, we would in Fig. 4.11 subdivide each four-node element
into four equal new four-node elements to obtain the first refined mesh; then we would
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- Figure 4.13 Polynomial terms in two-dimensional analysis, Pascal triangle

subdivide each element of the first refined mesh into four equal new four-node elements to
obtain the second refined mesh; and so on. The continuation of this subdivision process
would give the complete sequence of meshes.

To obtain an expression for the rate of convergence, we would ideally use a formula
giving d(u, V;) in (4.95) as a function of 4. However, such a formula is difficult to obtain,
and it is more convenient to use interpolation theory and work with an upper bound on
d(ll, V;.)

Let us assume that we employ elements with complete polynomials of degree k and
that the exact solution u to our elasticity problem is “smooth” in the sense that the solution
satisfies the relation'

o= {[ [Ber+ 22 ()

i=1 j=1 Xj

k+t 3
3"u; 2 1/2
+ > (——'——)]dVol} <o
n=2 i=1 r4+s+t=n oxt dx3 ax'3
where of course k = 1.

Therefore, we assume that all derivatives of the exact solution up to order (k + 1)in
(4.99) can be calculated.

A basic result of interpolation theory is that there exists an interpolation function
u; € V, such that

(4.99)

lu = wl: = éhr*|ull (4.100)

where h is the mesh size parameter indicating the “size” of the elements and ¢ is a constant
independent of A. Typically, & is taken to be the length of the side of a generic element
or the diameter of a circle encompassing that element. Note that w, is not the finite ele-
ment solution in V, but merely an element in V, that geometrically corresponds to a function

14We then have u is an element of the Hilbert space H**!.
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close to u. Frequently, as nere, we ieu u;, at the imte element nodes, take the value of the
exact solution u.

Using (4.100) and Property 3 discussed in Section 4.3.4 [see (4.91)], we can now
show that the rate of convergence of the finite element solution u, to the exact theory of
elasticity solution u is given by the error estimate

” u-— ll;.”x =< ch* ” u||k+l (4.101)

where ¢ is a constant independent of & but dependent on the material properties. Namely,
using (4.95) and (4.100), we have

hu = wally = c d(u, Vi)
= ¢ é WM ullr
which gives (4.101) with a new constant c. For (4.101), we say that the rate of convergence
is given by the complete right-hand-side expression, and we say that the order of conver-
gence is k or, equivalently, that we have o(h*) convergence.

Another way to look at the derivation of (4.101)—which is of course closely related
to the previous derivation—is to use (4.79) and (4.91). Then we have

1
la = wifl = —[a@ = w, u ~ w)]”*
1

< cl [a(a — w, u — u)]?
! (4.101b)

c
= c—j"“ - wl
< ch*[ulln

Hence, we see directly that to obtain the rate of convergence, we really only expressed the
distance d(u,V}) in terms of an upper bound given by (4.100).
In practice, we frequently simply write (4.101) as

flu = wifl = ch* (4.102)

and we now recognize that the constant c used here is independent of 4 but depends on the
solution and the material properties [because ¢ in (4.101a) and c;, ¢, in (4.101b) depend
on the material properties]. This dependence on the material properties is detrimental when
(almost) incompressible material conditions are considered because the constant then be-
comes very large and the order of convergence k results in good accuracy only at very small
(impractical) values of h. For this reason we need in that case the property (4.95) with the
constant independent of the material properties, and this requirement leads to the condition
(4.156) (see Section 4.5).
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The constant ¢ also depends on the kind of element used. While we have assumed that
the element is based on a complete polynomial of order £, different kinds of elements within
that class in general display a different constant ¢ for the same analysis problem (e.g.,
triangular and quadrilateral elements). Hence, the actual magnitude of the error may be
considerably different for a given A, while the order with which the error decreases as the
mesh is refined is the same. Clearly, the magnitude of the constant ¢ can be crucial in
practical analysis because it largely determines how small 4 actually has to be in order to
reach an acceptable error.

These derivations of course represent theoretical results, and we may question in how
far these results are applicable in practice. Experience shows that the theoretical results
indeed closely represent the actual convergence behavior of the finite element discretiza-
tions being considered. Indeed, to measure the order of convergence, we may simply
consider the equal sign in (4.102) to obtain

log (lu — wslh)) = logc + klogh (4.103)

Then, if we plot from our computed results the graph of log (| u — w,|);) versus log &,
we find that the resulting curve indeed has the approximate slope £ when 4 is sufficiently
small.

Evaluating the Sobolev norm may require considerable effort, and in practice, we may
use the equivalence of the energy norm with the 1-norm. Namely, because of (4.79), we see
that (4.101) also holds for the energy norm on the left side, and this norm can frequently
be evaluated more easily [see (4.97)]. Figure 4.12 shows an application. Note that the error
in strain energy can be evaluated simply by subtracting the current strain energy from the
strain energy of the limit solution (or, if known, the exact solution) [see (4.90)]. In the
solution in Fig. 4.12 we obtained an order of convergence (of the numerical results) of
3.91, which compares very well with the theoretical value of 4 (here k = 2 and the strain
energy is the energy norm squared). Further results of convergence for this ad hoc problem
are given in Fig. 5.39 (where distorted elements with numerically integrated stiffness
matrices are considered).

The relation in (4.101) gives, in essence, an error estimate for the displacement
gradient, hence for the strains and stresses, because the primary contribution in the 1-norm
will be due to the error in the derivatives of the displacements. We will primarily use (4.101)
and (4.102) but also note that the error in the displacements is given by

e = wifo < ¢ A**! ffufiers (4.104)

Hence, the order of convergence for the displacements is one order higher than for the
strains.

These results are intuitively reasonable. Namely, let us think in terms of a Taylor series
analysis. Then, since a finite element of “dimension #” with a complete displacement
expansion of order k can represent displacement variations up to that order exactly, the local
error in representing arbitrary displacements with a uniform mesh should be o(h**!). Also,
for a C™~! problem the stresses are calculated by differentiating the displacements m times,
and therefore the error in the stresses is o(h**'™™). For the theory of elasticity problem
considered above, m = 1, and hence the relations in (4.101) and (4.104) are what we might
expect.
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EXAMPLE 4.25: Consider the problem shown in Figure E4.25. Estimate the error of the finite
element solution if linear two-node finite elements are used.

g £B(5)

NN\ \\I\\\\\\\‘
x

Constant cross-sectional area A
Young's modulus £

(s) Bsr subjected to losd per unit length 8(x) = ax

ulx) A
upix)

u=(—%x3+%’-2x)/EA

up(x)

:

x x=1L

{b) Solutions (for finite element
solution three elements sre used)

Figure E4.25 Analysis of bar
The finite element problem in this case is to calculate u, € V, such that

(EA uh, v1) = (f?, va) YV or EVi
with Vi = {u,. | ow € LX(Vol), %" € LA(Vob), vnlemo = 0}

To estimate the error we use (4.91) and can directly say for this simple problem
L L
j W — up)?dx = f W' — ur)?dx (a)
0 [

where u is the exact solution, u; is the finite element solution, and u, is the interpolant, meaning
that «, is considered to be equal to « at the nodal points. Hence, our aim is now to obtain an upper
bound on [y (u' — uf)? dx.

Consider an arbitrary element with end points x; and x;,; in the mesh. Then we can say
that for the exact solution #(x) and x; = x = xi1,

w(x) =u'ly, + (x — xJu" |-z
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where x = x. denotes a chosen point in the element and X is also a point in the element. Let us
choose an x. where u’'|,, = u;, which can always be done because

wi(x) = u(x), w(xie1) = u(xis1)

Then we have for the element
'u'(x) — uil = h(orll% ,uul> (b)

where we have introduced the largest absolute value of the second derivative of the exact solution
to obtain an upper bound.
With (b) we have
L 2
j (' — u;)?dx < Lh? (max |u” |>
0

O=x=<L

L 1/2

and hence ( f W — up)? dx) <ch ©
0

where the constant ¢ depends on A, E, L, and f? but is independent of 4.

‘We should recognize that this analysis is quite general but assumes that the exact solution
is smooth so that its second derivative can be calculated (in this example given by — f2/EA). Of
course the result in (c) is just the error estimate (4.102).

An interesting additional result is that the nodal point displacements of the finite element
solution are for two reasons the exact displacements. First, the exact solution at the nodes due
to the distributed loading is the same as that due to the equivalent concentrated loading (the
“equivalent” Joading calculated by the principle of virtual work). Second, the finite element space
Vi contains the exact solution corresponding to the equivalent concentrated loading. Of course,
this nice result is a special property of the solution of one-dimensional problems and does not
exist in general two- or three-dimensional analysis.

In the above convergence study it is assumed that uniform discretizations are used
(that, for example, in two-dimensional analysis the elements are square and of equal size)
and that the exact solution is smooth. Also, implicitly, the degree of the element polynomial
displacement expansions is not varied. In practice, these conditions are generally not
encountered, and we need to ask what the consequences might be.

If the solution is not smooth—for example, because of sudden changes in the geome-
try, in loads, or in material properties or thicknesses—and the uniform mesh subdivision is
used, the order of convergence decreases; hence, the exponent of  in (4.102) is not & but
a smaller value dependent on the degree of “loss of smoothness.”

In practice of course graded meshes are used in such analyses, with small elements in
the areas of high stress variation and larger elements away from these regions. The order of
convergence of the solutions is then still given by (4.101) but rewritten as

Ju— wl =< ¢ 2 4% Julfern (4.101¢)

where m denotes an individual element and A,, is a measure of the size of the element. Hence
the total error is now estimated by summing the local contributions in (4.101) from each
element. A good grading of elements means that the error density in each element is about
the same.



Sec. 4.3 Convergence of Analysis Results 251

In practice when mesh grading is employed, geometrically distorted elements are
invariably used. Hence, for example, general quadrilateral elements are very frequently
encountered in two-dimensional analyses. We discuss elements of general geometric shapes
in Chapter 5 and point out in Section 5.3.3 that the same orders of convergence are
applicable to these elements so long as the magnitude of the geometric distortions is
reasonable.

In the above sequence of meshes the same kind of elements are used and the element
sizes are uniformly decreased. This approach is referred to as the #-method of analysis.
Alternatively, an initial mesh of relatively large and low-order elements may be chosen, and
then the polynomial displacement expansions in the elements may be successively in-
creased. For example, a mesh of elements with a bilinear displacement assumption may be
used (here £ = 1), and then the degree of the polynomial expansion is increased to order
2,3, ... p, where p may be 10 or even higher. This approach is referred to as the p-method
of analysis. To achieve this increase in element polynomial order efficiently, special interpo-
lation functions have been proposed that allow the calculation of the element stiffness
matrix corresponding to a higher interpolation by using the previously calculated stiffness
matrix and simply amending this matrix, and that have valuable orthogonality properties
(see B. Szabé and 1. Babuska [A]). However, unfortunately, these functions lack the internal
element displacement variations which are important when elements are geometrically
distorted (see K. Kato, N. S. Lee, and K. J. Bathe [A] and Section 5.3.3). We demonstrate
the use of these functions in the following example.

EXAMPLE 4.26: Consider the one-dimensional bar element shown in Fig. E4.26. Let (K,) be
the stiffness matrix corresponding to the order of displacement interpolation p, where p =

1,2,3,..., and let the interpolation functions corresponding to p = 1 be
m=301-x; =31+ @
8= flx)
[ ] ——— ®
[
x=-1 X X=+1

Young's modulus £
Cross-sectional area A

Figure E4.26 Bar element subjected to varying body force

For the higher-order interpolations use
hi(x) = i1 (%) i=3,4, ... (b)

1
T [22j - DI

where &

[P(x) = P-2(x)] ©
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and the P; are the Legendre polynomials (see, for example, E. Kreyszig [A)),

P0=1
P, =x
Pz=%(3x2" 1)

P; = %(st - 3x)
P, = 1(35x* ~ 30x° + 3)

(n+ P,y = 2n + 1)xP, — nP,,;

Calculate the stiffness matrix (K), and corresponding load vector of the element for p = 1.

Let us first note that these interpolation functions fulfill the requirements of monotonic
convergence: the displacement continuity between elements is enforced, and the functions are
complete (they can represent the rigid body mode and the constant strain state). This follows
because the functions in (a) fulfill these requirements and the functions in (b) merely add
higher-order displacement variations within the element with 2, = Qatx = £ 1,i = 3.

The stiffness matrix and load vector of the element are obtained using (4.19) and (4.20).
Hence, typical elements of the stiffness matrix and load vector are

+1
dh: dhy
K; = AE ——d. d
i f—1 dx dx’ X (d

R?=f f(x)h: dx

The evaluation of (d) gives
1 -1 zero
—1 1 entries
AE
K), =~ 2. ©
2

"2(p+1)><(p+1)

where we note that, in essence, the usual 2 X 2 stiffness matrix corresponding to the interpola-
tion functions (a) has been amended by diagonal entries corresponding to the internal element
displacement modes (b). In this specific case, each such entry is uncoupled from all other entries
because of the orthogonality properties of the Legendre functions. Hence, as the order of the
element is increased, additional diagonal entries are simply computed and all other stiffness
coefficients are unchanged.

This structure of the matrix (K), makes the solution of the governing equations of an
element assemblage simple, and the conditioning of the coefficient matrix is always good irre-
spective of how high an order of element matrices is used. Note also that if the finite element
solution is known for elements with a given order of interpolation, then the solution for an
increased order of interpolation within the elements is obtained simply by calculating and adding
the additional displacements due to the additional internal element modes.

Since the sets of displacement functions corresponding to the matrix (K),. contain the
sets of functions corresponding to the matrix (K),, we refer to the displacement functions and
the stiffness matrices as hierarchical functions and matrices. This hierarchical property is gener-
ally available when the interpolation order is increased (see Exercise 4.29 and Section 5.2).
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The concept given in Example 4.26 is also used to establish the displacement func-
tions for higher-order two- and three-dimensional elements. For example, in the two-di-
mensional case, the basic functions are h;, i = 1, 2, 3, 4, used in Example 4.6, and the
additional functions are due to side modes and internal modes (see Exercises 4.30 and 4.31).

We noted that in the analysis of a bar structure idealized by elements of the kind
discussed in Example 4.26, the coupling between elements is due only to the nodal point
displacements with the functions 4; and h,, and this leads to the very efficient solution.
However, in the two- and three-dimensional cases this computational efficiency is not
present because the element side modes couple the displacements of adjacent elements and
the governing equations of the finite element assemblage have, in fact, a large bandwith (see
Section 8.2.3).

A very high rate of convergence in the solution of general stress conditions can be
obtained if we increase the number of elements and at the same time increase the order of
displacement variations in the elements. This approach of mesh/element refinement is
referred to as the 4/p method and can yield an exponential rate of convergence of the form
(see B. Szabé and 1. Babuska [A])

lu~wlh= (4.105)

c
exp [B(N)]
where ¢, B, and vy are positive constants and N is the number of nodes in the mesh. If for
comparison with (4.105) we write (4.101) in the same form, we obtain for the 2 method
the algebraic rate of convergence

c
hu - wll = Ny
where d = 1, 2, 3, respectively, in one-, two-, and three-dimensional problems. The effec-
tiveness of the #/p method lies in that it combines the two attractive properties of the 4 and
p methods: using the p method, an exponential rate of convergence is obtained when the
exact solution is smooth, and using the 4 method, the optimal rate of convergence is
maintained by proper mesh grading independent of the smoothness of the exact solution.

While the rate of convergence can be very high in the A/p solution approach, of
course, whether the solution procedure is effective depends on the total computational
effort expended to reach a specified error (which also depends on the constant c).

A key feature of a finite element solution using the &, p, or #/p methods must therefore
be the “proper” mesh grading. The above expressions indicate a priori how convergence to
the exact solution will be obtained as the density of elements and the order of interpolations
are increased, but the meshes used in the successive solutions must be properly graded. By
this we mean that the local error density in each element should be about constant. We
discuss the evaluation of errors in the next section.

We also assumed in the above discussion on convergence—considering the linear
static model problem—that the finite element matrices are calculated exactly and that the
governing equilibrium equations are solved without error. In practice, numerical integration
is employed in the evaluation of the element matrices (see Section 5.5), and finite precision
arithmetic is used to solve the governing equilibrium equations (see Section 8.2.6); hence
some error will clearly be introduced in the solution steps. However, the numerical integra-
tion errors will not reduce the order of convergence, provided a reliable integration scheme
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of high enough order is used (see Section 5.5.5), and the errors in the solution of equations
are normally small unless a very ill-conditioned set of equations is solved (see Sec-
tion 8.2.6).

4.3.6 Calculation of Stresses and the Assessment of Error

We discussed above that for monotonic convergence to the exact results (“exact” within the
mechanical, i.e., mathematical, assumptions made) the elements must be complete and
compatible. Using compatible (or conforming) elements means that in the finite element
representation of a C™! variational problem, the displacements and their (m — 1)st deriva-
tives are continuous across the element boundaries. Hence, for example, in a plane stress
analysis the u and v displacements are continuous, and in the analysis of a plate bending
problem using the transverse displacement w as the only unknown variable, this displace-
ment w and its derivatives, dw/dx and dw/dy, are continuous. However, this continuity does
not mean that the element stresses are continuous across element boundaries.

The element stresses are calculated using derivatives of the displacements [see (4.11)
and (4.12)], and the stresses obtained at an element edge (or face) when calculated in
adjacent elements may differ substantially if a coarse finite element mesh is used. The stress
differences at the element boundaries decrease as the finite element mesh is refined, and the
rate at which this decrease occurs is of course determined by the order of the elements in the
discretization.

For the same mathematical reason that the element stresses are, in general, not
continuous across element boundaries, the element stresses at the surface of the structure
that is modeled are, in general, not in equilibrium with the externally applied tractions.
However, as for the stress jumps between elements, the difference between the externally
applied tractions and the element stresses decreases as the number of elements used to
model the structure increases.

The stress jumps across element boundaries and stress imbalances at the boundary of
the body are of course a consequence of the fact that stress equilibrium is not accurately
satisfied at the differential level unless a very fine finite element discretization is used: we
recall the derivation of the principle of virtual work in Example 4.2. The development in this
example shows that the differential equations of equilibrium are fulfilled only if the virtual
work equation is satisfied for any arbitrary virtual displacements that are zero on the surface
of the displacement boundary conditions. In the finite element analysis, the number of “real”
and virtual displacement patterns is equal to the number of nodal degrees of freedom, and
hence only an approximate solution in terms of satisfying the stress equilibrium at the
differential level is obtained (while the compatibility and constitutive conditions are
satisfied exactly). The error in the solution can therefore be measured by substituting the
finite element solution for the stresses 77 into the basic equations of equilibrium to find that
for each geometric domain represented by a finite element,

hy+ f#0 (4.106)
ey — 4 # 0 (4.107)
where #; represents the direction cosines of the normal to the element domain boundary and
the 1, are the components of the exact traction vector along that boundary (see Fig. 4.14).

Of course, this traction vector of the exact solution is not known, and that the left-hand side
of (4.107) is not zero simply shows that we must expect stress jumps between elements.
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"

Domain of
finite element

{e) Exact solution to mathematical model

- Figure 4.14 Finite element representing
{b) Finite element solution subdomain of continuum

It can be proven that for low-order elements the imbalance in (4.107) is larger than
the imbalance in (4.106), and that for high-order elements the imbalance in (4.106)
becomes predominant. In practice, (4.107) can be used to obtain an indication of the
accuracy of the stress solution and is easily applied by using the isobands of stresses as
proposed by T. Sussman and K. J. Bathe [A]. These isobands are constructed using the
calculated stresses without stress smoothing as follows:

Choose a stress measure; typically, pressure or the effective (von Mises) stress is
chosen, but of course any stress component may be selected.

Divide the entire range over which the stress measure varies into stress intervals,
assign each interval a color (or use black and white shading or simply alternate black
and white intervals). ,

A point in the mesh is given the color of the interval corresponding to the value of the
stress measure at that point.

If all stresses are continuous across the element boundaries, then this procedure will
yield unbroken isobands of stresses. However, in practice, stress discontinuities arise across
the element boundaries, resulting in “breaks” in the bands. The magnitude of the intervals
of the stress bands together with the severity of the breaks in the bands indicate directly the
magnitude of stress discontinuities (see Fig. 4.15). Hence, the isobands represent an
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(b)

Figure 4.15 Schematic of estimating
stress discontinuities using pressure
bands, width of bands = 5 MPa; black
and white intervals are used; (a) negligi-
ble discontinuities, Ap < 5 MPa;

(b) visible discontinuities but bands still
distinguishable, Ap = 2 MPa; (c) visible
discontinuities, bands not distinguishable,
(c) Ap > 5 MPa.

“eyeball norm” for the accuracy of the stress prediction 7J; achieved with a given finite
element mesh.

In linear analysis, the finite element stress values can be calculated using the relation
7" = CBii at any point in the element; however, this evaluation is relatively expensive and
hardly possible in general nonlinear analysis (including material nonlinear effects). An
adequate approach is to use the integration point values to bilinearly interpolate over the
corresponding domain of the element. Figure 4.16 illustrates an example in two-
dimensional analysis.

An alternative procedure for obtaining an approximation to the error in the calculated
stresses 7/ is to first find some improved values (7/)imp:. and then evaluate and display

ATI'] = Tl}'lj - (Tg')impn (4108)

The display can again be achieved effectively using the isoband procedure discussed above.

Improved values might be found by simply averaging the stress values obtained at the
nodes using the procedure indicated in Fig. 4.16 or by using a least squares fit over the
integration point values of the elements (see E. Hinton and J. S. Campbell [A]). The least
squares procedure might be applied over patches of adjacent elements or even globally over
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Domain over which stresses are interpolated bilinearly using
the four Gauss point values (3 x 3 Gauss integration is used)

b= ‘/E a
5
{see Section 5.5.3)

Gauss point 2a

Figure 4.16 Interpolation of stresses from Gauss point stresses

a whole mesh. However, if the domain over which the least squares fit is applied involves
many stress points, the solution will be expensive and, in addition, a large error in one part
of the domain may affect rather strongly the least squares prediction in the other parts.
Another consideration is that when using the direct stress evaluation in (4.12), the stresses
are frequently more accurate at the numerical integration points used to evaluate the
element matrices (see Section 5.5) than at the nodal points. Hence, for a least squares fit,
it can be of value to use functions of order higher than that of the stress variations obtained
from the assumed displacement functions because in this way improved values can be
expected.

We demonstrate the nodal point and least squares stress averaging in the following
example.

EXAMPLE 4.27: Consider the mesh of nine-node elements shown in Fig. E4.27. Propose
reasonable schemes for improving the stress results by nodal point averaging and least squares
fitting.

Let 7be a typical stress component. One simple and frequently effective way of improving
the stress results is to bilinearly extrapolate the calculated stress components from the integration
points of each element to node i. In this way, for the situation and node i in Fig. E4.27, four
values for each stress component are obtained. The mean value, say (7*) fean, Of these four values
is then taken as the value at nodal point i. After performing similar calculations for each nodal
point, the improved value of the stress component over a typical element is

(Th)impr. = 2 hi‘(Th)fman (a)

where the 4, are the displacement interpolation functions because the averaged nodal values are
deemed to be more accurate than the values obtained simply from the derivatives of the displace-
ments (which would imply that an interpolation of one order lower is more appropriate).

The key step in this scheme is the calculation of (7*)iew. Such an improved value can also
be extracted by using a procedure based on least squares.

Consider the eight nodes closest to node i, plus node i, and the values of the stress
component of interest at the 16 integration points closest to node i (shown in Fig. E4.27). Let
(7"){niege. be the known values of the stress component at the integration points,j = 1, . . ., 16,
and let (7*)%. be the unknown values at the nine nodes (of the domain corresponding to the
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Integration point

R

Figure E4.27 Mesh of nine-node elements. Integration points near node i are also shown.

integration points). We can use the least squares procedure (see Section 3.3.3) to calculate the
values (7")%.q. by minimizing the errors between the given integration point values and the values
calculated at the same points by interpolation from the nodal point values (") $odes

——i——[E (™" Vineegr. — (‘r"){megr.)z] =0

A" hodes Li=1 (b)
k=1,...,9
9
where ('?'h)lmtegr. = 2 hk (Th)ﬁndcs (C)
k=1 at integr.
point j
Note that in (c) we evaluate the interpolation functions at the 16 integration stations shown in Fig.
E4.27. The relations in (b) and (c) give nine equations for the values (T")foaes, k = 1, ..., 9. We

solve for these values but accept only the value at node i as the improved stress value, which is
now our value for (7"),..n in (a). The same basic procedure is used for all nodes to arrive at nodal
“mean” values, so that (a) can be used for all elements.

A least squares procedure clearly involves more computations, and in many cases the
simpler scheme of merely extrapolating the Gauss values and averaging at the nodes as
described above is adequate.

Of course, we presented in Fig. E4.27 a situation of four equal square elements. In
practice, the elements are generally distorted and fewer or more elements may couple into
the node i. Also, element non-corner nodes and special mesh topologies at boundaries need
to be considered.

We emphasize that the calculation of an error measure and its display is a most
important aspect of a finite element solution. The quality of the finite element stress solution
71 should be known. Once the error is acceptably small, values of stresses that have been
smoothed, for example, by nodal point or least squares averaging, can be used with
confidence.
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These error measures are based on the discontinuities of stresses between elements.
However, for high-order elements (of order 4 and higher), such discontinuities can be small
and yet the solution is not accurate because the differential equations of equilibrium of
stresses within the elements are not satisfied to sufficient accuracy. In this case the error
measure should also include the element internal stress imbalance (4.106).

Once an error measure for the stresses has been calculated in a finite element solution
and the errors are deemed to be too large, a procedure needs to be used to establish a new
mesh (with a refined discretization in certain areas, derefinement in other areas, and
possibly new element interpolation orders). This process of new mesh selection can be
automatized to a large degree and is important for the widespread use of finite element
analysis in CAD (see Section 1.3).

4.3.7 Exercises

4.25. Calculate the eight smallest eigenvalues of the four-node sheli element stiffness matrix available
in a finite element program and interpret each eigenvalue and corresponding eigenvector. (Hint:
The eigenvalues of the element stiffness matrix can be obtained by carrying out a frequency
solution with a mass matrix corresponding to unit masses for each degree of freedom.)

4.26. Show that the strain energy corresponding to the displacement error e;, where e, = u — u,, is
equal to the difference in the strain energies, corresponding to the exact displacement solution u
and the finite element solution u,.

4.27. Consider the analysis problem in Example 4.6. Use a finite element program to perform the
convergence study shown in Fig. 4.12 with the nine-node and four-node (Lagrangian) elements.
That is, measure the rate of convergence in the energy norm and compare this rate with the
theoretical results given in Section 4.3.5. Use N = 2, 4, 8, 16, 32; consider N = 32 to be the
limit solution, and use uniform and graded meshes.

4.28. Perform an analysis of the cantilever problem shown using a finite element program. Use a
two-dimensional plane stress element idealization to solve for the static response.

(a) Use meshes of four-node elements.
(b) Use meshes of nine-node elements.

In each case construct a sequence of meshes and identify the rate of convergence of strain energy.

f
) |
Y T
v 1
Y 1
7 6

E = 200,000

v=03
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Also, compare your finite element solutions with the solutions using Bernoulli-Euler and
Timoshenko beam theories (see S. H. Crandall, N. C. Dahl, and T. J. Lardner [A] and Sec-
tion 5.4.1).
4.29. Consider the three-node bar element shown. Construct and plot the displacement functions of the
element for the following two cases:

for case 1: hi=1latnodei,i=1,2,3
=0Qatnodej # i
for case 2: hi=1latnodei,i=1,2

OQatnodej +i,j=1,2
hs = 1 at node 3
hs = Qatnode 1, 2
We note that the functions for case 1 and case 2 contain the same displacement variations,

and hence correspond to the same displacement space. Also, the sets of functions are hierarchical
because the three-node element contains the functions of the two-node element.

4.30. Consider the eight-node element shown. Idenﬁfy the terms of the Pascal triangle present in the
element interpolations.

Lz 7 N
[
2 5 1
2 6 8
[ ] T
X
. A >—
3 7 4

=31+ 00+ k=451-01+))

hy =501 — 01 — y) he =51 + 001 - y)

hs = 4(1 + y)$(x), hs = §(1 — x)()

By =51 — y)a(x), hs = 3(1 + x)a(y)
where ¢, is defined in Example 4.26.
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4.31. A p-element of order p = 4 is obtained by using the following displacement functions.

hi,i =1, 2,3, 4, as for the basic four-node element (with corner nodes only; see Example 4.6).

hi,i = 5,..., 16 to represent side modes.

side 1: AV =11 + y)d(x); i=5913;=23,4
side 2: h® =11 — X)(); i=6,10,14;=2,3,4
side 3: B® =51 — y)di(x); i=7,11,15;j=2,3,4
side 4: AY =11 + X)(y); i=8,12,16;j=2,3,4

where ¢,, ¢, and ¢4 have been defined in Example 4.26. h;; to represent an internal mode
ha = (1 — x)(1 - y?)

Identify the terms of the Pascal triangle present in the element interpolations.

Yi
- |
2 Side 1 1
Side 2 Side 4
2 "X
T3 Side3 4

4.32. Consider the analysis problem in Example 4.6. Use a finite element program to solve the
problem with the meshes of nine-node elements in Exercise 4.27 and plot isobands of the von
Mises stress and the pressure (without using stress smoothing). Hence, the isobands will display
stress discontinuities between elements. Show how the bands converge to continuous stress
bands over the cantilever plate.

4.4 INCOMPATIBLE AND MIXED FINITE ELEMENT MODELS

In the previous sections we considered the displacement-based finite element method, and
the conditions imposed so far on the assumed displacement (or field) functions were com-
pleteness and compatibility. If these conditions are satisfied, the calculated solution con-
verges in the strain energy monotonically (i.e., one-sided) to the exact solution. The com-
pleteness condition can, in general, be satisfied with relative ease. The compatibility
condition can also be satisfied without major difficulties in C° problems, for example, in
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plane stress and plane strain problems or in the analysis of three-dimensional solids such
as dams. Yet, in the analysis of shell problems, and in complex analyses in which completely
different finite elements must be used to idealize different regions of the structure, compat-
ibility may be quite impossible to maintain. However, although the compatibility require-
ments are violated, experience shows that good results are frequently obtained.

Also, in the search for finite elements it was realized that for shell analysis and the
analysis of incompressible media, the pure displacement-based method is not efficient. The
difficulties in developing compatible displacement-based finite elements for these problems
that are computationally effective, and the realization that by using variational approaches
many more finite element discretizations can be developed, led to large research efforts. In
these activities various classes of new types of elements have been proposed, and the
amount of information available on these elements is voluminous. We shall not present the
various formulations in detail but only briefly outline some of the major ideas that have been
used and then concentrate upon a formulation for a large class of problems—the analysis
of almost incompressible media. The analysis of plate and shell structures using many of the
concepts outlined below is then further addressed in Chapter 5.

4.4.1 Incompatible Displacement-Based Models

In practice, a frequently made observation is that satisfactory finite element analysis resuits
have been obtained although some continuity requirements between displacement-based
elements in the mesh employed were violated. In some instances the nodal point layout was
such that interelement continuity was not preserved, and in other cases elements were used
that contained interelement incompatibilities (s¢g Example 4.28). The final result was the
same in either case, namely, that the displacemehts or their derivatives between elements
were not continuous to the degree necessary to satisfy all compatibility conditions discussed
in Section 4.3.2.

Since in finite element analysis using incompatible (nonconforming) elements the
requirements presented in Section 4.3.2 are .not satisfied, the calculated total potential
energy is not necessarily an upper bound to the exact total potential energy of the system,
and consequently, monotonic convergence is not ensured. However, having relaxed the
objective of monotonic convergence in the analysis, we still need to establish conditions that
will ensure at least a nonmonotonic convergence.

Referring to Section 4.3, the element completeness condition must always be satisfied,
and it may be noted that this condition is not affected by the size of the finite element. We
recall that an element is complete if it can represent the physical rigid body modes (but the
element matrix has no spurious zero eigenvalues) and the constant strain states.

However, the compatibility condition can be relaxed somewhat at the expense of not
obtaining a monotonically convergent solution, provided that when relaxing this require-
ment, the essential ingredients of the completeness condition are not lost. We recall that as
the finite element mesh is refined (i.e., the size of the elements gets smaller), each element
should approach a constant strain condition. Therefore, the second condition on conver-
gence of an assermblage of incompatible finite elements, where the elements may again be
of any size, is that the elements together can represent constant strain conditions. We should
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note that this is not a condition on a single individual element but on an assemblage of
elements. That is, although an individual element is able to represent all constant strain
states, when the element is used in an assemblage, the incompatibilities between elements
may prohibit constant strain states from being represented. We may call this condition the
completeness condition on an element assemblage.

As a test to investigate whether an assemblage of nonconforming elements is com-
plete, the patch test has been proposed (see B. M. Irons and A. Razzaque [A]). In this test
a specific element is considered and a patch of elements is subjected to the minimum
displacement boundary conditions to eliminate all rigid body modes and to the boundary
nodal point forces that by an analysis should result in constant stress conditions. If for any
patch of elements the element stresses actually represent the constant stress conditions and
all nodal point displacements are correctly predicted, we say that the element passes the
patch test. Since a patch may also consist of only a single element, this test ensures that the
element itself is complete and that the completeness condition is also satisfied by any
element assemblage.

The number of constant stress states in a patch test depends of course on the actual
number of constant stress states that pertain to the mathematical model; for example, in plane
stress analysis three constant stress states must be considered in the patch test, whereas in
a fully three-dimensional analysis six constant stress states should be possible.

Fig. 4.17 shows a typical patch of elements used in numerical investigations for
various problems. Here of course only one mesh with distorted elements is considered,
whereas in fact any patch of distorted elements should be analyzed. This, however, requires
an analytical solution. If in practice the element is complete and the specific analyses shown
here produce the correct results, then it is quite likely that the element passes the patch test.

When considering displacement-based elements with incompatibilities, if the patch
test is passed, convergence is ensured (although convergence may not be monotonic and
convergence may be slow).

The patch test is used to assess incompatible finite element meshes, and we may note
that when properly formulated displacement-based elements are used in compatible
meshes, the patch test is automatically passed.

Figure 4.18(a) shows a patch of eight-node elements (which are discussed in detail in
Section 5.2). The tractions corresponding to the plane stress patch test are also shown. The
elements form a compatible mesh, and hence the patch test is passed.

However, if we next assign to nodes 1 to 8 individual degrees of freedom for the
adjacent elements [e.g., at node 2 we assign two u and v degrees of freedom each for
elements 1 and 2] such that the displacements are not tied together at these nodes (and
therefore displacement incompatibilities exist along the edges), the patch test is not passed.
Figure 4.18(b) gives some results of the solution.

The example in Fig. 4.18(b) uses, in essence, an element that was proposed by E. L.
Wilson, R. L. Taylor, W. P. Doherty, and J. Ghaboussi [A]. Since the degrees of freedom
of the midside nodes of an element are not connected to the adjacent elements, they can be
statlcally condensed out at the element level (see Section 8.2.4) and a four-node element is
obtained. However, as indicated in Fig. 4.18(b), this element does not pass the patch test.
In the following example, we consider the element in more detail, first as a square element
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Figure 4.17 Patch tests
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(b) Patch test of incompatible mesh of 8-node elements. All element midside nodes are now element
individual nodes with degrees of freedom not coupled to the adjacent element. Hence, two nodes
are located where in Fig. 4.18(a) only one node was located. Patch test results are shown at center
of elements for external traction applied in the x-direction. (Note that only the corner nodes of the
complete patch are subjected to externally applied loads)

Figure 4.18 Patch test results using the patch and element geometries of Fig. 4.17
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and then as a general quadrilateral element. We also present a remedy to correct the element
so that it will always pass the patch test (see E. L. Wilson and A. Ibrahimbegovic [A)).

EXAMPLE 4.28: Consider the four-node square element with incompatible modes in
Fig. E4.28(a) and determine whether the patch test is passed. Then consider the general quadri-
lateral element in Fig. E4.28(b) and repeat the investigation.

We notice that the square element is really a special case of the general quadrilateral
element. In fact, the quadrilateral element is formulated using the square element as a basis and
using the natural coordinates (r, s) in the interpolations as discussed in Section 5.2.

—y 2 po—
2 Node 1
\
Y. v
2
X u h1=1-(1+x)(1+y)
h2=1-(1-x)(1 ¥
hg=2(1-x(1-y)
) h4=1—(1+x)(1-y)
3 4
Displecement interpoletion functions
4
u=Y hiu;+ a0y + capz
i=1
4
V= 2 hivi + aapq + o
i=1
pr1=(1-0;62=(1-y3
(e) Squere slement
Y, v

(b) Generel quedrileterel element (here h;end ¢; ere used
with r, s coordinetes; see Section 5.2)

Figure E4.28 Four-node plane stress element with incompatible modes, constant thickness
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For this element formulation we can analytically investigate whether, or under which
conditions, the patch test is passed. First, we recall that the patch test is passed for the four-node
compatible element (i.e., when the ¢, ¢ displacement interpolations are not used).

Next, let us consider that the element is placed in a condition of constant stresses 7°. Then
the requirement for passing the patch test is that, in these constant stress conditions, the element
should behave in the same way as the four-node compatible element.

The formal mathematical condition can be derived by considering the stiffness matrix of
the element with incompatible modes.

Let
e[}
(43
with ﬁT = [“1 o Us 501 [ ‘!)4]
and of =[a, ... a4
i
Then € = [B : BIC][' . ]
o

where B is the usual strain-displacement matrix of the four-node element and Byc is the contri-
bution due to the incompatible modes.
Hence, with our usual notation, we have

jBTCBdV § jBTCBnch
v N v

----------- e IR

jB{cCBdV § jn{c CByc dV
\4 ' 14

In practice, the incompatible displacement parameters o would now be statically condensed out
to obtain the element stiffness matrix corresponding to only the G degrees of freedom.

If the nodal point displacements are the physically correct values @° for the constant
stresses 7¢, we have

f BLCBdVir = f BL dV (b)
\ 4 \ 4

To now force the element to behave under constant stress conditions in the same way as the
four-node compatible element, we require that (since the entries 7° are independent of each other)

j Bl.av =10 ©

|4

Namely, when (c) is satisfied, we find from (a):
If the nodal point forces of the element are those of the compatible four-node element, the
solution is @ = G° and a = 0. Also, of course, if we set i = ¢ and a = 0, we obtain
from (a) the nodal point forces of the compatible four-node element and no forces corre-

sponding to the incompatible modes.

Hence, under constant stress conditions the element behaves as if the incompatible modes were
not present.
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We can now easily check that the condition in (c) is satisfied for the square element:
-2x 0 0 0
j 0 0 0 —-2yldv=0
1 0 -2y -2x ©
However, we can also check that the condition is not satisfied for the general guadrilateral

element (here the Jacobian transformation of Section 5.2 is used to evaluate Bic). In order to
satisfy (c) we therefore modify the B,c matrix by a correction Bfc and use

BE" = B¢ + Bxc
The condition (c) on Bi&" gives
1
B[Cc = —Vijxc av
The element stiffness matrix is then obtained by using B€” in (a) instead of Bic. In practice, the

element stiffness matrix is evaluated by numerical integration (see Chapter 5), and B is
calculated by numerical integration prior to the evaluation of (a).

With the above patch test we test only for the constant stress conditions. Any patch
of elements with incompatibilities must be able to represent these conditions if convergence
is to be ensured.

In essence, this patch test is a boundary value problem in which the external forces are
prescribed (the forces f? are zero and the tractions f* are constant) and the deformations
and internal stresses are calculated (the rigid body modes are merely suppressed to render
the solution possible). If the deformations and constant stresses are correctly predicted, the
patch test is passed, and (because at least constant stresses can be correctly predicted)
convergence in stresses will be at least o(h).

This interpretation of the patch test suggests that we may in an analogous manner also
test for the order of convergence of a discretization. Namely, using the same concept, we
may instead apply the external forces that correspond to higher-order variations of internal
stresses and test whether these stresses are correctly predicted. For example, in order to test
whether a discretization will give a quadratic order of stress convergence, that is, whether
the stresses converge o(h?), a linear stress variation needs to be correctly represented. We
infer from the basic differential equations of equilibrium that the corresponding patch test
is to apply a constant value of internal forces and the corresponding boundary tractions.
While numerical results are again of interest and are valuable as in the test for constant
stress conditions, only analytical results can ensure that for all geometric element distor-
tions in the patch the correct stresses and deformations are obtained (see Section 5.3.3 for
further discussion and results).

Of course, in practice, when testing element formulations, this formal procedure of
evaluating the order of convergence frequently is not followed, and instead a sequence of
simple test problems is used to identify the predictive capability of an element.

4.4.2 Mixed Formulations

To formulate the displacement-based finite elements we have used the principle of virtual
displacements, which is equivalent to invoking the stationarity of the total potential energy
IT (see Example 4.4). The essential theory used can be summarized briefly as follows.
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l.

We use'®
M) = %j €’ Ce dV — j u’f? qv — j u¥ £5 dS
Y Y ¥ (4.109)
= stationary
with the conditions € =0d.u (4.110)
s —u, =0 4.111)

where 3. represents the differential operator on u to obtain the strain components, the
vector u, contains the prescribed displacements, and the vector u’« lists the corre-
sponding displacement components of u.

If the strain components are ordered as in (4.3), we have

3

Py 0 0

F
0 P 0
9
ux, ¥ 2) 0 0 —
9z

u=|vxy2[; 9, = s 9
w(x, 2) 3 0
9 9
0 :3; ay
F 9
Laz 0 a_x_

The equilibrium equations are obtained by invoking the stationarity of IT (with respect
to the displacements which appear in the strains),

j 5€’Ce dV=j Su’f? dV+j Su’s £% dS (4.112)
\ 4 v Sy

The variations on u must be zero at and corresponding to the prescribed displacements
on the surface area S,. We recall that to obtain from (4.112) the differential equations
of equilibrium and the stress (natural) boundary conditions we substitute Ce = 7 and
reverse the process of transformation employed in Example 4.2 (see Sections 3.3.2
and 3.3.4). Therefore, the stress-strain relationship, the strain-displacement condi-
tions [in (4.110)], and the displacement boundary conditions [in (4.111)] are directly
fulfilled, and the condition of differential equilibrium (in the interior and on the
boundary) is a consequence of the stationarity condition of IL

In the displacement-based-finite element solution the stress-strain relationship, the
strain-displacement conditions [in (4.110)], and the displacement boundary condi-
tions [in (4.111)] are satisfied exactly, but the differential equations of equilibrium in
the interior and the stress (natural) boundary conditions are satisfied only in the limit
as the number of elements increases.

15 In this section, as in equation (4.7), we use the notation f % instead of the usual £° to explicitly denote that

these are tractions applied to Sy. Similarly, we have in this section also the tractions f* and the surface displacements
u’r and u®. For definitions of these quantities, see Section 4.2.1.
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The important point to note concerning the use of (4.109) to (4.112) for a finite
element solution is that the only solution variables are the displacements which must satisfy
the displacement boundary conditions in (4.111) and appropriate interelement conditions,
Once we have calculated the displacements, other variables of interest such as strains and
stresses can be directly obtained.

In practice, the displacement-based finite element formulation is used most fre-
quently; however, other techniques have also been employed successfully and in some cases
are much more effective (see Section 4.4.3).

Some very general finite element formulations are obtained by using variational
principles that can be regarded as extensions of the principle of stationarity of total poten-
tial. These extended variational principles use not only the displacements but also the strains
and/or stresses as primary variables. In the finite element solutions, the unknown variables
are therefore then also displacements and strains and/or stresses. These finite element
formulations are referred to as mixed finite element formulations.

Various extended variational principles can be used as the basis of a finite element
formulation, and the use of many different finite element interpolations can be pursued.
While a large number of mixed finite element formulations has consequently been proposed
(see, for example, H. Kardestuncer and D. H. Norrie (eds.) [A] and F. Brezzi and M. Fortin
[A]), our objective here is only to present briefly some of the basic ideas, which we shall then
use to formulate some efficient solution schemes (see Sections 4.4.3 and 5.4).

To arrive at a very general and powerful variational principle we rewrite (4.109) in
the form

I1*

Im - f Al(e — d.u) dV — f AU — u,) dS
v S 4.113)

I

stationary

where A and A, are Lagrange multipliers and S, is the surface on which displacements are
prescribed. The Lagrange multipliers are used here to enforce the conditions (4.110) and
(4.111) (see Section 3.4). The variables in (4.113) are u, €, A, and A.. By invoking
SII* = 0 the Lagrange multipliers A. and A, are identified, respectively, as the stresses 7
and tractions over S., f5 so that the variational indicator in (4.113) can be written as

Myw = 1T - f (e — deu) dV — f £57(us — u,) dS (4.114)
v Su

This functional is referred to as the Hu-Washizu functional (see H. C. Hu [A] and
K. Washizu [A, B]). The independent variables in this functional are the displacements u,
strains €, stresses 7, and surface tractions f*«. The functional can be used to derive a number
of other functionals, such as the Hellinger-Reissner functionals (see E. Hellinger [A] and
E. Reissner [A], Examples 4.30 and 4.31, and Exercise 4.36) and the minimum complemen-
tary energy functional, and can be regarded as the foundation of many finite element
methods (see H. Kardestuncer and D. H. Norrie (eds.) [A], T. H. H. Pian and P. Tong [A],
and W. Wunderlich [A]).

Invoking the stationarity of Ilaw with respect to u, €, 7, and f5, we obtain

v

f 8€’Ce dV — f Su'f? dv — f Sus % dS — f 877(e — Q) dV
v v S
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- fv 77(6e — d.6u) dV — f

Su

SEST(uSv — u,) dS — f fST suudS =0  (4.115)
Su
where Sy is the surface on which known tractions are prescribed.

The above discussion shows that the Hu-Washizu variational formulation may be
regarded as a generalization of the principle of virtual displacements, in which the displace-
ment boundary conditions and strain compatibility conditions have been relaxed but then
imposed by Lagrange multipliers, and variations are performed on all unknown displace-
ments, strains, stresses, and unknown surface tractions. That this principle is indeed a valid
and most general description of the static and kinematic conditions of the body under
consideration follows because (4.115) yields, since (4.115) must hold for the individual
variations used, the following.

For the volume of the body:
The stress-strain condition,
7= Ce (4.116)
The compatibility condition,
€ =9.u 4.117)

The equilibrium conditions,

OTxx | OTny + 0Ty,

+ + fi=0
ox ay 0z f
On = 0Ty | 0Ty
ax "oy T az 13 (4.118)
0T 8Ty 0T

+ =24 fB=
ox dy 0z f 0

For the surface of the body:

The applied tractions are equilibrated by the stresses,

S = 7n on S (4.119)
The reactions are equilibrated by the stresses,

ff« = 7n on S, (4.120)

where n represents the unit normal vector to the surface and T contains in matrix form
the components of the vector 7.
The displacements on S, are equal to the prescribed displacements,

use =y, on S, (4.121)

The variational formulation in (4.115) represents a very general continuum mechan-
ics formulation of the problems in elasticity.
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Considering now the possibilities for finite element solution procedures, the Hu-
Washizu variational principle and principles derived therefrom can be directly employed to
derive various finite element discretizations. In these finite element solution procedures the
applicable continuity requirements of the finite element variables between elements and on
the boundaries need to be satisfied either directly or to be imposed by Lagrange multipliers.
It now becomes apparent that with this added flexibility in formulating finite element
methods a large number of different finite element discretizations can be devised, depending
on which variational principle is used as the basis of the formulation, which finite element
interpolations are employed, and how the continuity requirements are enforced. The vari-
ous different discretization procedures have been classified as hybrid and mixed finite
element formulations (see H. Kardestuncer and D. H. Norrie (eds.) [A] and T. H. H. Pian
and P. Tong [A)).

We demonstrate the use of the Hu-Washizu principle in the following examples.

EXAMPLE 4.29: Consider the three-node truss element shown in Fig. E4.29. Assume a
parabolic variation for the displacement and a linear variation in strain and stress. Also, let the
stress and strain variables correspond to internal element degrees of freedom so that only the
displacements at nodes 1 and 2 connect to the adjacent elements, Use the Hu-Washizu variational
principle to calculate the element stiffness matrix.

Young's modulus E
Aree A

3

[
| L N

Lnd fll |

1 1 Figure E4.29 Three-node truss element

1)
[

We can start directly with (4.115) to obtain

f 5¢"(Ce — 1) dV — f 877(e — 9eu) dV
14 14
| ] L ]

® ) @

+ f (0ebuw)r dV — f Suf® dV + boundary terms = 0
v v
| I |

®

T=Ty C=E ff=f}

d
where € = €xx, 0 = —
ox

and the boundary terms correspond to expressions for Sy and S, and are not needed to evaluate
the element stiffness matrix.
We now use the following interpolations:

. H=l:(1+x)x (1= x)x l—xz]

2 2

=[w w ul
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A, _tl+x 1-x
7 = Ef; E—[ 5 > ]
e = Eé

7 =[n mnj & =[a €]

Substituting the interpolations into (a), we obtain corresponding to term 1:

8&7[ (fv E'CE dV>€ - (fv E'E dV)‘r]

corresponding to term 2:

o - ([ ([ o]

corresponding to term 3: 6ﬁ’<f B'E dV>"i'
\4
where B=[(+x (=3+x -—2x]
Hence, we obtain
0 0 K. }[ud
0 K. K.|l&]|= (b)
Ki. KL, o0 ||+
where K = J. E’CE dv
\4
K. = j B’E 4V
\4
and K. = —f E'E dv
\4

If we now substitute the expressions for B and E and eliminate the ¢ and 7; degrees of freedom
(because they are assumed to pertain only to this element, thus allowing jumps in stresses and
strains between adjacent elements), we obtain from (b)

7 1 —‘8 Uy
1 7 -8 u = -
-8 -8 16 || us

EA
6

This stiffness matrix is identical to the matrix of a three-node displacement-based truss ele-
ment—as should be expected using a linear strain and parabolic displacement assumption.

However, we should note that if the element stress and strain variables are not eliminated
on the element level and instead are used to impose continuity in stress and strain between
elements, then clearly with the element stiffness matrix in (b) the stiffness matrix of the complete
element assemblage is not positive definite.

This derivation could of course be extended to obtain the stiffness matrices of truss
elements with various displacement, stress, and strain assumptions. However, a useful element
is obtained only if the interpolations are “judiciously” chosen and actually fulfill specific require-
ments (see Section 4.5).
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EXAMPLE 4.30: Consider the two-node beam element shown in Fig. E4.30. Assume linear
variations in the transverse displacement w and section rotation 6 and a constant element
transverse shear strain . Establish the finite element equations,

E = Young's modulus

G = shear modulus w1 \ 1} zZw I
A 6,
b ) . T
1 X, u 2

1.0 I L/2 P L/2 |
< > —

Figure E4.30 Two-node beam element

We assume that the stresses are given by the strains, and so we can substitute T = Ce into
(4.114) and obtain

1
e = f ("EETCE + €'Cdu — u’f”) dV + boundary terms (a)
v

This variational indicator is also a Hellinger-Reissner functional, but comparing (a) with the
functional in Exercise 4.36, we note that here strains and displacements are the independent
variables (instead of the stresses and displacements in Exercise 4.36).

In our beam formulation the variables are u, w, and 2’ (the superscript AS denotes the
.assumed constant value). Hence, the bending strain e, is calculated from the displacement, and
we can specialize (a) further:

~ 1 1
Ik = f (5 €xEe — > VS Gy + v Gy — qu") dV + boundary terms
v

where u= ["]; du —@4—%

w € = %’ YT 9 T a2

Now invoking 8I1#; = 0, we obtain corresponding to du, (not including boundary terms)

j (OeuEeyx + 8y, GY2S) dV = f Su'f? dy (b)
|4 v
and corresponding to 8y%5,
j Oy Gy — ¥25) dV = 0 ©
v
Let w)
. |6 ; _ [JAS
u= ) € = [y*]
w2
6
Then we can write
u = Ha; &x = B,
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Substituting into (b) and (c), we obtain
K. K.l|[a R
b5 K][e] =[oB] @

where K. = j Bl EB, dV: K.. = j BIGB2S gV
\ 4 \ 4

K. = —j (B )"GB2 av; Rs = j H’f® dV
|4

\ 4
We can now use static condensation on € to obtain the final element stiffness matrix:

K= Kuu - KueK;El KIE
In our case, we have _

zZ{L zfL
e 0 L<2 x) 0 z(-z- + x)
- l(é _ 0 L, 0
| I\2 AV
_lo 2 o _2
B, = _0 I 0 L]
1 1L 1 1{L
B=1"1 ‘2(5"‘) 3 "2(5”)]
BX =[1]
[ Gh Gh —Gh Gh ]
L 2 L 2
e @5 295
2 12L 2 12L
th K=
so that ~Gh  —Gh Gh ~Gh ©
L 2 L 2
: @y = @8
| 2 L 2 12L

It is interesting to note that a pure displacement formulation would give a very similar stiffness
matrix. The only difference is that the circled terms would be GhL/3 on the diagonal and GAL/6
in the off-diagonal locations. However, the element predictive capability of the pure
displacement-based formulation is drastically different, displaying a behavior that is much too
stiff when the element is thin (we discuss this phenomenon in Sections 4.5.7 and 5.4.1).

Note that if we assume a displacement vector corresponding to section rotations only,

=00 a 0 -a
then using () the element displays bending stiffness only, whereas the pure displacement-based
element shows an erroneous shear contribution.
Let us finally note that the stiffness matrix in (e) corresponds to the matrix obtained in the

mixed interpolation approach discussed in detail in Section 5.4.1. Namely, if we use the last
equation in (d), which corresponds to the equation (c), we obtain

Wz—W|_91+02
L 2

AS —
Yxz =
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which shows that the assumed shear strain value is equal to the shear strain value at the midpoint
of the beam calculated from the nodal point displacements.

As pointed out above, the Hu-Washizu principle provides the basis for the derivation
of various variational principles, and many different mixed finite element discretizations
can be designed. However, whether a specific finite element discretization is effective for
practical analysis depends on a number of factors, particularly on whether the method is
general for a certain class of applications, whether the method is stable with a sufficiently
high rate of convergence, how efficient the method is computationaily, and how the method
compares to alternative schemes. While mixed finite element discretizations can offer some
advantages in certain analyses, compared to the standard displacement-based discretiza-
tion, there are two large areas in which the use of mixed elements is much more efficient
than the use of pure displacement-based elements. These two areas are the analysis of
almost incompressible media and the analysis of plate and shell structures (see the following
sections and Section 5.4).

4.4.3 Mixed Interpolation—Displacement/Pressure
Formulations for Incompressible Analysis

The displacement-based finite element procedure described in Section 4.2 is very widely
used because of its simplicity and general effectiveness. However, there are two problem
areas in which the pure displacement-based finite elements are not sufficiently effective,
namely, the analysis of incompressible (or almost incompressible) media and the analysis of
plates and shells. In each of these cases, a mixed interpolation approach—which can be
thought of as a special use of the Hu-Washizu variational principle (see Example 4.30)—is
far more efficient.

We discuss the mixed interpolation for beam, plate, and shell analyses in Section 5.4,
and we address here the analysis of incompressible media.

Although we are dealing with the solution of incompressible solid media, the same
basic observations are also directly applicable to the analysis of incompressible fluids (see
Section 7.4). For example, the elements summarized in Tables 4.6 and 4.7 (later in this
section) are also used effectively in fluid flow solutions.

The Basic Differential Equations for Incompressible Analysis

In the analysis of solids, it is frequently necessary to consider that the material is almost
incompressible. For example, some rubberlike materials, and materials in inelastic condi-
tions, may exhibit an almost incompressible response. Indeed, the compressibility effects
may be so small that they could be neglected, in which case the material would be idealized
as totally incompressible.

A basic observation in the analysis of almost incompressible media is that the pressure
is difficult to predict accurately. Depending on how close the material is to being incom-
pressible, the displacement-based finite element method may still provide accurate solu-
tions, but the number of elements required to obtain a given solution accuracy is usually far
greater than the number of elements required in a comparable analysis involving a com-
pressible material.
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To identify the basic difficulty in more detail, let us again consider the three-
dimensional body in Fig. 4.1. The material of the body is isotropic and is described by
Young’s modulus E and Poisson’s ratio v.

Using indicial notation, the governing differential equations for this body are (see
Example 4.2)

s+ fE=0 throughout the volume V of the body (4.122)
Ty = f}gf on S (4123)
u; = u on S, (4.124)

If the body is made of an almost incompressible material, we anticipate that the volumetric
strains will be small in comparison to the deviatoric strains, and therefore we use the
constitutive relations in the form (see Exercise 4.39)

Ty = Kev&-, + 2661; (4.125)
where « is the bulk modulus,
K= —E 4.126
31 = 27) (4.126)
€v is the volumetric strain,
€y = €k
AV . . .
= —V-( = €, + €y + €. in Cartesian coordinates) (4.127)
&8, is the Kronecker delta,
s.-,.{ —0 it (4.128)
€;; are the deviatoric strain components,
€ = € — €—3V Oy (4.129)
and G is the shear modulus,
E
We also have for the pressure in the body,
P = —K€ (4.131)
XX + + 2z . . .
where p=- T—;" ( = — I__”;Y__"_ in Cartesian coordmates) (4.132)
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Now let us gradually increase k (by increasing the Poisson ratio v to approach 0.5).
Then, as k increases, the volumetric strain ey decreases and becomes very small.

In fact, in total incompressibility »is exactly equal to 0.5, the bulk modulus is infinite,
the volumetric strain is zero, and the pressure is of course finite (and of the order of the
applied boundary tractions). The stress components are then expressed as [see (4.125) and
(4.131)]

™5 = —pd; + 2Gej (4.133)

and the solution of the governing differential equations (4.122) to (4.124) now involves
using the displacements and the pressure as unknown variables.

In addition, special attention need also be given to the boundary conditions in (4.123)
and (4.124) when material incompressibility is being considered and the displacements are
prescribed on the complete surface of the body, i.e., when we have the special case S, = §,
S¢ = 0. If the material is totally incompressible, a first condition is that the prescribed
displacements u; must be compatible with the zero volumetric strain throughout the body.
This physical observation is expressed as

€ =0 throughout V (4.134)
hence, f € dV = f uw.ndS=0 (4.135)
v S

where we used the divergence theorem and n is the unit normal vector on the surface of the
body. Hence, the displacements prescribed normal to the body surface must be such that the
volume of the body is preserved. This condition will of course be automatically satisfied if
the prescribed surface displacements are zero (the particles on the surface of the body are
not displaced).

Assuming that the volumetric strain/boundary displacement compatibility is satisfied,
for the case S, = S, the second condition is that the pressure must be prescribed at some
point in the body. Otherwise, the pressure is not unique because an arbitrary constant
pressure does not cause any deformations. Only when both these conditions are fulfilled is
the problem well posed for solution.

Of course, the condition of prescribed displacements on the complete surface of the
body is a somewhat special case in the analysis of solids, but we encounter an analogous
situation frequently in fluid mechanics. Here the velocities may be prescribed on the
complete boundary of the fluid domain (see Chapter 7).

Although we considered here a totally incompressible medium, it is clear that these
considerations are also important when the material is only almost incompressible—a
violation of the conditions discussed will lead to an ill-posed problem statement.

Of course, these observations also pertain to the use of the principle of virtual work.
Let us consider the simple example shown in Fig. 4.19. Since only volumetric strain energy
is present, the principle of virtual work gives for this case,

f Evkey dV = —f o Sp* dS (4.136)
v 8¢
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If the bulk modulus « is finite, we obtain directly from (4.136),

*],
-E=- 4.137)
K

oS =

and = p* (4.138)

However, if k is infinite, we need to use instead of (4.136) the following form of the principle
of virtual work, with the pressure p unknown,

f &(—p)dV = — f TSp* dS (4.139)
\ 4 Sf

and we again obtainp = p*. Of course, the solution of (4.139) does not use the constitutive
relation but only the equilibrium condition.

The Finite Element Solution of Almost Incompressible Conditions

The preceding discussion indicates that when pursuing a pure displacement-based finite
element analysis of an almost incompressible medium, significant difficulties must be
expected. The very small volumetric strain, approaching zero in the limit of total incom-
pressibility, is determined from derivatives of displacements, which are not as accurately
predicted as the displacements themselves. Any error in the predicted volumetric strain will
appear as a large error in the stresses, and this error will in turn also affect the displacement
prediction since the external loads are balanced (using the principle of virtual work) by the
stresses. In practice, therefore, a very fine finite element discretization may be required to
obtain good solution accuracy.
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(a) Geometry, material data, applied loading, and the coarse sixteen
element mesh

Figure 4.20 Analysis of cantilever bracket in plane strain conditions. Nine-node displace-
ment-based elements are used. The 16 X 64 = 1024-eleinent mesh is obtained by dividing
each element of the 16-element mesh into 64 elemnents. Maximuin principal stress results are
shown using the band representation of Fig. 4.15. Also, (01)max is the predicted maximum
value of the maxiinum principal stress, and 6 is defined in (a).

Chap. 4
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(b) Displacement-based element solution results for the case Poisson’s ratio
v = 0.30. Sixteen element and 16 X 64 element mesh results

Figure 4.20 (continued)

Figure 4.20 shows some results obtained in the analysis of a cantilever bracket sub-
jected to pressure loading. We consider plane strain conditions and the cases of Poisson’s
ratio v = 0.30 and v = 0.499. In all solutions, nine-node displacement-based elements
have been used (with 3 X 3 Gauss integration; see Section 5.5.5). A coarse mesh and a very
fine mesh are used, and Fig. 4.20(a) shows the coarse idealization using only 16 elements.
The solution results for the maximum principal stress oy are shown using the isoband
representation discussed in Section 4.3.6. Here we have selected the bandwidth so as to be
able to see the rather poor performance of the displacement-based element when the Poisson
ratio is close to 0.5. Figure 4.20(b) shows that when v = .30, the element stresses are
reasonably smooth across boundaries for the coarse mesh and very smooth for the fine
mesh. Indeed, the coarse idealization gives a quite reasonable stress prediction. However,



282 Formulation of the Finite Element Method Chap. 4

SIGMA-T |

TIMS |.GOD

0.35G0

(O"I)max = 1.955

— 8= 1.044
o
L. 000
03400
A
01"
L L I 1
VAR
R ———
L1 AW Y
AR
S 1
\
SRRy
T 5 {01)max = 1.343
T & = 1.363

(c) Displacement-based element solution results for the case Poisson’s ratio
v = 0.499. Sixteen element and 16 X 64 element mesh results

Figure 4.20 (continued)

when v = 0.499, the same meshes of nine-node displacement-based elements result into
poor stress predictions [see Fig. 4.20(c)]. Large stress fluctuations are seen in the individual
elements of the coarse mesh and the fine mesh.'® Hence, in summary, we see here that the
displacement-based element used in the analysis is effective when v = 0.3, but as v ap-
proaches 0.5, the stress prediction becomes very inaccurate.

This discussion indicates what is very desirable, namely, a finite element formulation
which gives essentially the same accuracy in results for a given mesh irrespective of what
Poisson’s ratio is used, even when v is close to 0.5. Such behavior is observed if for the finite

1oWe discuss briefly in Section 5.5.6 the use of “reduced integration.” If in this analysis the reduced
integration of 2 X 2 Gauss integration is attempted, the solution cannot be obtained because the resulting stiffness
matrix is singular,
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element formulation the predictive capability of displacements and stresses is independent
of the bulk modulus used.

We refer to finite element formulations with this desirable behavior as nonlocking,
whereas otherwise the finite elements are locking.

The term “locking” is based upon experiences in the analysis of beams, plates, and
shells (see Section 5.4.1), where an inappropriate formulation—one that locks—results in
displacements very much smaller than those intuitively expected for a given mesh (and
calculated with an appropriate formulation; see, for example, Fig. 5.20). In the analysis of
almost incompressible behavior, using a formulation that locks, the displacements are not
necessarily that much in error but the stresses (the pressure) are very inaccurate. We note
that the pure displacement formulation generally locks in almost incompressible analysis.
These statements are discussed more precisely in Section 4.5.

Effective finite element formulations for the analysis of almost incompressible behav-
ior that do not lock are obtained by interpolating displacements and pressure. Figure 4.21
shows the results obtained in the analysis of the cantilever bracket in Fig. 4.20 with a
displacement/pressure formulation referred to as u/p formulation using the 9/3 element
(see below for the explanation of the formulation and the element). We see that the
isobands of the maximum principal stress have in all cases the desirable degree of smooth-
ness and that the stress prediction does not deteriorate when Poisson’s ratio v ap-
proaches 0.5.

To introduce the displacement/pressure formulations, we recall that in a pure dis-
placement formulation, the evaluation of the pressure from the volumetric strain is difficult
when « is large (in comparison to G) and that when a totally incompressible condition is
considered, the pressure must be used as a solution variable [see (4.133)]. It therefore
appears reasonable to work with the unknown displacements and pressure as solution
variables when almost incompressible conditions are analyzed. Such analysis procedures,
if properly formulated, should then also be directly applicable to the limit of incompressible
conditions.

The basic approach of displacement/pressure finite element formulations is therefore
to interpolate the displacements and the pressure. This requires that we express the principle
of virtual work in terms of the independent variables u and p, which gives

fa%w—famw=% (4.140)
\4 v

where, as usual, the overbar indicates virtual quantities, R corresponds to the usual external
virtual work [?R is equal to the right-hand side of (4.7)], and S and €’ are the deviatoric stress
and strain vectors,

S=1+ pd (4.141)

€ =€~ %evﬁ (4.142)

where 8 is a vector of the Kronecker delta symbol [see (4.128)].

Note that using the definition of p in (4.131), a uniform compressive stress gives a
positive pressure and that in the simple example in Fig. 4.19, only the volumetric part of the
internal virtual work contributed.

In (4.140) we have separated and then summed the deviatoric strain energy and the
bulk strain energy. Since the displacements and pressure are considered independent vari-
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{(a) Bands of maximum principal stress. Case of Poisson’s ratio » = 0.30.
Sixteen and 16 X 64 element mesh resulis

Figure 4.21 Analysis of cantilever bracket in plane strain conditions. Bracket is shown in
Fig. 4.20(a). Same meshes as in Fig. 4.20 are used but with the nine-node mixed interpolated
element (the 9/3 element). Compare the results shown with those given in Fig. 4.20.

ables, we need another equation to connect these two solution variables. This equation is
provided by (4.131) written in integral form (see Example 4.31),

J (i’—( + ev>,7 dv =0 (4.143)

These basic equations can also be derived more formally from variational principles (see
L. R. Herrmann [A] and S. W. Key [A]). We derive the basic equations in the following
example from the Hu-Washizu functional.
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(b) Bands of maximum principal stress. Case of Poisson’s ratio » = 0.499.
Sixteen and 16 X 64 element mesh results

Figure 4.21 (continued)

EXAMPLE 4.31: Derive the u/p formulation from the Hu-Washizu variational principle.
The derivation is quite analogous to the presentation in Example 4.30 where we considered
a mixed interpolation for a beam element.
We start by letting T = Ce in (4.114) to obtain the Hellinger-Reissner functional,

H:lR(uv E) = _J

v

1
EETCE dv + J

v

eCoudv — J

v

u’f? dv — J w7t dS (a)
Sf

where we assume that the displacement boundary conditions are satisfied exactly (hence, also the
displacement variations will be zero on the surface of prescribed displacements).
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Next we establish the deviatoric and volumetric contributions and postulate that the
deviatoric contribution will be evaluated from the displacements. Hence, we can specialize (a)
into

I 1 ’ 't 1p2
Iz, p) = € ™C'e' dV — | ——dV — | pevdV —
v v

u’f2 qv - f w7t ds (b)
v2 K v

5
where the prime denotes deviatoric quantities, €y is the volumetric strain evaluated from the
displacements, p is the pressure, and « is the bulk modulus. Note that whereas in (a) the
independent variables are u and €, in (b) the independent variables are u and p.

Invoking the stationarity of I}, with respect to the displacements and the pressure, we
obtain

j 8e¢'"C'e’' dV — f péevdV = R
\4 \4

and f(‘g + ev)Sp dv =20
v\K

where R corresponds to the virtual work of the externally applied loading [see (4.7)].

It is interesting to note that we may also think of (b) as the total potential in terms of the
displacements and the pressure plus a Lagrange multiplier term that enforces the constraint
between the volumetric strains and the pressure,

= 1 1 p?
I = —f—e’TC’e’ dV+f—p—dV—fquBdV
V2 V2K \4

—f ¥t dS — f A(ev + I—’) av
s v K

In (c) the last integral represents the Lagrange multiplier constraint, and we find A = p.

©

To arrive at the governing finite element equations, we can now use (4.140) and
(4.143) as in Section 4.2.1, but in addition to interpolating the displacements we also
interpolate the pressure p. The discussion in Section 4.2.1 showed that we need to consider
the formulation of only a single element; the matrices of an assemblage of elements are then
formed in a standard manner.

Using, as in Section 4.2.1,

u = Hi (4.144)
we can calculate
€' = Bpii; ey = Byl (4.145)
The additional interpolation assumption is
p=H,p (4.146)

where the vector P lists the pressure variables [(see the discussion following (4.148)].
Substituting from (4.144) to (4.146) into (4.140) and (4.143), we obtain

= I51-C)

where K. = f BLC'Bp dV
\ 4
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K.,

KL =~ f BYH, dav (4.148)
v

K, = —f url, av
v K

and C’ is the stress-strain matrix for the deviatoric stress and strain components.

The relations in (4.144) to (4.148) give the basic equations for formulating elements
with displacements and pressure as variables. The key question for the formulation is now,
What pressure and displacement interpolations should be used to arrive at effective ele-
ments? For example, if the pressure interpolation is of too high a degree compared to the
displacement interpolation, the element may again behave as a displacement-based element
and not be effective.

Considering for the moment only the pressure interpolation, the following two main
possibilities exist and we label them differently.

The u/p formulation. In this formulation, the pressure variables pertain only to
the specific element being considered. In the analysis of almost incompressible media (as so
far discussed), the element pressure variables can be statically condensed out prior to the
element assemblage. Continuity of pressure is not enforced between elements but will be a
result of the finite element solution if the mesh used is fine enough.

The u/p-¢ formulation. The letter “c” denotes continuity in pressure.

In this formulation, the element pressure is defined by nodal pressure variables that
pertain to adjacent elements in the assemblage. The pressure variables therefore cannot be
statically condensed out prior to the element assemblage. Continuity of pressure between
elements is directly enforced and will therefore always be a result of the solution irrespec-
tive of whether the mesh used is fine or coarse.

Consider the following two elements, one corresponding to each of the formulations.

EXAMPLE 4.32: For the four-node plane strain element shown, assume that the displacements
are interpolated using the four nodes and assume a constant pressure. Evaluate the matrix
expressions used for the u/p formulation.

Y:Vﬂk

Young's modulus E
Poisson's ratio v

2

Figure E4.32 A 4/1 element
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This element is referfed to as the u/p 4/1 element. In plane strain analysis we have

_ - r -

€., — 1(6 + € ) zilf —_ l a_v
XX 3 XX yy 3 ax 3 ay
, 1 29v 1 9u
€ = Eyy"§(€n+€yy) =133 3 |’ €& = €. + €, (a)
u
Yor dy ox
1 1/0u ov
—=(€x t €y) -——(— + ——)
| 3 i | 3\ox ayj
and S = C'e’, where
26 0 0 O
0 26 0 O E
C, = X =
0 0 G O G 2(1 + »)
0 0 0 2¢G
The displacement interpolation is as in Example 4.6,
u = Ha
with ulx, y) = [u(x, y)]; @ =[uy, w ws us @ vi vV2 vV v4]
ov(x, y)

H:

[h1 hy hs hy ¢+ 0 0 O 0] ()

0 0 0 0 ¢ h h hy h
hy = (1 + 01 + y); he =31 —x(1 +y
hs = 3(1 — 01— y) he =3(1 + (1 - y)

Using (a) and (b), the strain-displacement interpolation matrices are

th, 3m. ... i —ih, —ih,
B, = —3hi —3hy, - thi,y tha.,
hyy hyy ... % hyx hy
—Shix —iha. ... F —ihy, —ih,
and Bv=[m: h. ... i h, h, ...]

For a constant pressure assumption we have

H, = [1]; b = [pd]
Since the degree of freedom P = [po] pertains only to this element and not to the adjacent
elements, we can use static condensation to obtain from (4.147) the element stiffness matrix
corresponding to the nodal point displacement degrees of freedom only;

K = K. — KK, 'K,

The element is further discussed in Example 4.38.
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EXAMPLE 4.33: Consider the nine-node plane strain element shown in Fig. E4.33. Assume
that the displacements are interpolated using the nine nodes and that the pressure is interpolated
using only the four corner nodes. Refer to the information given in Example 4.32 and discuss the
additional considerations for the evaluation of the matrix expressions of this element.

V.V?
2 5 1

¢ ®

® Displacament noda
@ Displacement and pressure node

TG 9 8 xu Young's modulus £
Poisson's ratio v

w
N e
>

Figure E4.33 A 9/4-c element

This element was proposed by P. Hood and C. Taylor [A]. In the formulation the nodal
pressures pertain to adjacent elements, and according to the above element nomination we refer
to it as a #/p-c element (it is the 9/4-c element).

The deviatoric and volumetric strains are as given in (a) in Example 4.32. The displace-
ment interpolation corresponds to the nine nodes of the element,

.'u,'

U
[u(x,y)]=[h’," R0 0 ] @
v(x, y) 0 ... 0 h¥ hE | v,

LU'%

where the interpolation functions A} are constructed as explained in Section 4.2.3 (or see
Section 5.3 and Fig. 5.4).
The deviatoric and volumetric strain-displacement matrices are obtained as in Example 4.32.
The pressure interpolation is given by
141

P=[h1 hy hs h4] p
ps

Pa

where the h; are those given in (b) in Example 4.32.

A main computational difference between this element and the four-node element dis-
cussed in Example 4.32 is that the pressure degrees of freedom cannot be statically condensed
out on the element level because the variables p, . . . , p4 pertain to the element we are consid-
ering here and to the adjacent elements, thus describing a continuous pressure field for the
discretization.
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Let us now return to the discussion of what pressure and displacement interpolations
should be used in order to have an effective element.

For instance, in Example 4.32, we used four nodes to interpolate the displacements
and assumed a constant pressure, and we may ask whether a constant pressure is the
appropriate choice for the four-node element. Actually, for this element, it is a somewhat
natural choice because the volumetric strain calculated from the displacements contains
linear variations in x and y and our pressure assumption should be of lower order.

When higher-order displacement interpolations are used, the choice of the appropri-
ate pressure interpolation is not obvious and indeed much more difficult: the pressure
should not be interpolated at too low a degree because then the pressure prediction could
be of higher order and hence be more accurate, but the pressure should also not be
interpolated at too high a degree because then the element would behave like the displace-
ment-based elements and lock. Hence, we want to use the highest degree of pressure
interpolation that does not introduce locking into the element.

For example, considering the u/p formulation and biquadratic displacement interpola-
tion (i.e., nine nodes for the description of the displacements), we may naturally try the
following cases:

1. Constant pressure, p = po (9/1 element)
2. Linear pressure, p = po + pix + p2y (9/3 element)
3. Bilinear pressure, p = po + pix + p2y + psxy (9/4 element)

and so on, up to a quadratic pressure interpolation {which corresponds to the 9/9 element),

These elements have been analyzed theoretically and by use of numerical experi-
ments. Studies of the elements show that the 9/1 element does not lock, but the rate of
convergence of pressure (and hence stresses) as the mesh is refined is only of o(h) because
a constant pressure is assumed in each nine-node element. The poor quality of the pressure
prediction can of course also have a negative effect on the prediction of the displacements.

Studies also show that the 9/3 element is most attractive because it does not lock and
the stress convergence is of o(h?). Hence, the predictive capability is optimal since if a
biquadratic displacement expansion is used, no higher-order convergence in stresses can be
expected. Also, the 9/3 element is effective for any Poisson’s ratio up to 0.5 (but the static
condensation of the pressure degrees of freedom is possible only for values of v < 0.5).

Hence, we may be tempted to always use the 9/3 element (instead of the displacement-
based nine-node element). However, we find in practice that the 9/3 element is computa-
tionally slightly more expensive than the nine-node displacement-based element, and when
v is less than 0.48, the additional terms in the pressure expansion of the displacement-based
element allow a slightly better prediction of stresses.

The next u/p element of interest is the 9/4 element, and studies show that this element
locks when v is close to 0.50; hence it cannot be recommended for almost incompressible
analysis.

In an analogous manner, other u/p elements can be constructed, and Table 4.6
summarizes some choices. Regarding these elements, we may note that the four-node two-
dimensional and eight-node three-dimensional elements are extensively used in practice.
However, the nine-node two-dimensional and 27-node three-dimensional elements are
frequently more powerful.
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As indicated in Table 4.6, the Q> — P, and P3 — P, elements are the first members
of two families of elements that may be used. That is, the quadrilateral elements Q, — P,-;,
and the triangular elements P, — P,_(, n > 2, are also effective elements.

In Table 4.6 we refer to the inf-sup condition, which we will discuss in Section 4.5.

From a computational point of view, the u/p elements are attractive because the
element pressure degrees of freedom can be statically condensed out before the elements are
assembled (assuming v < 0.5 but possibly very close to 0.5). Hence, the degrees of freedom
for the assemblage of elements are only the same nodal point displacements that are also
the degrees of freedom in the pure displacement-based solution.

However, the u/p-c formulation has the advantage that a continuous pressure field is
always calculated. Table 4.7 lists some effective elements.

The Finite Element Solution of Totally Incompressible Conditions

If we want to consider the material to be totally incompressible, we can still use (4.140) and
(4.143), but we then let « — . For this reason, we refer to this case as the limit problem.
Then (4.143) becomes

f «pdvV =0 (4.149)
\4

and (4.147) becomes, correspondingly,

[ 1l5)- o] w150

Hence, in the coefficient matrix, the diagonal elements corresponding to the pressure
degrees of freedom are now zero. It follows that a static condensation of the element
pressure degrees of freedom in the u/p formulation is no longer possible and that the
solution of the equations of the complete assemblage of elements needs special consider-
ations (beyond those required in the pure displacement-based solution) to avoid encounter-
ing a zero pivot element (see Section 8.2.5).

Suitable elements for solution are listed in Tables 4.6 and 4.7. These elements are
effective (except for the Q; — Py elements) because they have good predictive capability
irrespective of how close the behavior of the medium is to a situation of total incompressibil-
ity (but the procedure for solving the governing finite element equations must take into
account that the elements in K, become increasingly smaller as total incompressibility is
approached).

As already noted earlier, we refer to the inf-sup condition in Tables 4.6 and 4.7. This
condition is the basic mathematical criterion that determines whether a mixed finite element
discretization is stable and convergent (and hence will yield a reliable solution). The
condition was introduced as the fundamental test for mixed finite element formulations by
I. Babuska [A] and F. Brezzi [A] and since then has been used extensively in the analysis
of mixed finite element formulations. In addition to the inf-sup condition, there is also the
ellipticity condition which has not received as much attention because frequently—as in the
analysis of almost incompressible media—the ellipticity condition is automatically
satisfied.
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We may ask whether in practice it is really important to satisfy the inf-sup condition,
that is, whether perhaps this condition is too strong and elements that do not satisfy it can
still be used reliably. Our experience is that if the inf-sup condition is satisfied, the element
will be, for the interpolations used, as effective as we can reasonably expect and in that
sense optimal. For example, the 9/3 element for plane strain analysis in Table 4.6 is based
on a parabolic interpolation of displacements and a linear interpolation of pressure.The
element does not lock, and the order of convergence of displacements is always o(h*), and
of stresses, o(h?), which is surely the best behavior we can obtain with the interpolations
used.

On the other hand, if the inf-sup condition is not satisfied, the element will not always
display for all analysis problems (pertaining to the mathematical model considered) the
convergence characteristics that we would expect and indeed require in practice. The
element is therefore not robust and reliable.

Since the inf-sup condition is of great fundamental importance, we present in the
following section a derivation that although not mathematically complete does yield valu-
able insight. In this discussion we will also encounter and briefly exemplify the ellipticity
condition. For a mathematically complete derivation of the ellipticity and inf-sup
conditions and many more details, we refer the reader to the book by F. Brezzi and M.
Fortin [A].

In the derivation in the next section we examine the problem of incompressible
elasticity, but our considerations are also directly applicable to the problem of incompress-
ible fluid flow, and as shown in Section 4.5.7, to the formulations of structural elements.

4.4.4 Exercises

4.33. Use the four-node and eight-node shell elements available in a finite element program and
perform the patch tests in Fig. 4.17.

4.34. Consider the three-dimensional eight-node element shown. Design the patch test and identify
analytically whether it is passed for the element.

Yi
2 1
/ T
[]
2 ! 8
/ 3 ! 4 =
; u —E hiu; + o191 + a2 + a3
: H i;1
)
i i" N v=73 hivi+ a1 + asp; + o3
: ,/' "X =1
[P0 8
2 / 5 w=Y hiw; + azp) + agps + agps
P St b I=1
z /-,
1 i= 31+ X201+ yp(1 + z2)
Z” 8 ¢1='|—X2;¢2='|—-y2;¢3='|-'22
le 2 ol

Displacement interpolation functions
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4.35.

4.36.

4.37.

4.38.

4.39.

term.

Consider the Hu-Washizu functional Ilyw in (4.114) and derive in detail the equations (4.116)
to (4.121).

The following functional is referred to as the Hellinger-Reissner functional'’

HHR(II, T) = f

\'4

1
—-2-1'TC"1' dv + f 17 d.u dv

14
_f w're dy — f uszfo ds — f fSuT(uSu — llp) das
\'4 Sy Su

where the prescribed (not to be varied) quantities are f2 in V, u, on S, and £ on §;.

Derive this functional from the Hu-Washizu functional by imposing € = C™'7. Then
invoke the stationarity of Ilyr and establish all remaining differential conditions for the volume
and surface of the body.

Consider the functional
I, =1 - f £SuT(use — w,) dS
S

where I is given in (4.109) and u, are the displacements to be prescribed on the surface S,,.
Hence, the vector £« represents the Lagrange multipliers (surface tractions) used to enforce the
surface displacement conditions. Invoke the stationarity of Il; and show that the Lagrange
multiplier term will enforce the displacement boundary conditions on S,.

Consider the three-node truss element in Fig. E4.29. Use the Hu-Washizu variational principle
and establish the stiffness matrices for the following assumptions:

(a) Parabolic displacement, linear strain, and constant stress

(b) Parabolic displacement, constant strain, and constant stress

Discuss your results in terms of whether the choices of interpolations are sensible (see Exam-
ple 4.29).

Show that the following stress-strain expressions of an isotropic material are equivalent,

Tj = Kev6,»,- + 2GE.’, (a)
Tij = Cijrs [ (b)
T = Ce ©
where « is the bulk modulus, G is the shear modulus,
E E
“T30 -2 2(1 + »)

E is Young’s modulus, » is Poisson’s ratio, ey is the volumetric strain, and €/; are the deviatoric
strain components,

€

AlSO, C,')',s = 1\5,']'6,5 + p(&,-,tsj, + 6,‘;6],)

o . | —
€y = €u; €; = € —

7This functional is sometimes given in a different form by applying the divergence theorem to the second
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where A and y are the Lamé constants,

— Ey . —___.—E
U+ 0 -29) k=20 + v

In (a) and (b) tensorial quantities are used, whereas in (c) the vector of strains contains the
engineering shear strains (which are equal to twice the tensor components; e.g., v,, = €12 + €).
Also, the stress-strain matrix C in (c) is given in Table 4.3.

4.40. Identify the order of pressure interpolation that should be used in the u/p formulation in order
to obtain the same stiffness matrix as in the pure displacement formulation. Consider the
following elements of 2 X 2 geometry.

(a) Four-node element in plane strain
(b) Four-node element in axisymmetric conditions
(¢) Nine-node element in plane strain.

4.41. Consider the 4/1 element in Example 4.32 and assume that the displacement boundary condition
to be imposed is u; = u. Show formally that imposing this boundary condition prior to or after
the static condensation of the pressure degree of freedom, yields the same element contribution
to the stiffness matrix of the assemblage.

4.42. Consider the axisymmetric 4/1 u/p element shown. Construct the matrices By, By, C’, and H,
for this element.

A

¢

—_—
[}
s

Yo

| R

o]

4.43. Consider the 4/3-c element in plane strain conditions shown. Formulate all displacement and
strain interpolation matrices for this element (see Table 4.7).

LA \

1

70\
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4.44. Consider the 9/3 plane strain u/p element shown. Calculate the matrix K,,.

R

Young's modulus £
Poisson's ratio v = 0.49

4.45. Consider the plate with the circular hole shown. Use a finite element program to solve for the
stress distribution along section AA for the two cases of Poisson’s ratios » = 0.3 and » = 0.499.
Assess the accuracy of your results by means of an error measure. (Hinz: For the analysis with
v = 0.499, the 9/3 element is effective.)

A
l<—100mm——+—100mm——l
. : 11
]
]
1 o
- !
< i - 100 mm
r=40mm >
Pl 1 Py
-
- : 100 mm
» | .
1
~ :
» ; A1
(A

Plane strain condition
Young's modulus £ = 200,000 MPa
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4.46. The static response of the thick cylinder shown is to be calculated with a finite element program,

(

p f = force per unit length
e T

! 30 mm

20 mm

10 mm
|4——>

|
/e

E = 200,000 MPa
v=0.499

Use idealizations based on the following elements to analyze the cylinder.

(a) Four-node displacement-based element

(b) Nine-node displacement-based element

(¢) 4/1 u/p element.

(d) 9/3 u/p element.

In each case use a sequence of meshes and identify the convergence rate of the strain energy.

4.5 THE INF-SUP CONDITION FOR ANALYSIS OF INCOMPRESSIBLE
MEDIA AND STRUCTURAL PROBLEMS

As we pointed out in the previous section, it is important that the finite element discretiza-
tion for the analysis of almost, and of course totally, incompressible media satisfy the
inf-sup condition. The objective in this section is to present this condition. We first consider
the pure displacement formulation for the analysis of solids and then the displacement/pres-
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sure formulations. Finally, we also briefly discuss the inf-sup condition as applicable to
structural elements.

In our discussion we apply the displacement and displacement/pressure formulations
to a solid medium. However, the basic observations and conclusions are also directly
applicable to the solution of incompressible fluid flows if velocities are used instead of
displacements (see Section 7.4).

45.1 The Inf-Sup Condition Derived from Convergence
Cpnsiderations

We want to solve a general linear elasticity problem (see Section 4.2.1) in which a body is
subjected to body forces f?, surface tractions f% on the surface S;, and displacement
boundary conditions u® on the surface S,. Without loss of generality of the conclusions that
we want to reach in this section, we can assume that the prescribed displacements u’« and
prescribed tractions % are zero. Of course, we assume that the body is properly supported,
so that no rigid body motions are possible. We can then write our analysis problem as a
problem of minimization,

1
min {—a(v, v) + Ef (div v)? dVol — f f2.v dVol} (4.151)
2 2 Jva Vol

vevy

where using indicial notation and tensor quantities (see Sections 4.3.4 and 4.4.3),

a(u, v) = 2G 2 €;(u) €/(v) dVol

Vol ij
€i{(u) = €u) — §divudy (4.152)
1 Bu; 6uj .
o = =— + — 5 di = 0
€;(u) 2( % axi) vV = o,

where k = E/[3(1 — 2v)] (bulk modulus), G = E/[2(1 + v)] (shear modulus), E =
Young’s modulus, v = Poisson’s ratio.

V= {vlg—l;; € LX(Vol), i,j = 1,2,3;0il5, = 0,i = 1, 2, 3}

In these expressions we use the notation defined earlier (see Section 4.3) and we denote by
“Vol” the domain over which we integrate so as to avoid any confusion with the vector space
V. Also, we use for the vector v and scalar g the norms

vl = 2

8}

2
ov;

Bx,-

s Nalid = Il glizaven (4.153)

L%(Vol)

where the vector norm || - [|v is somewhat easier to work with but is equivalent to the Sobolev
norm || - ||, defined in (4.76) (by the Poincaré-Friedrichs inequality).
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In the following discussion we will not explicitly give the subscripts on the norms but
always imply that a vector w has norm || w|ly and a scalar v has norm || y |jo.

Let u be the minimizer of (4.151) (i.e., the exact solution to the problem) and let V;
be a space of a sequence of finite element spaces that we choose to solve the problem. These
spaces are defined in (4.84). Of course, each discrete problem,

K

. 1
lim {Ea(v,,, v,) + 2

VAEVR

(div v,)* dVol — J- 3. v, dVol} (4.154)
Vol Vol
has a unique finite element solution u,. We considered the properties of this solution in
Section 4.3.4, and in particular we presented the properties (4.95) and (4.101). However,
we also stated that the constants c in these relations are dependent on the material proper-
ties. The important point now is that when the bulk modulus x is very large, the relations
(4.95) and (4.101) are no longer useful because the constants are too large. Therefore, we
want our finite element space V, to satisfy another property, still of the form (4.95) but in
which the constant ¢, in addition to being independent of h, is also independent of «.

To state this new desired property, let us first define the “distance” between the exact
solution u and the finite element space V; (see Fig. 4.22),

d(u, V) = v,i.Ielf/,. flu = vall = lu — Gl (4.155)

where @, is an element in V, but is in general not the finite element solution.
The Basic Requirements
In engineering practice, the bulk modulus k may vary from values of the order of G to very

large values, and indeed to infinity when complete incompressibility is considered. Our
objective is to use finite elements that are uniformly effective irrespective of what value k

lu-upll

diu, Vh) = ||l.l—ﬁh Il

N\ Vh

Figure 4.22 Schematic representation of solutions and distances; for optimal convergence
lu — w,)| = c d(u, V,) with ¢ independent of 4 and «.
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takes. Mathematically, therefore, our purpose is to find conditions on V, such that

lu — wa| = cdu, V)

with a constant ¢ independent of h and k. (4.156)

These conditions shall guide us in our choice of effective finite elements and discretizations.

The inequality (4.156) means that the distance between the continuous solution u and
the finite element solution uw, will be smaller than a (reasonably sized) constant ¢ times
d(u, V) and that this relationship will be satisfied with the same constant ¢ irrespective of
the bulk modulus used. Note that this independence of ¢ from the bulk modulus is the key
property we did not have in Section 4.3.4 when we derived a relation such as (4.156)
[see (4.95)].

Assume that the condition (4.156) holds (with a reasonably sized constant c). Then
if d(u, V) is o(h*), we know that |[u — w,|| is also o(%*), and since c is reasonably sized and
independent of k, we will in fact observe the same solution accuracy and improvement in
accuracy as h is decreased irrespective of the bulk modulus in the problem. In this case the
finite element spaces have good approximation properties for any value of «, and the finite
element discretization is reliable (see Section 1.3).

The relationship in (4.156) expresses our fundamental requirement for the finite
element discretization, and finite element formulations that satisfy (4.156) do not lock (see
Section 4.4.3). In the following discussion, we write (4.156) only in forms with which we
can work more easily in choosing effective finite elements. One of these forms uses an
inf-sup value and is the celebrated inf-sup condition.

To proceed further, we define the spaces K and D,

K(g) = {v|vE V,divv = g} (4.157)
D = {q| q = div v for some v € V} (4.158)

and the corresponding spaces for our discretizations,

Ki(gn) = {vn | v € Vi, div v = g} (4.159)
Dy, = {gu | g» = div va for some v, € Vi} (4.160)

Hence the space Ki(gx), for a given g,, corresponds to all the elements v, in Vj that satisfy
div v, = gx. Also, the space D, corresponds to all the elements g, with g, = div v, that are
reached by the elements v, in V,; that is, for any g, an element of D, there is at least one
element v, in V, such that g, = div v,. Similar thoughts are applicable to the spaces K
and D.

We recall that when « is large, the quantity || div u,| will be small; the larger , the
smaller ||div ws|, and it is difficult to obtain an accurate pressure prediction p, =
~k div us. In the limit k — % we have div u, = 0, but the pressure p, is still finite (and
of course of order of the applied tractions) and therefore x(div u,)*> = 0.
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Before developing the inf-sup condition, let us state the ellipticity condition for the
problem of total incompressibility: there is a constant « greater than zero and independent
of h such that

a(Ve, V) = a ”V;. "2 Vv, E Kh(O) (4161)

This condition in essence states that the deviatoric strain energy is to be bounded from
below, a condition that is clearly satisfied. We further refer to and explain the ellipticity
condition for the incompressible elasticity problem in Section 4.5.2.

Let us emphasize that in this finite element formulation the only variables are the
displacements.

Obtaining the Inf-Sup Condition

The inf-sup condition—which when satisfied ensures that (4.156) holds—can now be
developed as follows. Since the condition of total incompressibility clearly represents the
most severe constraint, we consider this case. Then ¢ = 0, u belongs to K(g) for ¢ = 0 [that
is, K(0)], and the continuous problem (4.151) becomes

.1 5
min {5 a(v, v) J;m | SR dVol} (4.162)

with the solution u, while the discrete problem is

. 1 "
min_ {Ea(vh, Vi) — J;d | G dVol} (4.163)

with the solution u,.

Now consider condition (4.156). We notice that in this condition we compare dis-
tances. In the following discussion we characterize a distance as “small” if it remains of the
same order of magnitude as d(u, V,,) as h decreases. Similarly, we will say that a vector is
small if its length satisfies this definition and that a vector is “close” to another vector if the
vector difference in the two vectors is small.

Sinceu, € K,(0), and therefore always |u — w,|| = ¢ dlu, Kx(0)] (see Exercise 4.47),
we can also write condition (4.156) in the form

du, Ki(0)] = c d(u, Vi) (4.164)

which means that we want the distance from u to K,(0) to be small. This relation expresses
the requirement that if the distance between u and V, (the complete finite element displace-
ment space) decreases at a certain rate as h — 0, then the distance between u and the space
in which the actual solution lies [because w. € K,(0)] decreases at the same rate.

Figure 4.23 shows schematically the spaces and vectors that we use. Let u,o be a
vector of our choice in K,(0) and let w, be the corresponding vector such that

ﬁh = U + W, (4165)
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diu, Kp0)}

diu, Vp)

Figure 4.23 Spaces and vectors considered in deriving the inf-sup condition
We can then prove that the condition in (4.164) is fulfilled provided that

for all g, € Dy, there is a w, € Ki(gy) such that

lwall = ¢ [l gnl (4.166)
where ¢’ is independent of 4 and the bulk modulus «.

First, we always have (see Exercise 4.48)
ldiviu — @) < allu — @ (4.167)
and hence, [ div 8, = a d(u, Vi) (4.168)

where « is a constant and we used divu = 0.
Second, we consider

lu = wol = [Ju— @, + w
= lu — | + | wal

Now assume that (4.166) holds with g, = div @l,. Because div u, = 0, we have
div @i, = div w,, where we note that i, is fixed by (4.155) and therefore gy is fixed, but by
choosing different values of uo different values of w,, are also obtained. Then it follows that

lu—wol =du, Vi) + ¢ [l
=d(u, V) + ¢’ || div || (4.169)
=du, V) + cad(u, V)

We emphasize that we have used the condition (4.166) in this derivation and have assumed
that w, is an element in K,(0) such that w, satisfies (4.166). Also, note that (4.168)
established only that || div i, || is small, but then (4.169) established that || u — || is small.
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Third, since uy € K3(0), we obtain from (4.169),
dlu, Ku(0)] =< lu — wol| = (1 + ac’) du, Vi) (4.170)

which is (4.164) with ¢ = 1 + ac’, and we note that ¢ is independent of # and the bulk
modulus.

The crucial step in the derivation of (4.164) is that using (4.166) with g, = div @, we
can choose a vector wj that is small [which follows by using (4.166) and (4.168)]. We note
that (4.166) is the only condition we need in order to prove (4.164) and is therefore the
fundamental requirement to be satisfied in order to have a finite element discretization that
will give an optimal rate of convergence.

The optimal rate of convergence requires in (4.164) that the constant ¢’ in (4.166) be
independent of h. Assume, for example, that instead of (4.166) we have ||wa|| =< (1/84)|| gl
with B, decreasing with h. Then (4.170) will read

d[u, K.(0)] = (1 + %) dQu, Vi) (4.171)

and hence the distance between u and K,(0) will not decrease at the same rate as d(u, V}).
However, convergence, although not optimal, will still occur if d(u, V.) decreases faster
than B,. This shows that the condition in (4.166) is a strong guarantee for good convergence
properties of our discretization.

Let us now rewrite (4.166) in the form of the inf-sup condition. From (4.166) we
obtain, with g, and w, variables, w, € Ki(qs), the condition

Iwallllgell = ¢ llaulp = ¢ f @ div wi Vel (“.172)

or the condition is that for all g, € D,, there is a w, € Ki(gx) such that

1 di 1
Ly gull = Do gn div wi AVl @173)
c Il wall
1 i 1
Hence, we want =gl = sup Jio @1 div v dVol (4.174)
c VpEV, " Vi “
and the inf-sup condition follows,
. Jva @n div v, dVol
inf sup —————7—=8 >0
b ® " Tvllal P
. . (4.175)
with 3 a constant independent of « and A

We note that 8 = 1/c".

Therefore, (4.166) implies (4.175), and it can also be proven that (4.175) implies
(4.166) (see Example 4.42). (We will not present this proof until later because we must first
discuss certain additional basic facts.) Hence, we may also refer to (4.166) as one form of
the inf-sup condition.
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The inf-sup condition says that for a finite element discretization to be effective, we
must have that, for a sequence of finite element spaces, if we take any g, € D, there must
be a v, € Vi such that the quotient in (4.175) is = 8 > 0. If the inf-sup condition is satis-
fied by the sequence of finite element spaces, then our finite element discretization scheme
will exhibit the good approximation property that we seek, namely, (4.156) will be fulfilled.

Note that if 8 is dependent on h, say (4.175) is satisfied with B, instead of 8, then the
expression in (4.171) will be applicable (for an example, see the three-node isoparametric
beam element in Section 4.5.7).

Whether the inf-sup condition is satisfied depends, in general, on the specific finite
element we use, the mesh topology, and the boundary conditions. If a discretization using
a specific finite element always satisfies (4.175), for any mesh topology and boundary
conditions, we simply say that the element satisfies the inf-sup condition. If, on the other
hand, we know of one mesh topology and/or one set of (physically realistic) boundary
conditions for which the discretization does not satisfy (4.175), then we simply say that the
element does not satisfy the inf-sup condition.

Another Form of the Inf-Sup Condition

To analyze whether an element satisfies the inf-sup condition (4.175), another form of this
condition is very useful, namely

For all u there is a u; € V, (a vector that interpolates u) such that

diviu — uw;)g, dVol = Q for all g» € D
J Vol ( e a " (4.176)
lul =clul

with the constant ¢ independent of u, w,, and .

The equivalence of (4.176) and (4.175) [and hence (4.166)] can be formally proven
(see F. Brezzi and M. Fortin [A] and F. Brezzi and K. J. Bathe [A, B]), but to simply relate
the statements in (4.176) to our earlier discussion, we note that two fundamental require-
ments emerged in the derivation of the inf-sup condition; namely, that there is a vector w,
such that (see Figure 4.23)

div w, = div @i, (4.177)
and [see (4.166) and (4.168)]
| wall = c*d(u, Vi) (4.178)

where c* is a constant.

We note that (4.176) corresponds to (4.177) and (4.178) if we consider the vector
@, — u (the vector of difference between the best approximation in V, and the exact
solution) the solution vector and the vector w,, the interpolation vector.

Hence, the conditions are that the interpolation vector w, shall satisfy the above
divergence and “small-size” conditions for and measured on the vector (i, — u) in order
to have an effective discretization scheme.
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The three expressions of the inf-sup condition, (4.166), (4.175), and (4.176), are
useful in different ways but of course all express the same requirement. In mathematical
analyses the forms (4.166) and (4.175) are usually employed, whereas (4.176) is frequently
most easily used to prove whether a specific element satisfies the condition (see Exam-
ple 4.36).

Considering the inf-sup condition, we recognize that the richer the space Kx(0), the
greater the capacity to satisfy (4.175) [that is, (4.164)]. However, unfortunately, using the
standard displacement-based elements, the constraint is generally too strong for the ele-
ments and meshes (i.e., spaces V;) of interest and the discretizations lock (see Fig. 4.20).
We therefore turn to mixed formulations that do not lock and that exhibit the desired rates
of convergence. Excellent candidates are the displacement/pressure formulations already
introduced in Section 4.4.3. However, whereas the pure displacement formulation is (al-
ways) stable but generally locks, for any mixed formulation, a main additional concern is
that it be stable. We shall see in the following discussion that the conditions of no locking
and stability are fulfilled if by appropriate choice of the displacement and pressure interpo-
lations the inf-sup condition is satisfied, and the desired (optimal) convergence rate is also
obtained if the interpolations for the displacements and pressure are chosen appropriately.

Weakening the Constraint

Let us consider the u/p formulation. The variational discrete problem in the u/p formula-
tion [corresponding to (4.140) and (4.143)] is

1
min {—a(v,,, V),) + L f [Ph(dlv V).)]2 dVol — f £5 ., dVOl} (4179)
eV |2 2 Jva Vol
where the projection operator P, is defined by
f [Pu(div vz) — div vi]gr dVol = O for all g, € O (4.180)
Vol

and QO is a “pressure space” to be chosen. We see that O, always contains Py(D;) but that
Qs is sometimes larger than P,(D;), which is a case that we shall discuss later.

To recognize that (4.179) and (4.180) are indeed equivalent to the u/p formulation,
we rewrite (4.179) and (4.180) as

2G J:M e;(uy)ei(vs) dVol — f

Vol

Dn div v, dVol = f £2 . v, dVol Vv €YV, (4181)

Vol

J’ (pT(’i + div u;.)q). dVol = 0 v qh € Qh (4182)
Vol

These equations are (4.140) and (4.143) in Section 4.4.3, and we recall that they are valid
for any value of ¥ > 0. The key point in the u/p formulation is that (4.180) [i.e., (4.182)]
is applied individually for each element and, provided « is finite, the pressure variables can
be statically condensed out on the element level (before assembly of the element stiffness
matrix into the global structure stiffness matrix).

Consider the following example.

EXAMPLE 4.34: Derive Py(div vs) for the 4/1 element shown in Fig. E4.34. Hence, evaluate
the term (x/2) [, [Px(div v»)* dVol in (4.179).
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Yy A
2 1
3
2 -
s
Y
3 4
2 - Figure E4.34 A 4/1 plane strain element
We have
divwv, = [h],x [ ha,x : hl,y e ha,y] a
where =[lw ... up i v, ... v,

‘We now use (4.180), with g, an arbitrary nonzero constant (say g, = a), because here Q, is the
space of constant pressures. Since Pi(div v,) is also constant, we have from (4.180),

4P, (div vi)a = @ f div v, dVol

vol

which gives Pdivvy) =31 -1 -1 1:1 1 -1 -1]d
= Dd
K . K . .
Hence, - [P.(div v,)]* dVol = > 6’G, G
Vol

2
where G, = 4D'D

Note that although we have used the pressure space Q,, the stiffness matrix obtained from
(4.179) will correspond to nodal point displacements only.
Also, we may note that the term P,(div v,) is simply div v, atx = y = Q.

EXAMPLE 4.35: Consider the nine-node element shown in Fig. E4.35 and assume that v, is
given by the nodal point displacements u; = 1, us = 0.5, us = 0.5, us = 0.25 with all other
nodal point displacements equal to zero. Let O, be the space corresponding to {1, x, y}. Evaluate
P;,(diV Vh).

To evaluate Pi(div v,) we use the general relationship

f (P;,(dw V),) — div vh)qh dVol = 0 v qn S Qh (a)
Vol

In this example,
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YA
2 5] 1
P — Uy
A . Us
6e¢ 3 P> 8 L
ug ug X
{Unit thickness)
A -
3 7 4
- - Figure E4.35 A 9/3 element subjected
2 to nodal point displacements

where u, and v, are given by the element nodal point displacements. Hence,

w,=31+x0+y

Uy = 0
and divve = 31(1 + )
Let Pu(div vi) = a1 + axx + asy
1
then (a) gives f [(a. + ax + asy) — Z(l + y)]q,, dxdy =0 )]
Vol

for g» = 1, x, and y. Hence, (b) gives the set of equations

— - — —

[ 1
f dx dy f xdxdy f ydxdy||l a f Z(l + y) dxdy
Vol Vol Vol Vol

1
f xtdxdy f xydxdy||l a:] = f Z(l + y) xdxdy
Vol Vol Vol

1
Symmetric f yrdxdy|| as f (1 + y)ydxdy
| Vol de | Vol 4 _
4 0 0]la 1]
or 2 0lla|=]0 ©
Sym. % || as i

The solution of (c) gives @i = %, a; = 0, a; = §, and hence,
Pi(divvy) = 3(1 + y)
This result is correct because div v, can be represented exactly in Q, and in such a case
the projection gives of course the value of div v,.

The inf-sup condition corresponding to (4.179) is now like the inf-sup condition we

discussed earlier but using the term P,(div v,) instead of div v+. Hence our condition is now
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fVol qn div v, dVol

qhelg.(bh) \i‘égh " Vi ” ” Gn "

=8>0 (4.183)

In other words, the inf-sup condition now corresponds to any element in V, and Pu(D).
Hence, when applying (4.166), (4.175), or (4.176) to the mixed interpolated u/p elements,
we now need to consider the finite element spaces Vi and Pi(Ds), where Py(Dy) is used
instead of Dj.

EXAMPLE 4.36: Prove that the inf-sup condition is satisfied by the 9/3 two-dimensional u/p
element presented in Section 4.4.3.

For this proof we use the form of the inf-sup condition given in (4.176) (see F. Brezzi and
K. J. Bathe [A]). Given u smooth we must find an interpolation, u, € Vi, such that for each
element m,

f - (div u — div u))g, dVol™ = 0 (a)
Vol

for all g» polynomials of degree <1 in Vol™, To define u; we prescribe the values of each
displacement at the nine element nodes (corner nodes, midside nodes, and the center node). We
start with the corner nodes and require for these nodes i = 1, 2, 3, 4,

w|i = ul; eight conditions ®)

Then we adjust the values at the midside nodes j = 5, 6, 7, 8 in such a way that

f (u—uw) 'nds = f (u—w)7dS=0 eight conditions ©
5 5
for every edge S, . . . , S, of the element with n the unit normal vector and = the unit tangential
vector to the edge.

Next we note that (a) in particular implies, for every constant g,

f div(u — u)g, dVol™ = g, > (u—w) nds (d)
Volim) Steeens Sa S;

We are left to use the two degrees of freedom at the element center node. We choose these in such
a way that

f div(u — u)x dvol" = f div(u — u)y dVol™ = 0 ©
Vol(m Vol(m)

We note now that (d) and (e) imply (a) and that u,, constructed element by element through (b)
and (c), will be continuous from element to element. Finally, note that clearly if u is a (vector)
polynomial of degree =<2 on the element, we obtain u, = u and this ensures optimal bounds for
|lw — u, || and implies the condition || ;|| = c | u || in (4.176) for all u.

While in the u/p formulation the projection (4.180) is carried out for each element
individually, in the u/p-c formulation a continuous pressure interpolation is assumed and
then (4.181) and (4.182) are applied. The relation (4.182) with the continuous pressure
interpolation gives a set of equations coupling the displacements and pressures for adjacent
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elements. In this case the inf-sup condition is still given by (4.183), but now the pressure
space corresponds to the nodal point continuous pressure interpolations.

In dealing with the inf-sup condition, we recognize that the ability to satisfy the
condition depends on how the space P,(D,) relates to the space of displacements V,,. Here
again, P, is the projection operator onto the space Q, [see (4.180) and (4.182)], and, in
general, the smaller the space Q,, the easier it is to satisfy the condition. Of course, if for
a given space V, the inf-sup condition is satisfied with Q, smaller than necessary, we have
a stable element but the predictive capability is not as high as possible (namely, as high as
it would be using the larger space Q, but still satisfying the inf-sup condition).

For example, consider the nine-node isoparametric element (see Section 4.4.3). Using
the u/p formulation with P, = I (the identity operator), the displacement-based formula-
tion is obtained and the element locks. Reducing the constraint to obtain the 9/3 element,
the inf-sup condition is satisfied (see Example 4.36) and optimal convergence rates are
obtained for the displacements and the pressure; that is, the convergence rate for the
displacements is o(h?) and for the stress is o(h?), which is all that we can expect with a
parabolic interpolation of displacements and a linear interpolation of pressure. Reducing the
constraint further to obtain the 9/1 element, the inf-sup condition is also satisfied, and while
the element behavior for the interpolations used is still optimal, the predictive capability of
this nine-node element is not the best possible (because a constant element pressure is
assumed, whereas a linear pressure variation could be used).

This observation (about the quality of the solution) is explained by the error bounds
(see, for example, F. Brezzi and K. J. Bathe [B]). Let u, € V, be an interpolant of u
satisfying

fw [div(u — w)lgs dVol = 0 Y gn € Pu(Dy) } (4.184)
and Tl = cllu]
If (4.184) holds for all possible solutions u, then
lu—w| = alle -wl+ |7 - P)pl) (4.185)
and I'p + «Pu(div w)|| =< c;(lu —w ] + (7 - P)PI) (4.186)
where p = —«kdiv u and c,, ¢, are constants independent of 4 and x. We note of course that

(4.184) is the inf-sup condition with the weakened constraint g, € P,(D,) [see (4.176)]and
that the right-hand sides of (4.185) and (4.186) are smaller the closer P, is to I.

4.5.2 The Inf-Sup Condition Derived from
the Matrix Equations

Further insight into the inf-sup condition is obtained by studying the governing algebraic
finite element equations. Let us consider the case of total incompressibility (it being the

most severe case),
[Ell:::;: (Kff)h] [g] - [1;] (4.18)

where U, lists all the unknown nodal point displacements and P, lists the unknown pressure
variables. Since the material is assumed to be totally incompressible, we have a square null
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matrix equal in size to the number of pressure variables in the lower right of the coefficient
matrix.

The mathematical analysis of the formulation resulting in (4.187) consists of a study
of the solvability and the stability of the equations, where the stability of the equations
implies their solvability.

The solvability of (4.187) simply refers to the fact that (4.187) can actually be solved
for unique vectors U, and P, when R, is given.

The conditions for solvability (see Exercise 4.54) are

Condition i:
ViK.)wVe >0 for all V, satisfying (K,.),V, = 0 (4.188)

Condition ii:
(Kip): Q. =0 implies that Q, must be zero (4.189)

The space of displacement vectors V, that satisfy (K,.)»V, = 0 represents the kernel of

(Kpu)h'
The stability of the formulation is studied by considering a sequence of problems of
the form (4.187) with increasingly finer meshes. Let S be the smallest constant such that

[ Auslly + || Ap Jl <3 || A£® |lov
lheally + 1| pallo | £21lov

(4.190)

for all w,, pi, £, Aus, Aps, Af?, where ||« {|vand || + || are the norms defined in (4.153), |} * |lov
means the dual norm of | + | (see Section 2.7), and Af?, Aw,, and Ap, denote a prescribed
perturbation on the load function f? and the resulting perturbations on the displacement
vector w, and pressure p,. Of course, we have

[EZ}: (KS")"][‘Z(;Z] = [A(,Rh] (4.191)

.

where AR, corresponds to the load variation Af? and the norms of the finite element variables
in (4.190) are given by the nodal point values listed in the solution vectors. Hence (4.190)
expresses that for a given relative perturbation in the load vector, the corresponding relative
perturbation in the solution is bounded by S times the relative perturbation in the loads.

For any given fixed mesh, satisfying the conditions of solvability (4.188) and (4.189)
implies that (4.190) is satisfied for some S, the value of which depends on the mesh.

The formulation is stable if for any sequence of meshes the stability constant S is
uniformly bounded. Hence, our question of stability reduces to asking for the conditions on
the matrices (K..)» and (K.,,)» that ensure that S remains uniformly bounded when using any
sequence of meshes.

We considered briefly in Section 2.7 the stability conditions as related to a formulation
that leads to a general coefficient matrix A [see (2.169) to (2.179)]. If we specialize these
considerations to the specific coefficient matrix used in the displacement/pressure formula-
tions, we will find a rather natural result (see F. Brezzi and K. J. Bathe [B]), namely, that
the stability conditions are an extension of the solvability conditions (4.188) and (4.189) in
that stability in the use of these relations with increasingly finer meshes must be preserved.
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The stability condition corresponding to the solvability condition (4.188) is that there
is an @ > 0 independent of the mesh size such that

VIV = | v} for all V, € kernel [(K,,)x] (4.192)

This condition is the ellipticity condition already mentioned briefly in Section 4.5.1.
The relation states that, for any fineness of mesh, the Rayleigh quotient obtained with any
vector V, satisfying (K,.)» V., = 0, will be bounded from below by the constant « (which is
independent of element mesh size). This ellipticity condition is always (i.e., for any choice
of element interpolation) fulfilled by our displacement/pressure formulations. We elaborate
upon this fact in the following example.

EXAMPLE 4.37: Consider the ellipticity condition in (4.192) and discuss that it is satisfied for
any (practical) displacement/pressure formulation.

To understand that the ellipticity condition is fulfilled, we need to recall that (4.187) is the
result of the finite element discretization in (4.179). Hence,

VI(Ku ) Vi Vi € kernel (K,,)» (a)

corresponds to twice the strain energy stored in the finite element discretization when v, corre-
sponds to an element in V;, that satisfies P,(div v,) = 0. However, unless we select the pressure
space Q» = {0}, that is, unless we totally remove the incompressibility constraint and the
formulation does not contain strain energy due to compression—an impractical and trivial
case—the expression in (a) will always be greater than zero (and bounded from below).

If (4.192) is not satisfied, we could easily stabilize the solution. This is achieved by
considering the almost incompressible case and using the variational formulation

£ _2 . f [Pu(div vi)J? dVol — f

Vol

V4EVy

kK
min {% a(V, V) + KT f (div vi)* dVol + £8 . v, dVol}
Vol

where k* is a bulk modulus of the order of the shear modulus and does not lead to locking. Of
course, we could now assume (k — x*) — o,

This procedure amounts to evaluating a portion of the bulk energy as in the displacement
method and using a projection for the remaining portion. Note that when « is equal to «*, the
part to be projected is zero. Hence the essence of the scheme is that a well-behaved part of
the term that is difficult to deal with has been moved to be evaluated without the projection. This
kind of stabilization to satisfy the ellipticity condition can be important in the design of formu-
lations (see F. Brezzi and M. Fortin [A]). The procedure has been proposed to stabilize a
displacement/pressure formulation for the analysis of inviscid fluids (see C. Nitikitpaiboon and
K. J. Bathe [A]) and for the development of plate and shell elements (see D. N. Arnold and
F. Brezzi [A]). However, the difficulty with this approach can be in selecting the portions of
energies to be evaluated with and without projection, in particular when the various kinematic
actions are fully coupled as, for instance, in the analysis of shell structures (see Section 5.4.2).

The stability condition corresponding to the solvability condition (4.189) is that there
is a B > 0 independent of the mesh size A such that

Ao Vi

=28>0 4.193
lel vl = 2 .19

inf su
o VP

for every problem in the sequence.
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Note that here we take the sup using the elements in V,, and the inf using the elements
in Q.. Of course, this relation is our inf-sup condition (4.183) in algebraic form, but we now
have g, € Qu, where Qy is not necessarily equal to Py(D»).

We note that a simple test consisting of counting displacement and pressure variables
and comparing the number of such variables is not adequate to identify whether a mixed
formulation is stable. The above discussion shows that such a test is certainly not sufficient
to ensure the stability of a formulation and in general does not even ensure that condition
(4.189) for solvability is satisfied (see also Exercises 4.60 and 4.64).

4.5.3 The Constant (Physical) Pressure Mode

Let us assume in this section that our finite element discretization contains no spurious
pressure modes (which we discuss in the next section) and that the inf-sup condition for
qr € Py(D») is satisfied.

We mentioned earlier (see Section 4.4.3) that when our elasticity problem corre-
sponds to total incompressibility (i.e., we consider ¢ = div u = 0) and all displacements
normal to the surface of the body are prescribed (i.e., S. is equal to S), special considerations
are necessary. Actually, we can consider the following two cases.

Casei: Alldisplacements normal to the body surface are prescribed to be zero. In this case,
the pressure is undetermined unless it is prescribed at one point in the body. Namely, assume
that py is a constant pressure. Then

f podivv,.dVol=p0fvh'ndS=0 Vv E Vi (4.194)
Vol s

where n is the unit normal vector to the body surface. Hence, if the pressure is not prescribed
at one point, we can add an arbitrary constant pressure po to any proposed solution. A
consequence is that the equations (4.187) cannot be solved unless the pressure is prescribed
at one point, which amounts to eliminating one pressure degree of freedom [one column in
(K.)» and the corresponding row in (Kp,)x). If this pressure degree of freedom is not elimi-
nated, Qy is larger than P,(Ds), the solvability condition (4.189) is not satisfied, and the
inf-sup value including this pressure mode is zero. For a discussion of the case @} larger that
Py(Dy) but pertaining to spurious pressure modes, see Section 4.5.4.

Of course, instead of eliminating one pressure degree of freedom, it may be more
expedient in practice to release some displacement degrees of freedom normal to the body
surface.

Case ii: All displacements normal to the body surface are prescribed with some nonzero
values. The difficulty in this case is that the incompressibility condition must be fulfilled

f divv;,dVoI=fv;,-ndS=0 Vv, E VWV (4.195)
Vol S

A constant pressure mode will also be present, which can be eliminated as discussed for
Case i. If the body geometry is complex, it can be difficult to satisfy exactly the surface
integral condition in (4.195). Since any error in fulfilling this condition can result in a large
error in pressure prediction, it may be best in practice to leave the displacement(s) normal to
the surface free at some node(s).
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Let us next consider that the body is only almost incompressible, that « is large but
finite, and that the u/p formulation is used. In Case i, the arbitrary constant pressure p, will
then automatically be set to zero (in the same way as spurious modes are set to zero; see
Section 4.5.4). This is a most convenient result because we do not need to be concerned
with the elimination of a pressure degree of freedom. Of course, in practice we could also
leave some nodal point displacement degree(s) of freedom normal to the body surface free,
which would eliminate the constant pressure mode.

With the constant pressure mode present in the model, Q. is (by one basis vector)
larger than P,(D;,) and the inf-sup value corresponding to this mode is zero. Nevertheless,
we can solve the algebraic equations and obtain a reliable solution (unless  is so large that
the ill-conditioning of the coefficient matrix results in significant round-off errors, see
Section 8.2.6).

In Case ii, it is probably best to proceed as recommended above, namely, to leave some
nodal displacement(s) normal to the surface free, in order to give the material the freedom
to satisfy the constraint of near incompressibility. Then the constant pressure mode is not
present in the finite element model.

An important point in these considerations is that if all displacements normal to the
surface of the body are prescribed, the pressure space will be larger than P,(D;), but only
by the constant pressure mode. This mode is of course a physical phenomenon and not a
spurious mode. If the inf-sup condition for g, € Pu(Ds) is satisfied, then the solution is
rendered stable and accurate by simply eliminating the constant pressure mode (or using the
u/p formulation with a not too large value of « to automatically set the value of the constant
pressure to zero). We consider in the next section the case of Q, larger than P,(D;) as aresult
of spurious pressure modes.

4.5.4 Spurious Pressure Modes—The Case of Total
Incompressibility

We consider in this section the condition of total incompressibility and, merely for simplic-
ity of discussion, that the physical constant pressure mode mentioned earlier is not present
in the model. If it were actually present, the considerations given above would apply in
addition to those we shall now present.

With this provision, we recall that in our discussion of the inf-sup condition we
assumed that the space Q» is equal to the space Pi(D;) [see (4.183)], whereas in (4.193) we
have no such restriction. In an actual finite element solution we may well have Px(D,) & On,
and it is important to recognize the consequences.

If the space Q is larger than the space Pi(D»), the solution will exhibit spurious
pressure modes. These modes are a result of the numerical solution procedure only, namely,
the specific finite elements and mesh patterns used, and have no physical explanation.

We define a spurious pressure mode as a (nonzero) pressure distribution p; that
satisfies the relation

f Ds div Vi dVol = 0 v v, € Vh (4196)
Vol
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In the matrix formulation (4.187) a spurious pressure mode corresponds to the case
(K,)uP. = 0 (4.197)

where P; is the (nonzero) vector of pressure variables corresponding to p,. Hence, the
solvability condition (4.189) is not satisfied when spurious pressure modes are present, and
of course the inf-sup value when testing over the complete space Q, in (4.193) is zero.

Let us show that if Q, is equal to P.(D,), there can be no spurious pressure mode.
Assume that p, is proposed to be a spurious pressure mode. If Q» = Pi(Ds), there is always
a vector ¥, such that p, = — P, (div v¥,). However, using ¥, in (4.196), we obtain

- f pn div ¥, dVol = —f PuPy(div 9,) dVol = f pEdvol >0 (4.198)
Vol Vol Vol
meaning that (4.196) is not satisfied. On the other hand, if Qj is greater than Px(D,), notably
P«(D:) & Qx, then we can find a pressure distribution in the space orthogonal to P.(D;), and
hence for that pressure distribution (4.196) is satisfied (see Example 4.38).
Hence, we now recognize that in essence we have two phenomena that may occur
when testing a specific finite element discretization using displacements and pressure as
variables:

1. The locking phenomenon, which is detected by the smallest value of the inf-sup
expression not being bounded from below by a value B > 0 [see discussion following
(4.156)]

2. The spurious modes phenomenon, which corresponds to a zero value of the inf-sup
~ expression when we test with g, € Q.

Of course, when a discretization with spurious modes is considered, we might still be
interested in the smallest nonzero value of the inf-sup expression, and we can focus on this
value by only testing with g, € P(D;), in other words, by ignoring all spurious pressure
modes,

The numerical inf-sup test described in Section 4.5.6 actually gives the smallest
nonzero value of the inf-sup expression and also evaluates the number of spurious pressure
modes.

Let us note here, as a side remark, that the spurious pressure modes have no relation-
ship to the spurious zero energy modes mentioned in Section 5.5.6 (and which are a result
of using reduced or selective numerical integration in the evaluation of element stiffness
matrices). In the displacement/pressure formulations considered here, each element stiff-
ness matrix is accurately calculated and exhibits only the correct physical rigid body modes.
The spurious pressure modes in the complete mesh are a result of the specific displacement
and pressure spaces used for the complete discretization.

One way to gain more insight into the relation (4.193) is to imagine the matrix (K,,)x
[or (Kpu)x = (Ku,)7 ]in diagonalized form (choosing the appropriate basis for displacements
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and pressure variables), in which case we would have

Kernel (K, p)p
0

i, !
V'
. nl.l
.I l
B . 7 71 B
0 ~
| '-_
(Kup)h = 0
| (4.199)
r Kel’nel (Kpu)h
Elements 1
not shown
are zeros
- Oy J
= T

t We call the elements V4; in anticipation of our discussion in Section 4.5.6.

In this representation the zero columns define the kernel of (K.,), and each zero column
corresponds to a spurious pressure mode. Also, since for any displacement vector U, we
need N
(Kp)aUp = 0 (4.200)
and (K,.)» = (K.,)7, the size of the kernel of (K,.)» determines whether the solution is
overconstrained. Whereas, on one hand, we want the kernel of (K,,): to be zero (no spurious
pressure modes), on the other handlZ we want the kernel of (K,.)x to be large so as to admit
many linearly independent vectors U, that satisfy (4.200). Our actual displacement solution
to the problem (4.187) will lie in the subspace spanned by these vectors, and if that subspace
is too small, as a result of the pressure space O, being too large, the solution will be
overconstrained. The theory on the inf-sup condition [see the discussion in Section 4.5.1
and (4.193)] showed that this overconstraint is detected by Vi decreasing to zero as the
mesh is refined. Vice versa, if VA, = B > 0, for any mesh, as the size of the elements is
decreased, with 8 independent of the mesh, the solution space is not overconstrained and
the discretization yields a reliable solution (with the optimal rate of convergence in the
displacements and pressure, provided the pressure space is largest without violating the
inf-sup condition; see Section 4.5.1).

4.5.5 Spurious Pressure Modes—The Case of Near
Incompressibility

In the above discussion we assumed conditions of total incompressibility, and the use of
either the u/p or the u/p-c formulation. Consider now that we have a finite (but large) « and
that the u/p formulation with static condensation on the pressure degrees of freedom (as is
typical) is used. In this case, the governing finite element equations are, for a typical element
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(or the complete mesh),

[223 gi][ﬁ] - [l:f] (4.201)
or [(Kuds = (Kip)a(Kpp)i ' (Kp)i]Us = R (4.202)

So far we have assumed that no nonzero displacements are prescribed. It is an
important observation that in this case any spurious pressure mode has no effect on the
predicted displacements and pressure. The reason can be shown by considering (K.,)s in
(4.199) with some zero columns. Since (K,,)s is, in the same basis, diagonal with the bulk
modulus — k™! as diagonal elements and the corresponding right-hand-side is a zero vector,
the solution for the spurious pressure mode values is zero (see also Example 4.39).

A different observation is that the coefficient matrix in (4.201) contains a large bulk
modulus which, when «~' is close to zero, results in ill-conditioning—but this ill-
conditioning is observed whether or not spurious pressure modes are present.

The spurious pressure modes can, however, have a drastic effect when nonzero dis-
placements are prescribed. In this case, we recognize that the right-hand side corresponding
to the pressure degrees of freedom may not be zero (see Section 4.2.2 on how nonzero
displacements are imposed), and a large spurious pressure may be generated.

Clearly, a reliable element should not lock and ideally should not lead to any spurious
pressure mode in any chosen mesh.

The elements listed in Tables 4.6 and 4.7 are of such a nature—except for the 4/1
two-dimensional u/p element (and the analogous 8/1 three-dimensional element). Using
the 4/1 element, specific meshes with certain boundary conditions exhibit a spurious
pressure mode, and the 4/1 element does not satisfy the inf-sup condition (4.183) unless
used in special geometric arrangements of macroelements (see P. Le Tallec and V. Ruas [A]
for an example). However, because of its simplicity, the 4/1 element is quite widely used in
practice. We examine this element in more detail in the following example.

EXAMPLE 4.38: Consider the finite element discretization of 4/1 elements shown in
Fig. E4.38 and show that the spurious checkerboard mode of pressure indicated in the figure
exists,

We note that for this model all tangential displacements on the boundary are set to zero.
In order to show that the pressure distribution indicated in Fig. E4.38 corresponds to a spurious
pressure mode, we need to prove that (4.196) holds. Consider a single element as shown in
Fig. E4.38(a). We have

jpeidivvid‘/ol=p‘i[1 -1 -1 1 : 1 1 -1 -1]d
Vol

where p®i is the constant pressure in the element and

If a patch of four adjacent elements is then considered, we note that for the displacement u; shown
in Fig. E4.38(b) we have
f p div vy dVol = [p71(1) + p=(1) + p3(—1) + p(-1)]u; =0 (a)
Vol

provided the pressure distribution corresponds top€! = —p©2 = p® = — p*4, Similarly, for any
displacement v; we have

f p div vy dVol = [ps(=1) + p(1) + p(1) + p(—1)]v; = 0 (b)
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{(a) Single element
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{d) Checkerboard pressure distribution. + and ~ mean
(b) Patch of four equal elements +Ap and -Ap, where Ap is an arbitrery velue.

Figure E4.38 4/1 elements

For the normal displacement v; on an edge of the patch, we similarly obtain

f p div v, dVol = [p2(1) + p=2(1)jo; = 0 ©
Vol
On the other hand, for a tangential displacement u;, the integral
j p div v, dVol # 0
Vol

However, in the model in Fig. E4.38(c) all tangential displacements are constrained to zero,
Hence, by superposition, using expressions (a) to (c), the relation (4.196) is satisfied for any nodal
point displacements when the pressure distribution is the indicated checkerboard pressure,

Note that the same checkerboard pressure distribution is also a spurious pressure mode
when more nodal point displacements than those given in Fig. E4.38(c) are constrained to zero.
Also note that the (assumed) pressure distribution in Fig. E4.38(d) cannot be obtained by any
nodal point displacements, hence this pressure distribution does not correspond to an element in
Pi(Dy).

In the above example, we showed that a spurious pressure mode is present when the
4/1 element is used in discretizations of equal-size square elements with certain boundary
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conditions. The spurious pressure mode no longer exists when nonhomogeneous meshes are
employed or at least one tangential displacement on the surface is released to be free.

Consider now that a force is applied to any one of the free degrees of freedom in
Fig. E4.38(c). The solution is then obtained by solving (4.201) and, as pointed out before,
the spurious pressure mode will not enter the solution (it will not be observed).

The spurious pressure mode, however, has a very significant effect on the calculated
stresses when, for example, one tangential boundary displacement is prescribed to be
nonzero while all other tangential boundary displacements are kept at zero.'® In this case
the prescribed nodal point displacement results in a nonzero forcing vector for the pressure
degrees of freedom, and the spurious pressure mode is excited. Hence, in practice, it is
expedient to not constrain all tangential nodal point displacements on the body considered.

Let us conclude this section by considering the following example because it illus-
trates, in a simple manner, some of the important general observations we have made.

EXAMPLE 4.39:"° Assume that the governing equations (4.187) are

a) 0 0 E Bl 0 U T
0 a O E 0 Bz Uz )

0.0 a : 0 Offuf=|r @
Bl 0 0 i 0 0 D1 I 4
0 B 0 : 0 O}llp g

Of course, such simple equations are not obtained in practical finite element analysis, but the
essential ingredients are those of the general equations (4.187). We note that the coefficient
matrix corresponds to a fully incompressible material condition and that the entries g, and g,
correspond to prescribed boundary displacements.

These equations can also be written as

au; + Bipi =13 Biw: = gi; i=12 sl =13
Assume that a; > 0 for all i (as we would have in practice). Then, us = r3/a3, and we need
only consider the typical equations
au + Bp = r; Bu=g (b)
(where we have dropped the subscript i).
When the material is considered almost incompressible, u, is unchanged but (b) becomes
aue + Bpe = r; Bu.— ep.= g ©
where € = 1/k (¢ is very small when the bulk modulus k is very large) and u., p. is the solution
sought. Equations (c) give
_ &t Beg. _Br—a
ea + B2’ ¢ ea + B2
We can now make the following observations.
First, we consider the case of a spurious pressure mode, i.e., 8 = 0.

(d

€

Casei: B=g=0
This case corresponds to a spurious pressure mode and zero prescribed displacements.
The solution of (b) gives u = r/a, with p undetermined.
The solution of (c) gives u. = r/a, p. = 0.

'8 We may note that these analysis conditions and results are similar to the conditions and results obtained
when all displacements normal to the surface of a body are constrained to zero, except for one, at which a normal
displacement is prescribed [see (4.195)].

19This example was presented by F. Brezzi and K. J. Bathe [B].



322 Formulation of the Finite Element Method Chap. 4

Hence, we notice that the use of a finite bulk modulus allows us to solve the equations and
suppresses the spurious pressure.

Caseii: 8=0,g+0

This case corresponds to a spurious pressure mode and nonzero prescribed displacements
(corresponding to this mode).

Now (b) has no solution for 4 and p.

The solution of (c) is ue = r/a, p. = —g/e.
Hence, the spurious pressure becomes large as x increases.

Next we consider the case of B very small.
Hence, we have no spurious pressure mode. Of course, the inf-sup condition is not passed
ifg—0.

Case iii: @ is small

Let us also assume that g = 0.

Now (b) gives the solution u = 0, p = r/B.

The solution of (c) is . — 0 and p.— r/ for e — 0 (8 fixed, and hence we have 82 > ¢a),
which is consistent with the solution of (b). Hence, the displacement approaches zero and the
pressure becomes large when 8 is small and the bulk modulus increases. Of course, we test for
this behavior with the inf-sup condition. For an actual finite element solution, this observation
may be interpreted as taking a fixed mesh (8 is fixed) and increasing k. The result is that the
pressure in the mode for which 8 is small increases while the displacements in this mode
decrease.

However, (c) also gives u. — r/a and p. — 0 for 8 — O (¢ fixed, and hence we have
B? < ea), which is the behavior noted earlier in Case i. For an actual finite element solution this
observation may be interpreted as taking a fixed k and increasing the fineness of the mesh. As
B is decreased as a result of mesh refinement, the pressure corresponding to this mode becomes
small. Hence, the behavior of this pressure mode is when 3 is sufficiently small (which may mean
a very fine mesh when « is large) like the behavior of a spurious mode.

4.5.6 The Inf-Sup Test

The results of analytical studies of the inf-sup characteristics of various displacement/pres-
sure elements are summarized in Tables 4.6 and 4.7 (see also F. Brezzi and M. Fortin [A]).
However, an analytical proof of whether the inf-sup condition is satisfied by a specific
element can be difficult, and for this reason a numerical test is valuable. Such a test can be
applied to newly proposed elements and also to discretizations with elements of distorted
geometries (recall that analytical studies assume homogeneous meshes of square elements).
Of course, a numerical test cannot be completely affirmative (as an analytical proof is), but
if a properly designed numerical test is passed, the formulation is very likely to be effective.
The same idea is used when performing the patch test only in numerical form (to study
incompatible displacement formulations and the effect of element geometric distortions)
because an analytical evaluation is not achieved (see Section 4.4.1).

In the following discussion we present the numerical inf-sup test proposed by
D. Chapelle and K. J. Bathe [A].

First consider the u/p formulation. In this case the inf-sup condition (4.183) can be

written in the form . Fog Pa(div Wy) div v, d Vol
inf su -
WiEVy ViEV, ” P;.(le W}.) ” ” V}.”

=58>0 (4.203)
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b’ (Wh . V;.)

or whEVh "heB [b (Wh wh)]1/2 ” Va ” -

=>0 (4.204)

where b’(w,., V}.) = j. P, (diV w;.) P;,(div V}.) dVol = j- P;.(div W}.) div v, d Vol (4205)
Vol Vol
The relation (4.204) is in matrix form

mf su WiG,V,
Wy p [W{th,.]m[v;{ th]l/2

=8>0 (4.206)

where W, and V, are vectors of the nodal displacement values corresponding to w; and vs,
and Gy, Sy are matrices corresponding to the operator b’ and the norm || « ||v, respectively.
The matrices G, and S, are, respectively, positive semidefinite and positive definite (for the
problem we consider, see Section 4.5.1).

EXAMPLE 4.40: 1n Example 4.34 we calculated the matrix G, of a 4/1 element. Now also
establish the matrix S, of this element.
To evaluate S, we recall that the norm of w is given by [see (4.153)]

wip = > |2 i
ij a.X.'j

12(Vol)

Hence, for our case

= [ LG+ G+ () < G s @

where u, v are the components w;, i = 1, 2.
Let us order the nodal point displacements in @ as in Example 4.34,

@7'=lw w us wus i v v; V3 04

By definition, || w, ||} = @7S,d. Also, we have
du &

2 hl xWi; — = E hi.yui (b)
i=1 dy =1
G - &G

ox ox ox
& -GG

dy dy/ \ady

Substituting from (c) and (b) into (a) we obtain

ax

and we write in (a)

©

s 0= [ [ o+ uraxay =2

+1 p+l 1
Sh(l, 2) = j- J- [h],xhz‘x + hl_yhz_y] dx dy = _g
-1 -1

and so on,
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Similarly, the terms corresponding to the v; degrees of freedom are calculated, and we obtain
4 -1 -2 -1
S_[s,. 0]_ g _1|-1 4 -1 -2
" lo S.J "Tel-2 -1 4 -1
-1 -2 -1 4

Let us now consider the u/p-c formulation. In this case the same expression as in
(4.206) applies, but we need to use G, = (K,.)7 T ' (K,u)s, where Ty is the matrix of the L
norm of p, (see Exercise 4.59); i.e., for any vector of pressure nodal values P,, we have
| pall = PET4P,.

The form (4.206) of the inf-sup condition is effective because we can numerically
evaluate the inf-sup value of the left-hand side and do so for a sequence of meshes. If the
left-hand-side inf-sup value approaches .(asymptotically) a value greater than zero (and
there are no spurious pressure modes, further discussed below), the inf-sup condition is
satisfied. In practice, only a sequence of about three meshes needs to be considered (see
examples given below).

The key is the evaluation of the inf-sup value of the expression in (4.206). We can
show that this value is given by the square root of the smallest nonzero eigenvalue of the
problem

Ghd)h = /\S}.d)}. (4207)

Hence, if there are (k — 1) zero eigenvalues (because Gy is a positive semidefinite matrix)
and we order the eigenvalues in ascending order, we find that the inf-sup value of the
expression in (4.206) is V/A,. We prove this result in the following example.

EXAMPLE 4.41: Consider the function f(U, V) defined as

U'GV
(U'GU)VX(VTSV) /2

where G is an n X n symmetric positive semidefinite matrix, S is an n X n positive definite
matrix, and U, V are vectors of order n. Show that

fU, V) =

€)

inf sup f(U, V) = VA (®)
where A is the smallest nonzero eigenvalue of the problem
Gd = AS ©
Let the eigenvalues of (c) be
AM=A= = (e =0< = Ny - S A,
and the corresponding eigenvectors be &y, &2, . . ., b,

To evaluate f(U, V), we represent U and V as

U= 2 ﬁid).'; V = 2 ’5.'(1);'
i=1 i=1
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Therefore, for any U,

2 /\i ﬁl 5:
su f(U,V)=Sl}P m = /27 % 172
v K (2 aiz) (2 5.2)/
> hiid: @

=1 =1

= -= ! 7 S m 72
(2 /\,-12?) (2 02)

To evaluate the supremum value in (d), let us define a; = A,di;; then we note that
n n n n
2 Ai ﬁit‘)-,' = 2 ab; < 2 a:? 2 '512 (e)
i=1 i=1 i

(by the Schwarz inequality), and equality is reached when &, = ;. Substituting from (€) into (d)
and using Ay = - -+ = A~ = 0, we thus obtain

sup f(U, V)=

If we now let Vi, = Bi, we can write

ixl}f sn‘lef(U, V) = inf

(@)f=1

()

The last expression in (f) has the form of a Rayleigh quotient (see Section 2.6), and we know that

the smallest value is V/A,, achieved for Bc # 0and B; = 0, for i # k, which gives the required
result.

In practice, to calculate the inf-sup value VA an eigenvalue solution routine should
be used that can skip over all zero eigenvalues and then calculate A,. A Sturm sequence test
(see Section 11.4.3) will then also give the value of k, and then we can conclude directly
whether the model contains spurious pressure modes. Namely, let n, be the number of
pressure degrees of freedom and n, be the number of displacement degrees of freedom. Then
the number of pressure modes, kym, is

km =k — (nu—np, + 1)

If k,m > 0, the finite element discretization contains the constant pressure mode or
spurious pressure modes [the inf-sup value in (4.193) is zero, although A, (the first nonzero
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eigenvalue) may asymptotically approach a value greater than zero]. This formula follows
because for there to be no pressure mode, the kernel (K,,), must be zero [see (4.199)].

To demonstrate this inf-sup test, we show in Fig. 4.24 results obtained for the four-
node and nine-node elements. We see that a sequence of three meshes used to calculate Vi
for each discretization was, in these cases, sufficient to identify whether the element locks.
We note that, clearly, the four-node and the nine-node displacement-based elements do not
satisfy the inf-sup condition and that the distortions of elements have a negligible effect on
the results. In each of these tests k,» was zero, hence, as expected, the idealizations do not
contain any pressure modes. Of course, a spurious pressure mode would be found for the
4/1 element if the boundary conditions of Example 4.38 were used. That is, in the general
testing of elements for spurious modes the condition of zero displacements on the complete
boundary should be considered [the smaller the dimension of V;, for a given Qx, the greater
the possibility that (4.196) is satisfied].

The solutions in Fig. 4.24 are numerical results pertaining to only one problem and
one mesh topology. However, if the inf-sup condition is not satisfied in these results, then
we can conclude that it is not satisfied in general.

/ /
/’ "_‘"‘\\
- AN
1 \
i \
] ]
\ 1]
\ /
/
N\, d
\‘\—_—’/
Uniform mesh Distorted mesh

(a) Problem considered in inf-sup test. N = number of elements along each side;
we show N = 4, plane strain case
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/ \ / . \
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4-node element 9-node element

{b) Elements used

Figure 4.24 The inf-sup test applied in a simple problem
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Figure 4.25 shows results pertaining to the three-node triangular constant pressure
element, formulated as a u/p element (see Exercise 4.50). The results show that the inf-sup
condition is not satisfied by this element. Further, it is interesting to note that the meshes
with pattern B do not contain spurious pressure modes, whereas the other meshes in general
do contain spurious pressure modes.

log{1/N)
-1.2 ~1.0 -0.8 -0.6 -0.4 -0.2
| T I ' | ! 1 i | J 0.0
- -0.2
- -0.4

]

)

(o]
log(inf-sup value)

- -1.0

J.12

Figure 4.25 Inf-sup test of triangular elements, using problem of Fig.4.24(a). The patterns
A and C result in spurious modes.

Additional results are given in Table 4.8 (see D. Chapelle and K. J. Bathe [A]). This
table gives a summary of the results of the numerical evaluations of the inf-sup condition
and analytical results, given, for example, by F. Brezzi and M. Fortin [A)]. The numerical
evaluation is useful because the same procedure applies to all u/p and u/p-c elements, in
uniform or distorted meshes, and elements can be evaluated for which no analytical results
are (yet) available. Also, the effects of constructing macroelements from the basic elements
can be easily evaluated (see D. Chapelle and K. J. Bathe [A] for some results regarding the
4/1 element used in a macroelement).

A similar numerical evaluation of the inf-sup condition for other constraint problems,
in particular mixed formulations, can be performed (see, for example, Exercise 4.63).

Finally, we recall that in the derivation of the inf-sup condition (see Section 4.5.1),
we showed that if (4.166) holds, then the inf-sup condition (4.175) follows. However, as we
pointed out, the equivalence of (4.166) and (4.175) also requires that we prove that if
(4.175) holds, then (4.166) follows. We deferred this proof to Example 4.42, which we
present next.
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TABLE 4.8 Inf-sup numerical predictions

Inf-sup condition

Analytical Numerical
Element’ proof prediction Remarks
a1t Fail Fail See Fig. 4.25
x 41t Fail Fail See Fig. 4.24
Jr NV IV Fail Fail
l. X o 81 Pass Pass
X X
i e & 9/4 Fail Fail
X X
'
? ¢ 93 Pass Pass See Example 4.36,
° Fig. 4.24
.2 4/3-c Pass Pass
OanOauO
an 9/9-c Fail Fail
OgaOgaO
@—e—@®
Ouo 9/8-c Fail Fail
Opa OanO
O ®
a 9/6-c ? Fail
© O
O ®
a 9/4-c Pass Pass
© O,
9/(4-¢c + 1) ? Pass For the element see P. M.
Gresho, R. L. Lee, S. T. Chan,

and J. M. Leone, Jr. [A]

t O, Continuous pressure degree of freedom; X, discontinuous pressure degree of freedom.
t 3/1 and 4/1 element discretizations can contain spurious pressure modes.



330

Formulation ‘of the Finite Element Method Chap. 4

EXAMPLE 4.42: Assume that the inf-sup condition (4.175) holds. Prove that (4.166) follows.

Let the eigenvectors and corresponding eigenvalues of (4.207) with G, corresponding to
D, [and not P,(D,) because in (4.175) we consider D,] be ¢;and A;,i = 1,. . ., n. The vectors
¢; form an orthonormal basis of V,. Then we can write any vector w, in V,, as

W, = 2 W;:d)i (a)
i=1
and we have by use of the eigenvalue and vector properties (see Section 2.5)
Il div Wil = 2 A(wh)? (b)
i=1

Let us now pick any g, and any W, satisfying div W, = g, We can decompose W, in the
form of (a),

Wy = . Whe + 2 widy (b)
The first summation sign in (b) defines a vector that belongs to K,(0) and may be a large

component. However, we are concerned only with the component that is not an element of K;(0),
which we call w,,

n
Wy = 2 W;.d),
i=k

S Ao
laalp ™"

" Wj “2 ?(W}%)z
=M
= Bi
= B2

With this w;,, we have

and (4.166) follows with ¢’ = 1/B.

4.5.7 An Application to Structural Elements:

The Isoparametric Beam Elements

In the above discussion we considered the general elasticity problem (4.151) and the
corresponding variational discrete problem (4.154) subject to the constraint of (near or
total) incompressibility. However, the ellipticity and inf-sup conditions are also the basic
conditions to be considered in the development of beam, plate, and shell elements that are
subject to shear and membrane strain constraints (see Section 5.4). We briefly introduced
a mixed two-node beam element in Example 4.30 and we consider this and higher-order
elements of the same kind in Section 5.4.1. Let us briefly discuss the ellipticity and inf-sup
conditions for mixed interpolated and pure displacement-based beam elements.



Sec. 4.5 The Inf-Sup Condition 331

General Considerations

The variational discrete problem of the displacement-based formulation is

L
min {E’ f @iy dx + A f (W) dx — f oW dx} (4.208)
Vi h

where EI and GAk are the flexural and shear rigidities of the beam (see Section 5.4.1), L is
the length of the beam, p is the transverse load per unit length, B, is the section rotation,

v» is the transverse shear strain,
W

Y = E - B (4.209)

wy is the transverse displacement, and an element of V), is

Wh
v, = 4.210
, [ ﬂh] (4:210)
The constraint to be dealt with is now the shear constraint,
ow,
Yo = a—xh - B—0 4.211)

In practice, y» is usually very small and can of course also be zero. Hence we have, using
our earlier notation, the spaces

Ki(gn) = {v4 | Vi € Vi, m(vs) = qi} 4.212)
D1 = {qu | g« = (V) for some v, € Vi} (4.213)
and the norms

| vallt = L. [(%’;ﬁ) + L’(aﬁ") ] dvol;  |wl|? = fw (ys)? dVol (4.214)

The ellipticity condition is satisfied in this problem formulation because
L
EI j B dx = a| w? V vi € Kx(0) (4.215)
0

with & > 0 and independent of A. To prove this relation we need only to note that

jo (aw”> dx = f (B dx < j Lz(aﬂ") (4.216)

and therefore, v, l? = 2L? f (aaﬁ;) dVol 4.217)
1

Vo
giving @ = EI/2L
The inf-sup condition for this formulation is

: Jyot Y (8Ws/3x) — B1] dVol
nf > !
1201 e ENIEA c>0 (4218)

TREDL v,EV),

in which the constant c¢ is independent of h.
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E = 200,000 ] w
’% v=0.3 r
7
%D—; 10.1
7
Zy gl e
L=10 0.1
wi/W
Bernoulli
1.0 0.829 beam theory

solution = 200

X
BrIW 0.117 0.124
Bernoulli
beam theory
solution = 30
| | | L 5
X

{a) Analysia with pure displacement-based element: wy and 8, vary
linearly over each element, and y;, = (0wj,/dx) — Bp; since the values of
wh, and B are very inaccurate, the shear strains are so too

Figure 4.26 Analysis of cantilever beam using two-node beam elements. Four equal length
elements are used. (Shear correction factor k of (5.57) is taken equal to 1.0.)

The two-node element. Let us first consider the two-node displacement-based
element for which wy and B, are assumed linear over each element [see Fig. 4.26(a) for an
example solution]. A comparison of the computed results with the Bernoulli beam theory
solution given in Fig. 4.26 shows that the element performs quite badly. In this case
K,(0) = {0}, and so the inf-sup condition in (4.218) is not satisfied. Refering to (4.164), we
can also see that a good convergence behavior is not possible; namely, d(u, V,) — 0 as we
increase the space Vi, whereas d[u, Kx(0)] = || u|| (a constant value).

Next, consider the two-node mixed interpolated element for which w, and B, are linear
and v, is constant over each element. Figure 4.26(b) shows the results obtained in the
cantilever analysis and indicates the good predictive capability of this element. The elliptic-
ity condition is again satisfied (see Exercise 4.61), and in addition we now need to investi-
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wp/W |
200 197 . Bernoulli beam theory
solution = 200
100
"X

Bernoulli beam theory
solution = 30

X

G)’h/Wﬂ*

100 Bernoulli beam theory
solution = 100

] | | |

X

{b) Analysis with mixed interpolated element; wj, and B, vary linearly over
each element, and y, is constant in each element

Figure 4.26 (continued)

gate whether the following inf-sup condition is satisfied:

inf sup Jver YL (3wn/3x) — By] dVol
TEPHDr) VAEVh "'Yh “ ” Vi ”

=c>0 (4.219)

Now Kx(0) # {0}, and we test for the inf-sup condition by considering a typical v, (where
¥ is thought of as a variable). Then with a typical y. given, we choose

Wi
%= | . 4.220
\ [ Bh] (4.220)
with B, = 0 and 9Ws/0x = .

Now consider

Sy vh[(awhﬂ %:)“ ~ Bl dVol _ fv )* aVol 4.221)
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Hence, we have

sup Soe Yol (8wr/9x) — By] dVol . Jva YL (3%4/0x) — PB4] dVol
VAEV ” Vi " " Vi ”

[ (4.222)
= jvm (y)* dVol

with v, still a variable. Therefore, for the two-node mixed interpolated beam element we
have

inf  su Jva vil(@wn/9x) — Bi] dVol

YhEPH(Dr) viEV, ” Yu " ” Vi "

=1 (4.223)

and the inf-sup condition is satisfied.

We can also apply the inf-sup eigenvalue test to the two-node beam elements. The
equations used are those presented for the elasticity problem, but we use the spaces of the
beam elements (see Exercise 4.63). Figure 4.27 shows the results obtained. We note that in
(4.207) the smallest nonzero eigenvalue of the pure displacement-based discretization
approaches zero as the mesh is refined, whereas the mixed interpolated beam element
meshes give an eigenvalue that equals 1.0 for all meshes [which corresponds to the equal
sign in (4.223)].

log(1/N)

-10 -08 -06 -04 -02 0.0
L
(e, O 0.0

< 2-node displacement-based element

O 2-node mixed interpolated (linear displacement, linear — -0.4
rotation, constant shear) element

+ 3-node displacement-based element

log(inf-sup value)

+

Figure 4.27 Inf-sup test of beam elements
(a cantilever beam is considered)
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Higher-order mixed interpolated beam elements can be analyzed in the same way as

the two-node elements (see Exercise 4.62). Figure 4.27 also shows the results obtained for
the three-node pure displacement-based element with the numerical inf-sup test.

4.5.8 Exercises

4.47.

4.48.
4.49.

4.50.

4.51.

4.52.

Prove that [|u — w,|| = &d[u, K,(0)] is always true, where u, is the finite element solution and
K,(0) is defined in (4.159). Use that

Ja>0 suchthat Vv, € K,(0), a(vs, Vi) = || va?
AM >0 suchthat V Vi, V2 € Vi, |a(Vh2, vhl) I = M" m "" V2 "

and the approach in (4.94). Note that the constant ¢ is independent of the bulk modulus.
Prove that || div (v, — ¥2)[lo = c|| vi — v2|lv. Here v\, V2 € V, and c is a constant.

Evaluate P,(div v,) for the eight-node element shown assuming a constant pressure field over the
element.

AY
2 1
]
8
2|69 -
'S
' -
3 7 4
- 2 -

Evaluate the stiffness matrix of a general 3/1 triangular u/p element for two-dimensional

analysis. Hence, the element has three nodes and a constant discontinuous pressure is assumed.

Use the data in Fig. E4.17 and consider plane stress, plane strain, and axisymmetric conditions.

(a) Establish all required matrices using the general procedure for the u/p elements (see Exam-
ple 4.32) but do not perform any matrix multiplications. Consider the case « finite.

(b) Compare the results obtained in Example 4.17 with the results obtained in part (a).

(c) Give the u/p element matrix when total incompressibility is assumed (hence static conden-
sation on the pressure degree of freedom cannot be performed).

(Note: This element is not a reliable element for practical analysis of (almost) incompressible

conditions but is merely used here in an exercise.)

Consider the 4/1 element in Example 4.32. Show that using the term Py(div v,) (evaluated in

Example 4.34) in (4.179), we obtain the same element stiffness matrix as that found in Exam-

ple 4.32.

Consider the 9/3 element in Example 4.36; i.e., assume that Qy = [1, x, y]). Assume that

corresponding to v, the nodal point displacements are

=1 u, = —L; u; = —1; us = 1; ug = —1; ug = 1
= 1; Uy = _1; D3=“1; Vs = 1; Ds=_1; Da=1

with all other nodal point displacements zero. Calculate the projection Pu(div vy).
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4.53. Show that the 8/1 u/p element satisfies the inf-sup condition (and hence discretizations using this
element will not display a spurious pressure mode). For the proof refer to Example 4.36.

4.54. Consider the solution of (4.187) and show that the conditions i and ii in (4.188) and (4.189) are
necessary and sufficient for a unique solution.

4.55. Consider the ellipticity condition in (4.192). Prove that this condition is satisfied for the 4/1
element in two-dimensional plane stress and plane strain analyses.

4.56. The constant pressure mode, po € O, in a two-dimensional square plane strain domain of an
incompressible material modeled using four 9/3 elements with all boundary displacements set to
zero is not a spurious mode (because it physically should exist). Show that this mode is not an
element of Py(Dy).

4.57. Consider the 4/1 element. Can you construct a two-element model with appropriate boundary
conditions that contains a spurious pressure mode? Explain your answer.

4.58. Consider the nine 4/1 elements shown. Assume that all boundary displacements are zero.

(a) Pick a pressure distribution p, for which there exists a vector v, such that

J P div v, dVol > 0
Vol
(b) Pick a pressure distribution p, for which any displacement distribution v, in V, will give

j Pr div v, dVol = 0
Vol

’,

Element
@ A V] @ A Va ®

4.59. Consider the u/p-c formulation.
(a) Show that the inf-sup condition can be written as in (4.206) but that G, = (K,,)xTx '(Ky)s.
(b) Also, show that, alternatively, the eigenproblem

G:Q: = AT, Q» (a)

can be considered, where G; = (K,.)»S# '(K.;)», and that the smallest nonzero eigenvalues
of (a) and (4.207) are the same.
Here T, is the matrix of the L2-norm of p,; that is, for any vector of nodal pressures
P, we have || ps|| = PF T, Py; hence T, = —k(Kpp)s.
4.60. Consider the analysis of the cantilever plate in plane strain conditions shown. Assume that the
3/1 u/p element is to be used in a sequence of uniform mesh refinements. Let 7, be the number
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of nodal point displacements and n, the number of pressure variables. Show that as the mesh is
refined, the ratio n./n, approaches 1. (This clearly indicates solution difficulties.)

Y,
Y,
AYYYTYYYYYOYY

L
Y,
7
)
2 Young's modulus £

L 4 Poisson’s ratio v = 0.499

2 Plane strain conditions
7
7
Y,
Y
/]
‘ L

Calculate the same ratio when the 9/3 and 9/8-c elements are used (the 9/8-c element is
defined in Table 4.8) and discuss your result.

4.61. Show that the mixed interpolated two-, three-, and four-node beam elements satisfy the elliptic-
ity condition. The two-node element was considered in Section 4.5.7, and the three- and four-
node elements are discussed in Secton 5.4.1 (see also Exercise 4.62).

4.62. Show analytically that the inf-sup condition is not satisfied for the three- and four-node
displacement-based beam elements and that the condition is satisfied for the mixed interpolated
beam elements with v, varying, respectively, linearly and parabolically (see Section 5.4.1).

4.63. Establish the eigenvalue problem of the numerical inf-sup test for the beam elements consid-
ered in Section 4.5.7. Use the form (4.207) and define all matrices in detail.

4.64. Consider the problem in Fig. 4.24 and the elements mentioned in Table 4.8. Calculate, for each
of these elements, the constraint ratio defined as the number of displacement degrees of freedom
divided by the number of pressure degrees of freedom as the mesh is refined, that is, as A — 0.
Hence note that this constraint ratio alone does not show whether or not the inf-sup condition
is satisfied.
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Formulation and Calculation
of Isoparametric
Finite Element Matrices

5.1 INTRODUCTION

A very important phase of a finite element solution is the calculation of the finite element
matrices. In Chapter 4 we discussed the formulation and calculation of generalized coordi-
nate finite element models. The aim in the presentation of the generalized coordinate finite
elements was primarily to enhance our understanding of the finite element method. We have
already pointed out that in most practical analyses the use of isoparametric finite elements
is more effective. For the original developments of these elements, see I. C. Taig [A] and
B. M. Irons [A, B].

Our objective in this chapter is to present the formulation of isoparametric finite
elements and describe effective implementations. In the derivation of generalized coordi-
nate finite element models, we used local element coordinate systems x, y, z and assumed
the element displacements u(x, y, 2), v(x, y, ), and w(x, y, z) (and in the case of mixed
methods also the element stress and strain variables) in the form of polynomials in x, y, and
z with undetermined constant coefficients a;, B;, and y;,i = 1, 2, . . . , identified as gener-
alized coordinates. It was not possible to associate a priori a physical meaning with the
generalized coordinates; however, on evaluation we found that the generalized coordinates
determining the displacements are linear combinations of the element nodal point displace-
ments. The principal idea of the isoparametric finite element formulation is to achieve the
relationship between the element displacements at any point and the element nodal point
displacements directly through the use of interpolation functions (also called shape func-
tions). This means that the transformation matrix A~! [see (4.57)] is not evaluated; instead,
the element matrices corresponding to the required degrees of freedom are obtained di-
rectly.

338
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5.2 ISOPARAMETRIC DERIVATION OF BAR
ELEMENT STIFFNESS MATRIX

Consider the example of a bar element to illustrate the procedure of an isoparametric
stiffness formulation. In order to simplify the explanation, assume that the bar lies in the
global X-coordinate axis, as shown in Fig. 5.1. The first step is to relate the actual global
coordinates X to a natural coordinate system with variable r, —1 < r < 1 (Fig. 5.1). This
transformation is given by

X =31 -nX +01 + X 5.1)

2
or X=2hX - (5.2)
i=1
where h; = 3(1 — r) and b, = 3(1 + r) are the interpolation or shape functions. Note that
(5.2) establishes a unique relationship between the coordinates X and r on the bar.

YA

- X2 -]

__x_1_,

U
<sa — > S
z\ ‘ , | X U
i i ’ Figure 5.1 Element in global and
: r=-1 r=+1 natural coordinate system

The bar global displacements are expressed in the same way as the global coordinates:

2
U=2hU (5.3)
i=1
where in this case a linear displacement variation is specified. The interpolation of the
element coordinates and element displacements using the same interpolation functions,
which are defined in a natural coordinate system, is the basis of the isoparametric finite
element formulation.
For the calculation of the element stiffness matrix we need to find the element strains
€ = dU/dX. Here we use

dU dr
€= E a (54)
where, from (5.3), ‘fi—l: = U—zg—u—l (5.5)

and using (5.2), we obtain

- 2.2 (6)
where L is the length of the bar. Hence, as expected, we have

L
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The strain-displacement transformation matrix corresponding to (4.32) is therefore
1
B=-[—-1 R
-1 1 (58)

In general, the strain-displacement transformation matrix is a function of the natural
coordinates, and we therefore evaluate the stiffness matrix volume integral in (4.33) by
integrating over the natural coordinates. Following this general procedure, although in this
example it is not necessary, we have

AE

K= Ff_ll [1][—1 117 dr (5.9)

where the bar area A and modulus of elasticity E have been assumed constant and J is the
Jacobian relating an element length in the global coordinate system to an element length in
the natural coordinate system,; i.e.,

dr (5.10)

From (5.6) we have J = (5.11)

Then, evaluating (5.9), we obtain the well-known matrix

K=éL£[_i _1] (5.12)

As stated in the introduction, the isoparametric formulation avoids the construction of
the transformation matrix A™"'. In order to compare this formulation with the generalized
coordinate formulation, we need to solve from (5.1) for » and then substitute for r into (5.3).
We obtain

;= X~ [(X + X»)/2]

L2 (5.13)
and then U=ay + a1 X (5.14)
where
a0 = $(U + Up) - 2 2+LX2(U2 - Uy
(5.15)
a = %(Uz - Uy
1. Xi+X% 1 _Xi+X
or a= 2 12L 2 12L U (5.16)
L L
where o = [ap ai}; U =[U, U] 7 5.17)

and the matrix relating o to U in (5.16) is A™". It should be noted that in this example the
generalized coordinates ap and «; relate the global element displacement to the global
element coordinate [see (5.14)].
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5.3 FORMULATION OF CONTINUUM ELEMENTS

For a continuum finite element, it is in most cases effective to calculate directly the element
matrices corresponding to the global degrees of freedom. However, we shall first present the
formulation of the matrices that correspond to the element local degrees of freedom because
additional considerations may be necessary when the element matrices that correspond to
the global degrees of freedom are calculated directly (see Section 5.3.4). In the following
we consider the derivation of the element matrices of straight truss elements; two-
dimensional plane stress, plane strain, and axisymmetric elements; and three-dimensional
elements that all have a variable number of nodes. Typical elements are shown in Fig. 5.2,

We direct our discussion to the calculation of displacement-based finite element ma-
trices. However, the same procedures are also used in the calculation of the element
matrices of mixed formulations, and in particular of the displacement/pressure-based for-
mulations for incompressible analysis, as briefly discussed in Section 5.3.5.

~

{a) Truss and cable elements

A

(b) Two-dimensional elements

(c}) Three-dimensional elements

Figure 5.2 Some typical continuum elements



342 Formulation and Calculation of Isoparametric Finite Element Matrices Chap. 5

5.3.1 Quadrilateral Elements

The basic procedure in the isoparametric finite element formulation is to express the
element coordinates and element displacements in the form of interpolations using the
natural coordinate system of the element. This coordinate system is one-, two-, or three-
dimensional, depending on the dimensionality of the element. The formulation of the
element matrices is the same whether we deal with a one, two-, or three-dimensional
element. For this reason we use in the following general presentation the equations of a
three-dimensional element. However, the one- and two-dimensional elements are included
by simply using only the relevant coordinate axes and the appropriate interpolation func-
tions.

Considering a general three-dimensional element, the coordinate interpolations are

q q q
x =2 haxg y =2 hy; 2= 2 hz (5.18)

i=1 i=1 i=1

where x, y, and z are the coordinates at any point of the element (here local coordinates) and
Xi, Yi» 2i, 1 = 1, ..., g, are the coordinates of the g element nodes. The interpolation
functions #; are defined in the natural coordinate system of the element, which has variables
r, s, and ¢ that each vary from —1 to +1. For one- or two-dimensional elements, only the
relevant equations in (5.18) would be employed, and the interpolation functions would
depend only on the natural coordinate variables r and r, s, respectively.

The unknown quantities in (5.18) are so far the interpolation functions A;. The
fundamental property of the interpolation function 4; is that its value in the natural coordi-
nate system is unity at node i and zero at all other nodes. Using these conditions, the
functions A; corresponding to a specific nodal point layout could be solved for in a systematic
manner. However, it is convenient to construct them by inspection, which is demonstrated
in the following simple example.

EXAMPLE 5.1: Construct the interpolation functions corresponding to the three-node truss
element in Fig. ES.1.

r=-1 rMH

r=-1 r=0 r=+1
x=0 x=03L x=1L

+1

1 [
r=-1 r=0 r=+1
hh=1-r

\/
r=-1 r=0 r=+1
hy=3(1+n-3(1-r3)

Figure ES.1 One-dimensional interpolation functions of a truss element
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A first observation is that for the three-node truss element we want interpolation polyno-
mials that involve 72 as the highest power of ; in other words, the interpolation functions shall
be parabolas. The function 4, can thus be constructed without much effort. Namely, the parabola
that satisfies the conditions to be equal to zero at r = *1 and equal to 1 at r = 0 is given by
(1 = r?. The other two interpolation functions h, and h; are constructed by superimposing a
linear function and a parabola. Consider the interpolation function k3. Using $(1 + r), the
conditions that the function shall be zero at r = —1 and 1 at » = +1 are satisfied. To ensure
that h; is also zero at r = 0, we need to use h; = (1 + r) — $(1 — r?). The interpolation
function A, is obtained in a similar manner.

The procedure used in Example 5.1 of constructing the final required interpolation
functions suggests an attractive formulation of an element with a variable number of nodes.
This formulation is achieved by constructing first the interpolations corresponding to a basic
two-node element. The addition of another node then results in an additional interpolation
function and a correction to be applied to the already existing interpolation functions.
Figure 5.3 gives the interpolation functions of the one-dimensional element considered in
Example 5.1, with an additional fourth node possible. As shown, the element can have from
two to four nodes. We should note that nodes 3 and 4 are now interior nodes because nodes
1 and 2 are used to define the two-node element.

0.3L . 0.5L . 0.2L
Node 1 Node 3 i Node 4 Node 2
r=-1 r=0 r=+1... 3-node case
ra-1 r--% r-+% r=+1... 4-node case

(a) 2 to 4 variable-number-nodes truss element

Include only if
node 3 is present

Include only if
nodes 3 and 4 are present

|
|
|
|
t
|
1
|
1
{
|

h=3(1-r) =3 (1= 1) »T+11°(—9r3+r2+9r—1)

h=1(1+n = 3 (1= 1) e 4l-+116(9r3+r2-9r-1)

hy=(1-r3) : +5@213+772-21r-7)
I

hy= (2773 -8r% + 27r + 9)
(b) Interpolation functions

Figure 5.3 Interpolation functions of two to four variable-number-nodes one-dimensional
element

This procedure of constructing the element interpolation functions for one-
dimensional analysis can be directly generalized for use in two and three dimensions.
Figure 5.4 shows the interpolation functions of a four to nine variable-number-nodes
two-dimensional element, and Fig. 5.5 gives the interpolation functions for three-
dimensional 8- to 20-node elements. The two- and three-dimensional interpolations have
been established in a manner analogous to the one-dimensional interpolations, where the
basic functions used are, in fact, those already employed in Fig. 5.3. We consider in Figs.
5.4 and 5.5 at most parabolic interpolation, but variable-number-nodes elements with
interpolations of higher order could be derived in an analogous way.
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(a) 4to 9 variable-number-nodes two-dimensional element

Include only if node i is defined

i=5 i=6 i=7 i=8
m=|Yr+nies | -3hs -3hg
h={i1-n(1+9 | -7hs -3hs
h=|t1-n@-9 -3he | -3
hy=| 114N (1-9 -3 -3hg

hs=|1(1-A(1+9)

hg=| 2(1-s)(1-1

m=|3-A0-9

hg = %(1-s2)(1+n
hg=](1-A(1-5%

(b} Interpolation functions

Figure 5.4 Interpolation functions of four to nine variable-number-nodes two-dimensional

element

(a) 8to 20 variable-number-nodes three-dimensional
x element

Figure 5.5 Interpolation functions of eight to twenty variable-number-nodes three-

dimensional element
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h1=g1-(ge + g12 + g171)/2 he = gg— (g13 + g1a + Giel/2
hy = g2 - (g9 + g10 + G18)/2 hy = g7-(g14 + g15 + G19)/2
h3 = g3=(g10 + g11 + g1e)/2 hg = gg - (g1s + g16 + Go0)/2
hy=gs-(g11 + G12 + G202 hj=g;forj=9,..., 20

hs = g5 - (g13 + G16 + G17)/2

gi= 0 if node iis not included; otherwise,
gi= Glr, r) G(s, s} G(t, t;)
GB. B =7 (1 +Bif) for fy=£1

iB=rst
G, B =(1-p2  for B;=0 g

(b) Interpolation functions

Figure 5.5 (continued)

The attractiveness of the elements in Figs. 5.3 to 5.5 lies in that the elements can have
any number of nodes between the minimum and the maximum. Also, triangular elements
can be formed (see Section 5.3.2). However, in general, to obtain maximum accuracy, the
variable-number-nodes elements should be as nearly rectangular (in three-dimensional
analysis, rectangular in each local plane) as possible and the noncorner nodes should, in
general, be located at their natural coordinate positions; e.g., for the nine-node two-
dimensional element the intermediate side nodes should, in general, be located at the
midpoints between the corner nodes and the ninth node should be at the center of the
element (for some exceptions see Section 5.3.2, and for more details on these observations,
see Section 5.3.3).

Considering the geometry of the two- and three-dimensional elements in Figs. 5.4
and 5.5 we note that by means of the coordinate interpolations in (5.18), the elements can
have, without any difficulty, curved boundaries. This is an important advantage over the
generalized coordinate finite element formulation. Another important advantage is the ease
with which the element displacement functions can be constructed.

In the isoparametric formulation the element displacements are interpolated in the
same way as the geometry; i.e., we use

9

q q
u=2 hiui; v=2 hwv;; w =2 hw, (5.19)
i=1 i=]

i=1

where u, v, and w are the local element displacements at any point of the element and u;,
v,andw;, i = 1,...,q,are the corresponding element displacements at its nodes. There-
fore, it is assumed that to each nodal point coordinate necessary to describe the geometry
of the element, there corresponds one nodal point displacement.’

To be able to evaluate the stiffness matrix of an element, we need to calculate the
strain-displacement transformation matrix. The element strains are obtained in terms of

!'In addition to the isoparametric elements, there are subparametric elements, for which the geometry is
interpolated to a lower degree than the displacements (see end of this section) and superparametric elements for
which the reverse is applicable (see Section 5.4).
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derivatives of element displacements with respect to the local coordinates. Because the
element displacements are defined in the natural coordinate system using (5.19), we need
to relate the x, y, z derivatives to the r, s, t derivatives, where we realize that (5.18) is of the
form

x = fi(r, s, 1); y = fir, s, 0); z= fi(r, s 1) (5.20)
where f; denotes “function of.” The inverse relationship is
r= fdx, 5 2); s = fs(x, 5 2); t = fix, %2 (5.21)

We require the derivatives d/dx, 3/9y, and d/dz, and it seems natural to use the chain rule
in the following form:

a 9 or d s 9 ot

ax or ax s 9x * 3t ax (522)

with similar relationships for /9y and d/dz. However, to evaluate d/9x in (5.22), we need
to calculate dr/dx, ds/dx, and dt/dx, which means that the explicit inverse relationships in
(5.21) would need to be evaluated. These inverse relationships are, in general, difficult to
establish explicitly, and it is necessary to evaluate the required derivatives in the following
way. Using the chain rule, we have

al fex 2 a2
ar dr dr ar} Jox
d] _|9x 9y odzf| o
as| |as as as||ay (5.23)
al oz oy af|e
ot at dt at| |oz
- or, in matrix notation 9 _ J 9 (5.24)
’ ’ or ox )

where J is the Jacobian operator relating the natural coordinate derivatives to the local
coordinate derivatives. We should note that the Jacobian operator can easily be found using
(5.18). We require d/8x and use

— =J'— (5.25

which requires that the inverse of J exists. This inverse exists provided that there is a
one-to-one (i.e., unique) correspondence between the natural and the local coordinates of
the element, as expressed in (5.20) and (5.21). In most formulations the one-to-one corre-
spondence between the coordinate systems (i.e., to each r, s, and ¢ there corresponds only
one x, y, and z) is obviously given, such as for the elements in Figs. 5.3 to 5.5. However, in
cases where the element is much distorted or folds back upon itself, as in Fig. 5.6, the unique
relation between the coordinate systems does not exist (see also Section 5.3.2 for singular-
ities in the Jacobian transformation, Example 5.17).

Using (5.19) and (5.25), we evaluate du/dx, du/dy, ou/dz, dv/dx, . . ., dw/dz and
can therefore construct the strain-displacement transformation matrix B, with

€ = Bil (5.26)
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xand y
, are undefined

/ For J nonsingular, i

. - l
L'“°'°f r=-zfalls .. ell interior angles
outside the element / must be smaller

than 180 degrees
(a) Distorted elemant (b) Element folding upon itself
Figure 5.6 Elements with possible singular Jacobian

where it is a vector listing the element nodal point displacements of (5.19), and we note that
J affects the elements in B. The element stiffness matrix corresponding to the local element
degrees of freedom is then

K = f B’CB dV (5.27)
v

We should note that the elements of B are functions of the natural coordinates r, s, and ¢.
Therefore, the volume integration extends over the natural coordinate volume, and the
volume differential dV need also be written in terms of the natural coordinates. In general,
we have

dV = det J dr ds dt (5.28)

where det J is the determinant of the Jacobian operator in (5.24) (see Exercise 5.6).

An explicit evaluation of the volume integral in (5.27) is, in general, not effective,
particularly when higher-order interpolations are used or the element is distorted. There-
fore, numerical integration is employed. Indeed, numerical integration must be regarded as
an integral part of isoparametric element matrix evaluations. The details of the numerical
integration procedures are described in Section 5.5, but the process can briefly be summa-
rized as follows. First, we write (5.27) in the form

K= f F dr ds dt (5.29)

v
where F = B7CB det J and the integration is performed in the natural coordinate system
of the element. As stated above, the elements of F depend on r, s, and ¢, but the detailed

functional relationship is usually not calculated. Using numerical integration, the stiffness
matrix is now evaluated as

K = 2 ang,-,-k (530)
i j.k

where Fy; is the matrix F evaluated at the point (7;, s, %), and a;x is a given constant that
depends on the values of r;, s;, and #.. The sampling points (r;, s, t:) of the function and the
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corresponding weighting factors a;; are chosen to obtain maximum accuracy in the integra-
tion. Naturally, the integration accuracy can increase as the number of sampling points is
increased.

The purpose of this brief outline of the numerical integration procedure was to
complete the description of the general isoparametric formulation. The relative simplicity
of the formulation may already be noted. It is the simplicity of the element formulation and
the efficiency with which the element matrices can actually be evaluated in a computer that
has drawn much attention to the development of the isoparametric and related elements.

The formulation of the element mass matrix and load vectors is now straightforward.
Namely, writing the element displacements in the form

u(r, s, 1) = Hi (5.31)
where H is a matrix of the interpolation functions, we have, as in (4.34) to (4.37),

M = f pH™H dV (5.32)

\4
Ry = f HTf? dV (5.33)

\ 4
Rs = f H1S dS (5.34)

)
R, = f BT+ dV (5.35)

\4

These matrices are evaluated using numerical integration, as indicated for the stiffness
matrix K in (5.30). In the evaluation we need to use the appropriate function F. To calculate
the body force vector Ry we use F = H'f? det J, for the surface force vector we use
F = HfS det J5, for the initial stress load vector we use F = B7% det J, and for the mass
matrix we have F = pH"H det J.

This formulation was for one-, two-, or three-dimensional elements. We shall now
consider some specific cases and demonstrate the details of the calculation of element
matrices.

EXAMPLE 5.2: Derive the displacement interpolation matrix H, strain-displacement interpo-
lation matrix B, and Jacobian operator J for the three-node truss element shown in Fig. ES.2.

r=-1 r=0 r=+1

X1 > L/2 > L/2

Figure E5.2 Truss element with node 3 at center of element

The interpolation functions of the element were given in Fig. E5.1. Thus, we have

H = [—%(1 -1 s+ —r2)] @



Sec. 5.3 Formulation of Continuum Elements 349

The strain-displacement matrix B is obtained by differentiation of H with respect to r and
premultiplying the result by the inverse of the Jacobian operator,

B=J(-3+n) G+ -] ®

To evaluate J formally we use
x= —%(1 - nx + _r2_(1 +rx +L0+ 0~ rz)(x, + %)

L L
hence, x=xnt3 3 r ©
where we may note that because node 3 is at the center of the truss, x is interpolated linearly
between nodes 1 and 2. The same result would be obtained using only nodes 1 and 2 for the
geometry interpolation. Using now the relation in (c), we have

3= [g] @

2 L
-1 =12 = —
and J [L]’ det J 2

With the relations in (a) to (d), we can now evaluate all finite element matrices and vectors given
in (5.27) to (5.35).

EXAMPLE 5.3: Establish the Jacobian operator J of the two-dimensional elements shown in
Fig. ES.3.

Y“
2 y ] 1 Tcm r1
T 1¢m ‘ /
L———-—:-{- 4cm 2 o
1cm }g om x
Al
3 4 3 4
f————— 6 CM ~——— Y "-2 cm -——>l
Element 1 Element 3

YA X

Element 2

Figure ES.3 Some two-dimensional elements
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The Jacobian operator is the same for the global X, Y and the local x, y coordinate systems.
For convenience we therefore use the local coordinate systems. Substituting into (5.18) and
(5.23) using the interpolation functions given in Fig. 5.4, we obtain for element 1:

x = 3r; y=2s

1= s 3]
Similarly, for element 2, we have
x=3HA + A+ 9B+ 1/QVI] + (1 - N + -G - 1/2V3))]
+(1 =90 -9-3 +1/QVI)] + (1 + N1 - 9B - 1/2VI]}
y=H+ 00+ 9@ + (1 =N+ 9@ + (1 = N1 = 9)(—})
+ 1+ 001 - 9)(-3}

3 0
and hence, J= 1 l
2V3 2

Also, for element 3,
x=5A+nA+90)+ A -nNA+9-1)+Q1A-nN1-9(-1)
+ (1 + N1 - s+ 1)]
y=4i{A+n0+9@) + Q-0+ 960+ Q-1 -9}
+ (1 + (1 = §)(-3)]

_1J4 1+
therefore, J= 4[0 3+ r)]

‘We may recognize that the Jacobian operator of a 2 X 2 square element is the identity matrix,
and that the entries in the operator J of a general element express the amount of distortion from
that 2 X 2 square element. Since the distortion is constant at any point (r, s) of elements 1 and
2, the operator J is constant for these elements.

EXAMPLE 5.4: Establish the interpolation functions of the two-dimensional element shown in
Fig. ES5.4.

2 2
'3'0111 -3'Cm

2 6 5 1

(a) Figure ES.4 A seven-node element
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hs
| /N
l ]
- / P _2, W,
= s /
hg hy
1 7
- 3x % L ; E '
The individual functions are obtained by combining the basic linear, parabolic, and cubic

interpolations corresponding to the r and s directions. Thus, using the functions in Figure 5.3, we
obtain

Wl
win

h

)
S
[\
N
SN

(b) Construction of h,

Figure E5.4 (continued)

hs = [{%(=27r* = 9r2 + 27r + 9I5(1 + 9)]

hs=[1 —r) + L7+ 7r* - 27r - DIEA + 9)]

=B -rn-30-r)+L%=9+r*+ 9 - DIGA + 5)]
h=3i01-n0 -3

hy = %(lt—é s+ 1

he = 51+ N~ 8) — bhy

hy = 3(1 + (1 +5) — 3hs — 3hs — 3h;

=
N
|

where A, is constructéd as indicated in an oblique/aerial view in Fig. E5.4.

EXAMPLE 5.5: Derive the expressions needed for the evaluation of the stiffness matrix of the
isoparametric four-node finite element in Fig. ES.5. Assume plane stress or plane strain condi-
tions.

Using the interpolation function Ay, h,, hs, and hs4 defined in Fig. 5.4, the coordinate
interpolation given in (5.18) is, for this element,

=i +N0+ 9 +;0 -1+ 9+ 501 -1 - 9x + 10 + N1 - 9x
=10 +N0+ 9y +3iA -NA+ 9y +i0 - DA - 9y + 10 + N - 9y,
The displacement interpolation given in (5.19) is
=11 +N0+ D +:i0 -0 + D + (1 = NQ = Dus + 11 + N1 — Suy
v=51+nN1+ 8o +301 =1+ o2+ i1 — N1 — o3 + 1A + N1 — s
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°}  Node1

Node 4

!
i » Figure E5.5 Four-node two-dimensional
X4 X, u element

€ =le. € Yol

ou dav éu odv
where €&x = T} €y = 73 Yoy T 0T T
dax ay dy ox

To evaluate the displacement derivatives, we need to evaluate (5.23):

o] [ex ][
ar| |aor or||ex or kA _ JE-
a7 2|2 or "o
as as ads||oy
i} 1 1 1 1
where —i = Z(l + 8)x; — Z(l + §)x2 — Z(l - Sx; + Z(l — §)X4
ax 1 1 1 1
— = — -_— — —_ - —_ —_—— +
P 4(1 + x + 4(1 rx; 4(1 r)x; 4(1 r)xs

ay 1 1 1 1

—_— - —_— - —_ J— + —_ —_

> 4(1 oy = 7L+ 9y = 7(1 = 9)ys + (1 = $)ys
0 1 1 1 1

a—i =2ty + 0=y =20 =r)ys = 20+ r)ys

Therefore, for any value rand s, -1 =< r < +1and —1 < s < +1, we can form the Jacobian
operator J by using the expressions shown for dx/dr, x/ds, and dy/dr, dy/ds. Assume that we

evaluate Jat r = r;and s = s;and denote the operator by J; and its determinant by det J;. Then
we have

KA 3
a0x I ar
o T¥la
ay at r=r; as at r=r;

s=5; s=3;
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To evaluate the element strains we use

du 1 1 1 1
—_— + —_— - + —_—— - — —_
o 4(1 Sy 4(1 Sz 4(1 Sus + 4(1 s
u 1 1 1 1
3 = gt u+ 2 =nw =21 =N = (1 + Nu
v 1 1 1 1
— = (1 + - = -~ - -1 -
> 4(1 $)v1 4(1 + §)v, 4(1 svs + 4(1 §)vy
v 1 1 1 1
vl Z(l + rv + Z(l - v, — Z(l - s — Z(l + r)vs
Therefore,
_ﬁ’ﬂ
ax _ lJ___l[l +s 0 -(1+s) 0 —-(1-s5) 0 1-g O]ﬁ
ou 4 1+ 0 1-n 0 ~(1-rn 0 —-(1+r O
K2 e (a)
and
792—
ax _1 :1[0 1+ 0 —-(1+s) 0 -(1-5 0 1-g ]ﬁ
dv 47 10 1+nr 0 1~r 0 -1 -r) 0 -(1+r
| ay] = (v
where @ =luy vy w2 v2 ws Vs us 04l

Evaluating the relations in (2) and (b), we can establish the strain-displacement transfor-
mation matrix at the point (r;, s;); i.e., we obtain

€; &= B,jﬁ

where the subscripts i and j indicate that the strain-displacement transformation is evaluated at
the point (r:, s;). For example, if x = r, y = s (i.e,, the stiffness matrix of a square element is
required that has side lengths equal to 2), the Jacobian operator is the identity matrix, and hence
hence

1+ 0 -1+ s 0 -1 ~-sp) 0 1 -3 0
By=% 0 1+r,' 0 l_r,' 0 —(l—r,) 0 —(1+l'i)

L+r 1+ 1-rn —-(+s) --r) -(1-s5) -Q+n 1-g
The matrix Fy in (5.30) is now simply

where the material property matrix C is given in Table 4.3. In the case of plane stress or plane
strain conditions, we integrate in the r, s plane and assume that the function F is constant through
the thickness of the element. The stiffness matrix of the element is therefore

K= 2 ti_,-ag‘Fij
i
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where t; is the thickness of the element at the sampling point (r;, 5;) (f; = 1.0 in plane strain
analysis). With the matrices F; as given and the weighting factors a; available, the required
stiffness matrix can readily be evaluated.

For the actual implementation it should be noted that in the evaluation of J; and of the
matrices defining the displacement derivatives in (a) and (b), only the eight possible derivatives
of the interpolation functions A, . . . , hs are required. Therefore, it is expedient to calculate
these derivatives corresponding to the point (r;, s;) once at the start of the evaluation of B,, and
use them whenever they are required.

It should also be realized that considering the specific point (r;, s;), the relations in (a) and
(b) may be written, respectively, as

) & o
_M=E%Mi
ax i=1 a0x
P 4 ¢ ©
u_ >
y =19y
3 & ok
FrP N L
and = r )
o _y o,
dy =1 oy
Hence, we have
L RPN Y RN
ax ax ax ax
ah, ahz 6h3 ahd
=10 — 0 — 0 — 0 —
. 3y o 3y oy ©
dy d6x dy dx dy é6x dy ox

where it is implied that in (c) and (d), the derivatives are evaluated at point (r;, s;), and therefore
in (€), we have, in fact, the matrix B;.

EXAMPLE 5.6: Derive the expressions needed for the evaluation of the mass matrix of the
element considered in Example 5.5.
The mass matrix of the element is given by

M= E ayt;Fy
i j

where F; = p;HTH; det J;

and Hj; is the displacement interpolation matrix. The displacement interpolation functions for u
and v of the four-node element have been given in Example 5.5, and we have

H = l[(l + (1 +5) 0 1-rna+s) 0
Y4 0 (1+nr1+s) 0 1-ra+s)
1 -rnd-s 0 Q+nrd-s 0 ]
0 1 -ra1-s 0 1+ nmd-y
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The determinant of the Jacobian matrix, det J;, was given in Example 5.5, and pj is the mass
density at the sampling point (r;, s;). Therefore, all required variables for the evaluation of the
mass matrix have been defined.

EXAMPLE 5.7: Derive the expressions needed for the evaluation of the body force vector Ry
and the initial stress vector R, of the element considered in Example 5.5.

These vectors are obtained using the matrices Hy, B,;, and J; defined in Examples 5.5 and
5.6; i.e., we have ;

R, = 2 oyt HEEE det J;
Wi

R, = 2 a@,-ti,-B,-’}'r{,- det Jy
g

where f7 and 7} are the body force vector and initial stress vector evaluated at the integration
sampling points.

EXAMPLE 5.8: Derive the expressions needed in the calculation of the surface force vector R
when the element edge 1-2 of the four-node isoparametric element considered in Example 5.5
is loaded as shown in Fig. ES.8.

S
fy 1
Node 1
-
2 il
s f f,?
—__ |
———————
Y. vi : "‘r
|
3
4
— - Figure E5.8 Traction distribution along
X, u edge 1-2 of a four-node element

The first step is to establish the displacement interpolations. Since s = +1 at the edge 1-2,
we have, using the interpolation functions given in Example 5.5,

u® =31+ wm + 31 - Nu,
v* =3(1 + Moy + 5(1 — Doz
Hence, to evaluate Rs in (5.34) we can use

HS=[%(1+r) 0 {a1-A_. 0 0 0 0 o]
0 a+n 0 1-n0 0 0 0

5
and £ = [ ":I
i
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where f3 and 5 are the x and y components of the applied surface force. These components may
have been given as a function of r.

For the evaluation of the integral in (5.34), we also need the differential surface area dS
expressed in the r, s natural coordinate system. If ¢, is the thickness, dS = ¢, dI, where dl is a

differential length,
ax\ ay\¥]/?
dl = det Jdr;  det)’ = [(—") + (—y)]
or or

But the derivatives dx/ar and dy/dr have been given in Example 5.5. Using s = +1, we have,
in this case,
9x _ X1~ X2, dy _yn—y

or 2 ar 2

Although the vector Rs could in this case be evaluated in a closed-form solution (provided that
the functions used in £* are simple), in order to keep generality in the program that calculates Rs,
it is expedient to use numerical integration. This way, variable-number-nodes elements can be
implemented in an elegant manner in one program. Thus, using the notation defined in this
section, we have

Rs = 2 a;t,F

F, = H{'f§ det J§

It is noted that in this case only one-dimensional numerical integration is required because s is
not a variable.

EXAMPLE 5.9: Explain how the expressions given in Examples 5.5 to 5.7 need be modified
when the element considered is an axisymmetric element.

In this case two modifications are necessary. First, we consider 1 radian of the structure.
Hence, the thickness to be employed in all integrations is that corresponding to 1 radian, which
means that at an integration point the thickness is equal to the radius at that point:

4
=2 h| @
k=1 L]
Second, it is recognized that also circumferential strains and stresses are developed (see
Table 4.2). Hence, the strain-displacement matrix must be augmented by one row for the hoop
strain #/R; i.e., we have

B=1|nh h h h
L S S I S - ®)
t t t t
where the first three rows have already been defined in Example 5.5 and 7 is equal to the radius.
To obtain the strain-displacement matrix at integration point (i, /) we use (a) to evaluate ¢ and
substitute into (b).

EXAMPLE 5.10: Calculate the nodal point forces of the four-node axisymmetric finite element

shown in Fig. E5.10 when the element is subjected to centrifugal loading.
Here we want to evaluate

R = f H't? dV
\ 4
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y 1}
<————-R,—>i
<o 2 1
o
/ 11cm
%
3 \ 4 rx
Density Figure E5.10 Four-node axisymmetric
@ p element rotating at angular velocity @
(rad/sec)
where f" = pw?R; 5=
= %(1 - r)R() 2(1 + r)Rl
R, — R
H=[h10h20h30h4 0]_ Jz_lTBO
0 m 0 h O hs 0 hJ 0o !
2

and the A; are defined in Fig. 5.4. Also, considering 1 radian,
R +R R —2 ROr)

dV =detJdrdsR = (5‘—;—@> drds(

2
Hence,

1+ n(1 +3) o |
0 1+ A +s)

(1-n(1+5s) 0
pw (R1 - Ro) 0 (1 - r)(l + S)

Rs f o |=na -9 0
0 (1 -9 =5

1+n1-y% 0
i 0 1+n1 -y

[(Ri + Ro) + (R, — Ro)r]z[(l)] dr ds

IfweletA = R, + Ryand B = R, — Ry, we have

[2(642 + 44B + 2B7)]
0
$(6A* — 4AB + 2B?)
pw’B 0
Rp = 2 2 2
64 |[3(6A4% — 4AB + 2B?)
0 |
2(6A% + 4AB + 2B?)
| 0
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EXAMPLE 5.11: The four-node plane stress element shown in Fig. ES5.11 is subjected to the
given temperature distribution. If the temperature corresponding to the stress-free state is 6o,
evaluate the nodal point forces to which the element must be subjected so that there are no nodal
point displacements.

Element thickness = 1 cm
Young's modulus £
Poisson's ratio v
Thermal coefficient

of expansion « Ra R
s) A A
+20°C
+40°C R3 > > Ry
T 2 1
3cm >
r
3 4
+20°C Rs > >
-]
M }: 4cm ~1 A A
Re Rg

Figure E5.11 Nodal point forces due to initial temperature distribution

In this case we have for the total stresses, due to total strains € and thermal
strains €™,
T=Ce — €") (a)

where €5 = a(0 — 6), €, = a(® — 6), y5 = 0.If the nodal point displacements are zero, we
have € = 0, and the stresses due to the thermal strains can be thought of as initial stresses. Thus,
the nodal point forces are

R, = j B’ dV
v

¢
1 v 0 1
Ea v 1 0 1

1 -2 1-v 0{<§h,~0.~>—90}

0 0
and the A; are the interpolation functions defined in Fig. 5.4. Also,

_[2 0] a2 ]z 0]. _
_1+s 1+s 1—s 1—3s i
8 0 -3 0 K 0 8 0
1+r 1—-r 1—r 1+r
B=10 6 0 6 0 6 6
1+r 1+ 1-r _1+s _1—r _l—s _1+r 1-3s
6 8 6 8 6 8 6 8J
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Hence,
(1+s 1+ 7]
8 0 6
1+r 1+
0
: 6 8
1+s 1—-r
8 0 6
0 l—r 1+ 1+
+1 +1 6 8 1+V EC!
R[= - 1 -
o Ja _ s 0 1= 0 J1—-2
8 6
1-r 1—~5
0 - -
6 8
1 -3 1+r
8 0 -
1+r 1—3s
. 0 6 8 |
[2.5(s + 3)(r + 3) — 63 drds
[37.5 — 1.56; ]
50 ~ 26,
—-37.5 + 1.56
R, = — Ea 40 — 26,
! (1 — )| =30+ 1.56
—-40 + 26
+30 — 1.56,
_—50+200J

The calculation of the initial stress force vector as performed here is a typical step in a
thermal stress analysis. In a complete thermal stress analysis the temperatures are calculated as
described in Section 7.2, the element load vectors due to the thermal effects are evaluated as
illustrated in this example, and the solution of the equilibrium equations (4.17) of the complete
element assemblage then yields the nodal point displacements. The element total strains € are
evaluated from the nodal point displacements and then, using (a), the final element stresses are
calculated.

EXAMPLE 5.12: Consider the elements in Fig. E5.12. Evaluate the consistent nodal point
forces corresponding to the surface loading (assuming that the nodal point forces are positive
when acting in the direction of the pressure).

Here we want to evaluate

Rs = f HfS dS
S
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(a) Two-dimensionel element subjected to
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P2 P
2Y 5 Y1 / P
A - A s
s T Thickness = 1 cm 21 8/ 1
p
2cm 6¢ 8 - P s 7" A ;/2cm
3 7 4
y ! / /
2cm

(b) Flat surface of three-dimensional element
linearly varying pressure along one side subjected to constant pressure p

Figure E5.12 Two- and three-dimensional elements subjected to pressure loading

Consider first the two-dimensional element. Since s = +1 at the edge 1-2, we have, using the

interpolation functions for the eight-node element (see Fig. 5.4),
hs =31 — rH(1 + ly=s1 = 1 — 12
=31+ 90+ ) +s— D1 =571 + 1)
=31 -1+ —r = Dh=rr=—3r(1 = 1)

which are equal to the interpolation functions of the three-node bar in Fig. ES.2. Hence

[us] _ [%r(l +7) 0 —3r(1 — 1) 0 (1-+r? 0 ]
0S| 0 r(1+7) 0 -3f1=-n 0 (1=

U2

(S

Also,

Hence,

r= [jfc] - [%(1 -

r(l +7r)
0
t|l—-r(1 —r)

2 o
2(1 — 73
| 0

r(l1 +7r)
—r(1 -7

2(1 - r?)

%(1 - r)Pz];

dl
2 (1 + r)pl

detJ¥ =1

0
+ (1 - r)pz

|
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N 0 T
D
0

D2
0

[2(p1 + p2)]

For the three-dimensional element we proceed similarly. Since the surface is flat and the
loading is normal to it, only the nodal point forces normal to the surface are nonzero [see also
(a)]. Also, by symmetry, we know that the forces at nodes 1, 2, 3, 4 and 5, 6, 7, 8 are equal,
respectively. Using the interpolation functions of Fig. 5.4, we have for the force at node 1,

~
1%
i

@

W | =

+1 p+l
R = pf_} L 20+ DA+ 9 + 5 V) drds = --;-p

and for the force at node 5,
e+l 4
R5=pf f (1 =r)(1 + s)drds = -p
-1 -1 2 3
The total pressure loading on the surface is 4 p, which, as a check, is equal to the sum of all the

nodal point forces. However, it should be noted that the consistent nodal point forces at the
corners of the element act in the direction opposite that of the pressure!

EXAMPLE 5.13: Calculate the deflection u,4 of the structural model shown in Fig. ES.13.

V% Us Uy

/ 0.1cm

% Bar W-ith i
% b | Somesectopal |

AN | e

/ Us Y P=6000 N’ 2850 ﬁmz
6cm Z

% 0.1cm

/////AV//////// //4 Section AA

Figure E5.13 A simple structural model
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Because of the symmetry and boundary conditions, we need to evaluate only the stiffness
coefficient corresponding to u,. Here we have for the four-node element,

3(1 — )

4 0 1
J= [ ]; = —1 .. 0
03 48 —4(1 + r)

31— )

+1 +1 1 2 E
kn = =) T—=BU-5i0i -4 + ] 3v(1 = 3)
L L (48) I-w —2(1 = »)(1 + 1)

(12)(0.1) dr ds
or k77 = 1,336,996.34 N/cm
Also, the stiffness of the truss is AE/L, or
_ (D30 X 109

k 2 = 3,750,000 N/cm
Hence kot = 6.424 X 10° N/cm
and us = 9.34 X 10™* cm

EXAMPLE 5.14: Consider the five-node element in Fig. ES.14. Evaluate the consistent nodal
point forces corresponding to the stresses given.

= 4cm >
2 1
A
icm Thickness = 1cm
—\— ®5
1cm
\
y 3 4
Tx=0
7,y = 10 Nfem?
> Tay = Tyx = 20 Nfcm?

Figure E5.14 Five-node element with stresses given

Using the interpolation functions in Fig. 5.4, we can evaluate the strain-displacement
matrix of the element:

1 1+ys 0 -s(1 + 5) 0 s(1 — )
B= § 0 21 +r) 0 2(1 = (1 + 2s) 0
20+7r) (A +5 20 -1+ 2 —-5(1 + 5) =2(1 — N1 — 29
0 1-3 0 -2(1 — 5% 0
=21 - n(1 - 2y 0 =21 + 1) 0 —-8(1 — s

s(1 =) —2(1 +r 1-5 -81-rs —-2(1-5)
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where we used J= [2 0]
01

The required nodal point forces can now be evaluated using (5.35); hence,

+1 p+1 0

R, = f f B7] 10 |(2) dr ds

T 20

which gives
T=[40 40 40 £ —-40 -% -40 0 0 -%
It should be noted that the forces in this vector are also equal to the nodal point consistent

forces that correspond to the (constant) surface tractions, which are in equilibrium with the
internal stresses given in Fig. E.5.14.

Earlier we mentioned briefly the possible use of subparametric elements: here the
geometry is interpolated to a lower degree than the displacements. In the above examples,
the nodes corresponding to the higher-order interpolation functions (nodes 5 and higher for
the two-dimensional elements) were always placed at their “natural” positions so that the
Jacobian matrix would be the same if, for the geometry interpolation, only the “basic”
lower-order functions were used. Hence, in this case the subparametric two-dimensional
element, using only the four corner nodes for the interpolation of the geometry, gives the
same element matrices as the isoparametric element. For instance, in Example 5.14, the
Jacobian matrix J would be the same using only the basic four-node interpolation functions,
and hence the vector R; for the subparametric element (using the four corner nodes for the
geometry interpolation and the five nodes for the displacement interpolation) would be the
same as for the isoparametric five-node element.

However, while the use of subparametric elements decreases somewhat the computa-
tional effort, such use also limits the generality of the finite element discretization and in
addition complicates the solution procedures considerably in geometrically nonlinear anal-
ysis (where the new geometry of an element is obtained by adding the displacements to the
previous geometry; see Chapter 6).

5.3.2 Triangular Elements

In the previous section we discussed quadrilateral isoparametric elements that can be used
to model very general geometries. However, in some cases the use of triangular or wedge
elements may be attractive. Triangular elements can be formulated using different ap-
proaches, which we briefly discuss in this section.

Triangular Elements Formulated by Collapsing Quadrilateral Elements

Since the elements discussed in Section 5.3.1 can be distorted, as shown for example in
Fig. 5.2, a natural way of generating triangular elements appears to be to simply distort the
basic quadrilateral element into the required triangular form (see Fig. 5.7). This is achieved
in practice by assigning the same global node to two corner nodes of the element. We
demonstrate this procedure in the following example.
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2 NOd? 1 Nodes 2 and 3
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4
(a) Degeneration of 4-node to 3-node two-
dimensional element
2 Node 1
i
I
i
3 4 : Nodes 1
6 5 ,‘ and 4
7’ s\
// // \‘
/ / \
// // A
// // \

7 8 Nodes 5 and 8
Nodes 2 Ny - 7 Nodes 1 Nodes 1, 2/ 31 and 4
and 3 ./| and 4

A
S
4 \
// \\

Nodes 5 and 8 Nodes 5 and 8

(b} Degenerate forms of 8-node three-
dimensional element

Figure 5.7 Degenerate forms of four- and eight-node elements of Figs. 5.4 and 5.5

Chap. 5

EXAMPLE 5.15: Show that by collapsing the side 1-2 of the four-node quadrilateral element

in Fig. E5.15 a constant strain triangle is obtained.
Using the interpolation functions of Fig. 5.4, we have

X =

1

Thus, using the conditions x, = x, and y; = y,, we obtain

=314+ D +3i0 -1 - Hx + 51 + (1 ~ $)x4

y=31+9n+il -1 -5y +1i(1+ N1~ 9y

M+ 90+ 90+ =D +9x+i0 -0 -+ 51+ 01 - 9x
y=31+A0+ I +:Q1 —-NA+ Dy +i0 = N1 =)y + 11 + (1 — sy,
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Figure E5.15 Collapsing a plane stress four-node element to a triangular element

and hence with the nodal coordinates given in Fig. E5.15,

x=32(1+ (1 -5

y=1+s
It follows that
ax _ 1 ay _ [ 2
ar 207 ar’o_ J_l[ (1-s o]_ =l
x_ 1y, o T2l-a+n 2) 1+r
as 2 7 as 1—3
Using the isoparametric assumption, we also have
u=3(1+ e + 11— N1 — Jus + 1 + N — sHu,
=31+ o2+ 31 —NA = shos + (1 + (1 — 5)vs
ou 1 1 av 1 1
Pl Z(l SHus + Z(l — $)ig; > —Z(l — s)vs + Z(l — 5)v,
du 1 1 1 dv 1 1 1
E -0 - P ==+ Py Z=cop—=(1 - Aoy —=(1 +
%2 U 4( rus 4( rug P 502 4( rvs 4(1 v,
9 9
ax| _ __,lor
al= e
dy as
HCnCC, Fuz—
u 2 1 1 02
ax_l_sooo z0=9 0 za-9 off™
du 1+r 1 1 1 v3
ay 1—s 2 0 ~3=n 0 =z +n off
[ 04
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ou 1 1 _uz
ax 00 2 0 2 0 :
and ou - 1 1 u
dd -0 —-= 4
> |2 2 0.0 0w
1 1]
P21 Jooo -1 o 2%
.. ax 2 20 -
Similarly, = .
21 fo 20 -1 o0 off“
ay 2 2 LYs
]
00 -4 0140 ’;Z
So we obtain e=|0 1 o -L o0 ofl”
109 -1 =1 o 1|*
2 2 2 2 Uy
For any values of u,, v2, us, v3, and us, v, the strain vector is constant and independent of r, s.

Thus, the triangular element is a constant strain triangle.

In the preceding example we considered only one specific case. However, using the
same approach it is apparant that collapsing any one side of a four-node plane stress or
plane strain element will always result in a constant strain triangle.

In considering the process of collapsing an element side, it is interesting to note that
in the formulation used in Example 5.15 the matrix J is singular at s = +1, but that this
singularity disappears when the strain-displacement matrix is calculated. A practical conse-
quence is that if in a computer program the general formulation of the four-node element
is employed to generate a constant strain triangle (as in Example 5.15), the stresses should
not be calculated at the two local nodes that have been assigned the same global node.
(Since the stresses are constant throughout the element, they are conveniently evaluated at
the center of the element, i.e.,at r = 0, s = 0.)

The same procedure can also be employed in three-dimensional analysis in order to
obtain, from the basic eight-node element, wedge or tetrahedral elements. The procedure
is illustrated in Fig. 5.7 and in the following example.

EXAMPLE 5.16: Show that the three-dimensional tetrahedral element generated in Fig. E5.16
from the eight-node three-dimensional brick element is a constant strain element.

Here we proceed as in Example 5.15. Thus, using the interpolation functions of the brick
element (see Fig. 5.5) and substituting the nodal point coordinates of the tetrahedron, we obtain
x=30+n0-5H1-9
y=z:(1+91-19

z=1+1¢
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Figure ES5.16 Collapsing an eight-node brick element into a tetrahedral element

[ 1 -951 -9 0 0
Hence, J=1-301+n1 -9 s1-9 ol
| —i0+n1 -9 —31+s 1
. _
G-oa-5 ° ¢
a2 2 @

1-50-9 1-1¢
21 + ) 1+s
1-9(1 -0 1-¢

—
1

Using the same interpolation functions for u, and the conditions that u; = u, = u; = u,4 and
us = ug, we obtain

u = h¥u, + h¥us + h¥u; + h¥us
with
=zl +0; AF=101+ 901 -0
i1 =rQ1 =951 -0 hE =31+ (1 -0 -9
Similarly, we also have
v = hfvy + h¥vs + h¥v, + h¥ovs

w.= hrW4 + h;kWS -+ h;kW7 -+ hng8

Evaluating now the derivatives of the displacements u, v, and w with respect to r, s, and ¢, and
using J~! of (a), we obtain
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[ ou ] |, ! b1 vl 1w
P 0 0O E 0 00 E 2 0 0 i 2 00 04
v : 1 : 1 ; Wa
3 0 00 E 0 3 0 E 0 2 0 E 0 00 O
ow 1 E :, 1 E Us
oz _ 00 2 E 0 00 i 0 0 2 E 000 0
ou 9 | | 1 ! 1 ws
—+ — =00 - —-= ' -
dy ox 000 V2 i 2 2 0 ! 0 2 0 o
v aw 1 1| 11 "
—+ — - \ = - ==
dz 9y 0 2 0 ! 00 2 E 0 2 2 000 v7
du Iw 1 :‘ v 1 1 i 1 Wq
27| 2001000073 0300
Us
Usg
s
Hence, the strains are constant for any nodal point displacements, which means that the element
can represent only constant strain conditions.

The process of collapsing an element side, or in three-dimensional analysis a number
of element sides, may directly yield a desired element, but when higher-order two- or
three-dimensional elements are employed, some special considerations may be necessary
regarding the interpolation functions used. Specifically, when the lower-order elements
displayed in Fig. 5.7 are employed, spatially isotropic triangular and wedge elements are
automatically generated, but this is not necessarily the case when using higher-order ele-
ments.

As an example, we consider the six-node triangular two-dimensional element obtained
by collapsing one side of an eight-node element as shown in Fig. 5.8. If the triangular
element has sides of equal length, we may want the element to be spatially isotropic; i.e.,

A s
A
2 K 125
8
6 8L ., => /6 \ > r
3 7 4 L3 14N\
Square element Equilateral triangle

Figure 5.8 Collapsing an eight-node element into a triangle
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we may wish the internal element displacements u and v to vary in the same manner for each
corner nodal displacement and each midside nodal displacement, respectively. However,
the interpolation functions that are generated for the triangle when the side 1-2-5 of the
square is simply collapsed do not fulfill the requirement that we should be able to change
the numbering of the vertices without a change in the displacement assumptions. In order
to fulfill this requirement, corrections need be applied to the interpolation functions of the
nodes 3, 4, and 7 to obtain the final interpolations 2} of the triangular element (see
Exercise 5.25),

Rt =301 +s) —30 -5

BE=31-nN1-9 -0 -1 - -1 -r)(1 — 9 + A

hE=51+nN1 -5 —-50-r)10 -9 -1 -1+ 7 + An
F=31 =531 -1 (5.36)
F=30-r)(1 —s) — 2Ah
§=301 -0+

N

where we added the appropriate interpolations given in Fig. 5.4 and

(-0 - )

Ah = 3

(5.37)

Thus, to generate higher-order triangular elements by collapsing sides of square elements,
it may be necessary to apply a correction to the interpolation functions used.

Triangular Elements in Fracture Mechanics

In the preceding considerations, we assumed that a spatially isotropic element was desirable
because the element was to be employed in a finite element assemblage used to predict a
somewhat homogeneous stress field. However, in some cases, very specific stress variations
are to be predicted, and in such analyses a spatially nonisotropic element may be more
effective. One area of analysis in which specific spatially nonisotropic elements are em-
ployed is the field of fracture mechanics. Here it is known that specific stress singularities
exist at crack tips, and for the calculation of stress intensity factors or limit loads, the use
of finite elements that contain the required stress singularities can be effective. Various
elements of this sort have been designed, but very simple and attractive elements can be
obtained by distorting the higher-order isoparametric elements (see R. D. Henshell and
K. G. Shaw [A] and R. S. Barsoum [A, B]). Figure 5.9 shows two-dimensional isoparamet-
ric elements that have been employed with much success in linear and nonlinear fracture
mechanics because they contain the 1/ VR and 1/R strain singularities, respectively. We
should note that these elements have the interpolation functions given in (5.36) but with
Ah = 0. The same node-shifting and side-collapsing procedures can also be employed with
higher-order three-dimensional elements in order to generate the required singularities. We
demonstrate the procedure of node shifting to generate a strain singularity in the following
example.
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s
A y
5
2 1
Shift nodes 5
| and 7 to quarter-
points; collapse
8 side 2-6-3 to
6¢ r one node
A
3 ’ 4
W/

Actual physical space

Natural space
(a) Quarter-point triangular element with 1 /\/_R strain singulerity at node 2-6-3

s
A y

5

Shift nodes 5 1

and 7 to quarter-

Y points; collapse

8 side 2-6-3 but 5

6¢ » r retain three nodes 2,6,3 8
corresponding to

2,6,and 3

Natural space Actual physical space

{b) Quarter-point triangular element with 1/V/R and 1/R strain singularities et nodes 2, 6, and 3

Figure 5.9 Two-dimensional distorted (quarter point) isoparametric elements useful in
fracture mechanics. Strain singularities are within the element for any angle 8. {Note that in
(a) the one node (2-6-3) has two degrees of freedom, and that in (b) nodes 2, 3, and 6 each
have two degrees of freedom.]

EXAMPLE 5.17: Consider the three-node truss element in Fig. E5.17. Show that when node
3 is specified to be at the quarter-point, the strain has a singularity of 1/ Vx at node 1.

-
1 3 1 3
€

X
L

2 2
-» X 1
r=+1 I: ~I4 J

L/4

Natural space

3L/4

Actual physical space

Figure E5.17 Quarter-point one-dimensional element
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We have already considered a three-node truss in Example 5.2. Proceeding as before, we

now have
r L
=—(1 4L+ (1 —rd)=
x 2(1 nL+d-r )4
L
or x = Z(l + r)? (a)
L
Hence, J = [5 + %L]

and the strain-displacement matrix is [using (b) in Example 5.2]

) b)) ]

To show the 1/ Vix singularity we need to express r in terms of x. Using (a), we have

r L

Substituting this value for r into (b), we obtain

o[- 2r) -5 (-

Hence at x = 0 the quarter-point element in Fig. E5.17 has a strain singularity of order 1/V/x.

Triangular Elements by Area Coordinates

Although the procedure of distorting a rectangular isoparametric element to generate a
triangular element can be effective in some cases as discussed above, triangular elements
(and in particular spatially isotropic elements) can be constructed directly by using area
coordinates. For the triangle in Fig. 5.10, the position of a typical interior point P with
coordinates x and y is defined by the area coordinates

=3 Ly=— (5.38)

YA

(x1l Y1)

r=1

Cartesian coordinates x (0,0 (1,0 r
Isoparametric coordinates

Figure 5.10 Description of three-node triangle
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where the areas A;,i = 1,2, 3, are defined in the figure and A is the total area of the triangle.
Thus, we also have

L[ + L2 + L3 =1 (539)
Since element strains are obtained by taking derivatives with respect to the Cartesian

coordinates, we need a relation that gives the area coordinates in terms of the coordinates
x and y. Here we have

X = L|)C| + Lz)Cz + L3)C3 (540)
y=Liyi+ L:y: + Lyy, (5.41)

because these relations hold at points 1, 2, and 3 and x and y vary linearly in between. Using
(5.39) to (5.41), we have

1 1 1 1 L,
x|=1xi x2 x| L (5.42)
y » ¥ ¥ ]LLs
. . 1 .
which gives L= 74 (@ + bix + ciy); =1,2,3
where 2A =1y + Xays + Xayr — yixa — X3 — yaxy
ay = X2y3 — X3z, az = X3y1 =~ X1 Y3, as = X1y2 — X2 & 43)
by =y, — y3 by =y, — y; by=y =y
Cp = X3 — X2} C2 = X1 — X3, €3 = X2 — X3

As must have been expected, these L; are equal to the interpolation functions of a constant
strain triangle. Thus, in summary we have for the three-node triangular element in
Fig. 5.10,

x
s (5.44)
v = 2 hv;; y

3
2 h,-x.-
i=1
3
2 hi y:
i=1
where h; = L;, i = 1, 2, 3, and the h; are functions of the coordinates x and y.
Using the relations in (5.44), the various finite element matrices of (5.27) to (5.35) can
be directly evaluated. However, just as in the formulation of the quadrilateral elements
(see Section 5.3.1), in practice, it is frequently expedient to use a natural coordinate space

in order to describe the element coordinates and displacements. Using the natural coordi-
nate system shown in Fig. 5.10, we have

hl=l—r—s; h2=r; h3=s (5-45)

and the evaluation of the element matrices now involves a Jacobian transformation. Further-
more, all integrations are carried out over the natural coordinates; i.e., the » integrations go
from O to 1 and the s integrations go from 0 to (1 — r).
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EXAMPLE 5.18: Using the isoparametric natural coordinate system in Fig. 5.10, establish the
displacement and strain-displacement interpolation matrices of a three-node triangular element
with
)C1=0; JC2=4; )C3=l
n=0 y2=0; =3
In this case we have, using (5.44),

x=4r + s
y = 3s
Hence, using (5.23), = [‘: g]
; -2 92
an dx 12]-1 4]ar
It follows that
H=[(l_r_S) 0 o 0:|s 0]
0 (I-r=9 1 07r 105
[3 01 3 0t00
and 12 0 -3 :. 0 -1 50 *
-3 -3 1 -1 3 140

By analogy to the formulation of higher-order quadrilateral elements, we can also
directly formulate higher-order triangular elements. Using the natural coordinate system in
Fig. 5.10, which reduces to

Li=1-r—3s L,=r Ly=ys (5.46)
where the L; are the area coordinates of the “unit triangle,” the interpolation functions of
a 3 to 6 variable-number-nodes element are given in Fig. 5.11. These functions are con-
structed in the usual way, namely, 4, must be unity at node i and zero at all other nodes (see

Example 5.1). The interpolation functions of still higher-order triangular elements are
obtained in a similar manner. Then the “cubic bubble function” L,L,L, is also employed.

Using this approach we can now also directly construct the interpolation functions of
three-dimensional tetrahedral elements. First, we note that in analogy to (5.46) we now
employ volume coordinates

Li=1l~-r—s—-u L,=r
L3=S; L4=t

where we may check that L, + L, + Ly + L, = 1. The L, in (5.47) are the interpolation
functions of the four-node element in Fig. 5.12 in its natural space. The interpolation

(5.47)

2]t is interesting to note that the functions of the six-node triangle in Fig. 5.11 are exactly those given in
(5.36), provided the variables r and s in Fig. 5.11 are replaced by (1 + r)(1 — s) and (1 + s), respectively, in
order to account for the different natural coordinate systems. Hence, the correction Ah in (5.36) can be evaluated
from the functions in Fig. 5.11.
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Include only if node i is defined

i=4 i=5 i=6
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{b) Interpolation functions

Figure 5.11 Interpolation functions of three to six variable-number-nodes two-dimensional
triangle

Figure 5.12 Natural coordinate system
of tetrahedral element
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(a) Coordinate system and nodal points

Include only if node i is defined

i=6 i=6 i=7 i=8 i=9
m=|1-r-s-t —%hs '%’h
hy= {r ~3hs -3he -1hg
ha= | 3he | -3 L)
ha= |t -1hg -3 ho

1
-3 Mo

hs= |4r{l-r-s-1
hg = | 4rs
hy= |4s{(1-r-s-1)
hg= | 4rt
hg= | 4st

ho= [4t(1~r-s-1)

(b) Interpolation functions

Figure 5.13 Interpolation functions of four to ten variable-number-nodes three-

dimensional tetrahedral element

375

functions of a 4 to 10 three-dimensional variable-number-nodes element are given in

Fig. 5.13.

To evaluate the element matrices, it is necessary to include the Jacobian transforma-
tion as given in (5.24) and to perform the r integrations from O to 1, the s integrations from
Oto (1 — r), and the ¢ integrations from 0 to (1 — r — s). As for the quadrilateral elements,
these integrations are carried out effectively in general analysis using numerical integration,
but the integration rules employed are different from those used for quadrilateral elements

(see Section 5.5.4).
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EXAMPLE 5.19: The triangular element shown in Fig. E5.19 is subjected to the body force
vector £2 per unit volume. Calculate the consistent nodal point load vector.

3
TR B
5 cm fy 2