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What’s SOC?

The second-order cone (SOC) in Rn, also called Lorentz cone, of
dimension n is defined to be

Ln
+ = {(x1, x̄) ∈ R× Rn−1 : ‖x̄‖ ≤ x1},

where ‖ · ‖ denotes the Euclidean norm.

Properties:

Ln
+ is a convex set in Rn.

Ln
+ is self-dual, i.e (Ln

+)∗ = Ln
+, where

(Ln
+)∗ = {d ∈ R× Rn−1 : z>d ≥ 0 ∀z ∈ Ln

+}.

Ln
++ = {(x1, x̄) ∈ R× Rn−1 : ‖x̄‖ < x1} is the interior of the SOC

and the set ∂Ln
+ = {x ∈ Ln

+ : ‖x̄‖ = x1} denotes its boundary.

If n = 1, let Ln
+ denote the set of nonnegative reals R+.
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What’s SOC?

L3
+ = {(x1, x2, x3) ∈ R× R2 :

√
x2

2 + x2
3 ≤ x1}
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What’s SOCP?

The second-order cone programming (SOCP) problem and its dual
are:

min c>1 x1 + . . .+ c>r xr
s.t A1x1 + . . .+ Ar xr = b

xi ∈ Lni , i = 1, . . . , r

max b>y
s.t A>i y + si = ci

si ∈ Lni , i = 1, . . . , r

where Ai ∈ Rm×ni .

Let us express the primal and dual problems as

min c>x
s.t Ax = b

x ∈ K

max b>y
s.t A>y + s = c

s ∈ K

where A = (A1, . . . ,Ar ) ∈ Rm×n and K = Ln1 × . . .× Lnr .
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KKT conditions and nonlinear SOCP

Under some assumptions (Slater-type constraint qualification), the
solutions for the primal-dual SOCP problems satisfy the KKT
conditions

A>y + s = c
Ax = b

xi , si ∈ Ln
+, x>i si = 0, i = 1, . . . , r .

Nonlinear second-order cone program

min f (x) s.t. Ax = b, x ∈ K,

where f : Rn → R is a proper closed convex function (possibly
nonsmooth).
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Why study SOCP ?

This problem has wide applications, e.g., Robust linear
programming, filter design, structural optimization, support
vector machines under uncertainy, etc. (Lobo, Vandenberghe,
Boyd, Lebret, 1998)

It includes a large class of quadratically constrained problems
and minimization of sum of Euclidean norms as special cases.

It also includes as a special case the well-known linear
programming (LP): LP⊂SOCP

Difficulty: K is closed and convex, but non-polyhedral.
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Relation to semidefinite programming (SDP)

Associated with each vector x = (x1, x̄) ∈ R× Rn−1 there is an arrow
matrix defined as:

Arw(x) =

(
x1 x̄>

x̄ x1I

)
.

Properties:

Arw(x) is positive semidefinite if and only if x ∈ Ln
+.

Arw(x) � 0 iff either x = 0 or x1 > 0 and the Schur complement
x1 − x̄>(x1I)−1x̄ ≥ 0.
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Jordan product

Jordan product: For any x = (x1, x̄), y = (y1, ȳ) ∈ R× Rn−1:

x ◦ y = (x>y , x1ȳ + y1x̄).

It is easy to verify that

x ◦ y = Arw(x)y = Arw(y)x = y ◦ x .

Properties:

The Jordan product is commutative but is not associative.

e ◦ x = x with e = (1,0), for all x ∈ Rn.

(x + y) ◦ z = x ◦ z + y ◦ z, for all x , y , z ∈ Rn.

Ln
+ is not closed under the Jordan product.

For any z ∈ Rn one has z2 = z ◦ z ∈ Ln
+.
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Spectral decomposition

Quadratic identity for x :

x2 − 2x1x + (x2
1 − ‖x̄‖2)e = 0.

Characteristic polynomial of x :

p(λ, x) = λ2 − 2x1λ+ (x2
1 − ‖x̄‖2).

Roots of characteristic polynomial of x(eigenvalues):

λ1(x) = x1 − ‖x̄‖, λ2(x) = x1 + ‖x̄‖.

Spectral factorization: x ∈ Rm can be decomposed as (x̄ 6= 0)

x =

(
x1
x̄

)
= (x1 − ‖x̄‖)

1
2

(
1
− x̄
‖x̄‖

)
+ (x1 + ‖x̄‖)1

2

(
1
x̄
‖x̄‖

)
.
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Spectral decomposition

Case x̄ = 0:

u1(x) =
1
2

(
1
−w

)
, u2(x) =

1
2

(
1
w

)
, with w ∈ Rn−1 s.t. ‖w‖ = 1.

Properties:

If x̄ 6= 0, the decomposition is unique.

u1(x) ◦ u2(x) = 0.

ui (x) ◦ ui (x) = ui (x) for i = 1,2.

x ∈ Ln
+ (resp. x ∈ Ln

++) if and only if λ1(x), λ2(x) ≥ 0 (resp. > 0).

Trace and determinant of x :

tr(x) = λ1(x) + λ2(x) = 2x1,

det(x) = λ1(x)λ2(x) = x2
1 − ‖x̄‖2.
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The SOC-functions

For any function g : R→ R, we define a corresponding function on Rn

associated with SOC by

gsoc(x) = g(λ1(x))u1(x) + g(λ2(x))u2(x), ∀x = (x1, x̄) ∈ R× Rn−1.

If g is defined only on a subset of R, then gsoc is defined on the
corresponding subset of Rn.

Example

g1(t) = − ln(t), t ∈ R++ ⇒ gsoc
1 (x) = − ln(λ1)u1 − ln(λ2)u2, x ∈ Ln

++.
= − ln(x), x ∈ Ln

++

g2(t) = t ln(t), t ∈ R+ ⇒ gsoc
2 (x) = λ1 ln(λ1)u1 + λ2 ln(λ2)u2, x ∈ Ln

+

= x ◦ ln(x), x ∈ Ln
+

g3(t) = exp(t), t ∈ R ⇒ gsoc
3 (x) = exp(λ1)u1 + exp(λ2)u2, x ∈ Rn.

g4(t) = t−1, t ∈ R++ ⇒ gsoc
4 (x) = λ−1

1 u1 + λ−1
2 u2 = x−1, x ∈ Ln

++.
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Known results about gsoc

(a) gsoc is continuous iff g is continuous.

(b) gsoc is continuously differentiable iff g is continuously
differentiable.

(c) gsoc is directionally differentiable iff g is directionally
differentiable.

(d) gsoc is Fréchet-differentiable iff g is Fréchet-differentiable.

(e) gsoc is Lipschitz continuous with constant κ iff g is Lipschitz
continuous with constant κ.

J.S Chen, X. Chen, P. Teng,
Analysis of nonsmooth vector-valued functions associated with
second-order cones,
Math. Program., Ser. B 101: 95Ű117 (2004).
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The matrix-valued functions

Let Sn be the space of n × n real symmetric matrices. For any
X ∈ Sn, its eigenvalues λ1, . . . , λn are real and admits a spectral
decomposition:

X = P

 λ1
. . .

λn

P>,

where P is orthogonal (i.e., P>P = I). Then, for any function
g : R→ R, we define a corresponding matrix-valued function
gmat : Sn → Sn by

gmat(X ) = P

 g(λ1)
. . .

g(λn)

P>.
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Parallel results about gmat

(a) gmat is continuous iff g is continuous.

(b) gmat is continuously differentiable iff g is continuously
differentiable.

(c) gmat is directionally differentiable iff g is directionally
differentiable.

(d) gmat is Fréchet-differentiable iff g is Fréchet-differentiable.

(e) gmat is Lipschitz continuous with constant κ iff g is Lipschitz
continuous with constant κ.
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A bridge from gmat to gsoc

For any x = (x1, x̄) ∈ R× Rn, let λ1, λ2 be its spectral values, then

1 For any t ∈ R, the matrix Arw(x) + tMx̄ has eigenvalues λ1, λ2
and x1 + t of multiplicity n − 2, where

Mx̄ =

(
0 0
0 I − x̄ x̄>

‖x̄‖2

)
.

2 For any g : R→ R and t ∈ R, we have

gsoc(x) = gmat (Arw(x) + tMx̄ ) e,

where e = (1,0, . . . ,0)> ∈ Rn.
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Spectrally defined function

For any function g : R→ R, we define a corresponding spectrally
defined function Ψg : Rn → R by:

Ψg(x) = tr(gsoc(x)) = g(λ1(x)) + g(λ2(x)).

Example (Log-barrier)

g1(t) = − ln(t), t ∈ R++ ⇒ Ψg1 (x) = − ln(λ1(x))− ln(λ2(x))
= − ln(det(x)), x ∈ Ln

++

Example

g2(t) = t ln(t), t ∈ R+ ⇒ Ψg2 (x) = λ1 ln(λ1) + λ2 ln(λ2), x ∈ Ln
+

= tr(x ◦ ln(x)), x ∈ Ln
+.
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Properties:

The real-valued function Ψg(x) = − ln(det(x)) is convex on Ln
++.

The gradient of Ψg(x) is

∇Ψg(x) = −2x−1.

The Hessian of Ψg(x) is

∇2Ψg(x) = 2(Qx )−1 = 2Qx−1 =
2

det2(x)

(
‖x‖2 −2x1x̄>

−2x1x̄ det(x)I + 2x̄ x̄>

)
.

Here,

Qx =

(
‖x‖2 2x1x̄>

2x1x̄ det(x)I + 2x̄ x̄>

)
.

The real-valued function Ψg(x) = −tr(x−1) = tr(x)
det(x) is convex on

Ln
++.
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Our Problem SOCP

We consider the following convex second-order cone programming

(SOCP) f∗ = min
x∈Rn

f (x); Bx = d, w j (x) = Ajx + bj ∈ Lmj
+ , j = 1, . . . , J

where

Aj ∈ Rmj×n full rank, bj ∈ Rmj , j = 1, . . . , J

B ∈ Rr×n full rank with r ≤ n, d ∈ Rr

f : Rn → R convex (possibly nonsmooth) and defined
everywhere

Relative interior of the feasible set:

C = {x ∈ Rn : Bx = d, w j (x) ∈ Lmj
++, j = 1, . . . , J}
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Algorithm with Bregman distance

Step 0: Start with x0 ∈ C. Set k = 0.

Step 1: Given xk ∈ C, and γk > 0, find xk+1 solution of

min
x
{f (x) + γk

J∑
j=1

Dψ(w j (x),w j (xk )) ; Bx = d}.

(with Dψ(x , y) = ψ(x)− ψ(y)− 〈∇ψ(y), x − y〉)

Step 2: If xk+1 satisfies a given criterium (KKT, etc.), then stop.

Step 3: Replace k by k + 1 and go to step 1.
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Assumptions and Strategy

Assumptions

(A1) f∗ > −∞

(A2) Slater’s condition: dom f ∩ C 6= ∅.

Strategy
Introduce the induced norm:

‖u‖M := (u,u)
1
2
M

where
(u, v)M = 〈A>MAu, v〉,

and M = Diag(M1, . . . ,MJ) a block diagonal matrix with M j ∈ Smj
++ for

j = 1, . . . , J and A = (A1; . . . ; AJ) ∈ Rq×n with q =
∑J

j=1 mj .
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Algorithm PAVM

Step 0: Start with x0 ∈ C and M0 ∈ Sq
++ (q =

∑J
j=1 mj ).

Set k = 0.

Step 1: Given xk ∈ C, Mk ∈ Sq
++ and γk > 0,

find xk+1 solution of

min
x
{f (x) +

γk

2
‖x − xk‖2

Mk ; Bx = d}.

Go bundle

Step 2: If xk+1 satisfies a given criterium (KKT, etc.), then stop.

Step 3: Update Mk+1. Replace k by k + 1 and go to step 1.
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Algorithm PAVM

Step 0: Start with x0 ∈ C, g0 ∈ ∂f (x0) and M0 ∈ Sq
++ (q =

∑J
j=1 mj ).

Set k = 0.

Step 1: Given xk ∈ C, gk ∈ ∂f (xk ), Mk ∈ Sq
++ and γk > 0,

find xk+1, gk+1 ∈ Rn and ωk+1 ∈ Rr such that

gk+1 ∈ ∂f (xk+1),

gk+1 + γk A>Mk A(xk+1 − xk ) + B>ωk+1 = 0.

Bxk+1 = d.

(if f is linear then xk+1 = xk + γ−1
k ∆xk )

Step 2: If xk+1 satisfies a given criterium (KKT, etc.), then stop.

Step 3: Update Mk+1. Replace k by k + 1 and go to step 1.
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Hessian Log-barrier function

The Hessian of Ψg :
∇2Ψg(w) = 2(Qw )−1,

where

(Qw )−1 =
1

det2(w)

(
‖w‖2 −2w1w̄>

−2w1w̄ det(w)I + 2w̄w̄>

)

We consider the norm induced by the Hessian of the Log-barrier:

Mk = 2Q−1
w(xk )

= 2diag(Q−1
w1(xk )

, . . . ,Q−1
wJ (xk )

).
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Algorithm PAVM-Hessian

Step 0: Start with x0 ∈ C, g0 ∈ ∂f (x0) and compute Q−1
w(x0)

. Set k = 0.

Step 1: Given xk ∈ C, gk ∈ ∂f (xk ) and γk > 0,
find xk+1, gk+1 ∈ Rn and ωk+1 ∈ Rr such that

gk+1 ∈ ∂f (xk+1),

gk+1 + 2γk A>Q−1
w(xk )

A(xk+1 − xk ) + B>ωk+1 = 0.

Bxk+1 = d.

(if f is linear then xk+1 = xk + γ−1
k ∆xk )

Step 2: If xk+1 satisfies a given criterium (KKT, etc.), then stop.

Step 3: Replace k by k + 1 and go to step 1.
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Interior Point Iterates and Boundedness

Proposition

Suppose that:
γk > γ̄k for every k = 0, 1, . . .

(that is, the “step length” γ−1
k should be small enough) where

γ̄k =

√
2

2
(σmin(A))−1λmax(Qw(xk ))

1/2(‖gk‖+ δk )

Then the sequence {xk} generated by PAVM is contained in C.

Proposition

(i) {f (xk )} converges.

(ii) If X ∗ is nonempty and bounded, then {xk} is bounded.



Second order cone Algebraic properties of SOC Algorithm PAVM-Hessian Application to SVM Numerical Experiences Nonsmooth case: Bundle Method

Interior Point Iterates and Boundedness

Proposition

Suppose that:
γk > γ̄k for every k = 0, 1, . . .

(that is, the “step length” γ−1
k should be small enough) where

γ̄k =

√
2

2
(σmin(A))−1λmax(Qw(xk ))

1/2(‖gk‖+ δk )

Then the sequence {xk} generated by PAVM is contained in C.

Proposition

(i) {f (xk )} converges.

(ii) If X ∗ is nonempty and bounded, then {xk} is bounded.
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Convergence results

KKT conditions:

g + B>ω = A>s, Bx = d, w(x) ∈ K, s ∈ K, w(x) ◦ s = 0,

where K = Lm1
+ × . . .× L

mJ
+ , ω ∈ Rr , g ∈ ∂f (x).

Proposition

Assume that X ∗ is nonempty and bounded. Then any limit point (x̃ , s̃, g̃, ω̃) of
{(xk , sk , gk , ωk )} satisfy:

g̃ + B>ω̃ = A>s̃, Bx̃ = d, w(x̃) ∈ K,

λmax(s̃j ) ≥ 0 and w j (x̃)>s̃j = 0, j = 1, . . . , J,

where the dual sequence {sk+1} defined by

sk+1 := 2γk Q−1
w(xk )

(w(xk )−w(xk+1)).
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Convergence results

KKT conditions:

g + B>ω = A>s, Bx = d, w(x) ∈ K, s ∈ K, w(x) ◦ s = 0,

where K = Lm1
+ × . . .× L

mJ
+ , ω ∈ Rr , g ∈ ∂f (x).

A complete different approach based on recession analysis leads to a
fully convergence result for the linear SOCP.

Proposition

Assume that f is linear and that X ∗ is nonempty and bounded. If the
following inclusion holds for each j = 1, . . . , J

Aj (Ker B) ⊇ Lmj
+ ,

then s̃ ∈ K. In consequence any limit point of {xk} satisfies the KKT
conditions.
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Motivation:Example

Suppose we have 50 photographs of elephants and 50 photos of
tigers.

We digitize them into 100 × 100 pixel images, so we have x ∈ Rn

where n = 10000.

Now, given a new (different) photograph we want to answer the
question: is it an elephant or a tiger?
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Classification Problem

A+ A−

Main goal:

Predict the unseen class label for new data

Find a function h : Rn → R by learning from data

h(x) > 0⇒ x ∈ A+ and h(x) < 0⇒ x ∈ A−

The simplest function is linear: h(x) = w>x − b.
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Maximizing the Margin between Bounding Planes

A+
A−

w x−b=1

w x−b=−1

T

T

2/||w||

optimal hyperplane

Margin: Distance between hyperplanes defined by support vectors
{xi : |w>xi − b| = 1}.



Second order cone Algebraic properties of SOC Algorithm PAVM-Hessian Application to SVM Numerical Experiences Nonsmooth case: Bundle Method

Distance between hyperplanes

Distance of a point x to hyperplane H(w ,b):

d(w ,b; x) =
|w>x − b|
‖w‖

.

The margin is given by:

ρ(w ,b) = min
xi :yi =−1

d(w ,b; xi ) + min
xi :yi =1

d(w ,b; xi )

= min
xi :yi =−1

|w>xi − b|
‖w‖

+ min
xi :yi =1

|w>xi − b|
‖w‖

=
1
‖w‖

(
min

xi :yi =−1
|w>xi − b|+ min

xi :yi =1
|w>xi − b|

)
=

2
‖w‖

.
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Classification under certainty (Linearly separable)

Let us consider a training dataset

T = {(xi , yi ) : xi ∈ Rn, yi ∈ {−1,1}, i = 1, . . . ,m}.

xi ∈ A+ ⇔ yi = 1 & xi ∈ A− ⇔ yi = −1.

Optimal hyperplane H(w ,b):

min
w,b∈Rn+1

‖w‖

s.t. yi (w>xi − b) ≥ 1, i = 1, . . . ,m.
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Classification under certainty (Linearly separable)

Let us consider a training dataset

T = {(xi , yi ) : xi ∈ Rn, yi ∈ {−1,1}, i = 1, . . . ,m}.

xi ∈ A+ ⇔ yi = 1 & xi ∈ A− ⇔ yi = −1.

Optimal hyperplane H(w ,b):

min
w,b∈Rn+1

1
2‖w‖

2

s.t. yi (w>xi − b) ≥ 1, i = 1, . . . ,m.
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Soft-margin SVM (Nonseparable case)

If data are not linearly separable

Primal problem is infeasible
Dual problem is unbounded above

Introduce the slack variable for each training point

yi (w>xi + b) ≥ 1− ξi , ξi ≥ 0, ∀i = 1, . . . ,m.

An error occurs if ξi > 1 (Misclassified).

The inequality system is always feasible, e.g.

w = 0, b = 0, ξ = 1.
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Soft-margin SVM (Nonseparable case)

If data are not linearly separable

Primal problem is infeasible
Dual problem is unbounded above

Introduce the slack variable for each training point

yi (w>xi + b) ≥ 1− ξi , ξi ≥ 0, ∀i = 1, . . . ,m.

An error occurs if ξi > 1 (Misclassified).

The inequality system is always feasible, e.g.

w = 0, b = 0, ξ = 1.
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Soft-margin SVM (Nonseparable case)
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Soft-margin SVM (Nonseparable case)

Optimal hyperplane H(w ,b):

(QP)

min
w,b∈Rn+1

1
2‖w‖

2 + C
∑m

i=1 ξi

s.t. yi (w>xi + b) ≥ 1− ξi , i = 1, . . . ,m,
ξi ≥ 0, i = 1, . . . ,m.

The parameter C > 0 is the penalty parameter of the error term.

Unconstrained formulation (Nonsmooth SVM):

min
w,b∈Rn+1

1
2
‖w‖2 + C

m∑
i=1

(1− yi (w>xi − b))+,

where (·)+ = max{0, ·}.

Change (QP) into an unscontrained minimization problem.

Reduce (n + m + 1) variables to (n + 1) variables
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Soft-margin SVM (Nonseparable case): Insensitive

Unconstrained insensitive formulation (Nonsmooth SVM):

min
w,b∈Rn+1

1
2
‖w‖2 + C

m∑
i=1

(1− yi (w>xi − b))ε,

where (·)ε = max{ε, ·} with ε > 0 given.
Algorithms for solving nonsmooth problems:

Cutting planes.

Bundle methods.

...

J.F. Bonnans, J.Ch. Gilbert, C. Lemaréchal and C. Sagastizábal,
Numerical Optimization: Theoretical and Practical Aspects,
Universitext, Springer-Verlag, Berlin, 2003.
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Classification under uncertainty

In many classifications tasks the cost of misclassification is different for
each class.

For instance, in case of medical diagnosis of cancer, the cost of
misclassifying a normal patient is far less than that of misclassifying a
cancer patient.

Also, the number of patients with cancer is far less than those who are
normal (training data are highly unbalanced).

Traditional classification methods like SVM do not address these issues
satisfactory.

Hence, this problem is studied in other context.

False positive: Is when there is no disease but the results come back as
positive.
False negative: Is when there actually is disease but the results come back
as negative.
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misclassifying a normal patient is far less than that of misclassifying a
cancer patient.
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Classification under uncertainty

Let X1 and X2 be random vector variables that generate samples of
class A+ and A−, resp.

µi ∈ Rn and Σi ∈ Rn×n mean and covariance matrix of Xi , i = 1, 2.

Goal: To construct a maximum margin linear classifier s.t. false-positive and
false-negative error rates do not exceed η1 ∈ (0, 1] and η2 ∈ (0, 1] (Saketha
PhD thesis, 2007).

Quadratic Chance-constrained programming:

min
w,b

1
2‖w‖

2

Prob{w>X1 − b < 0} ≤ η1,

Prob{w>X2 − b > 0} ≤ η2.

(Require that Xi lies on the correct side with probability greater than 1− ηi ).
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Case: Normal distribution

Assume that Xi are distributed according to a normal distribution, the
above constraints becomes:

sup
Xi∼N (µi ,Σi )

Prob{yi (w>Xi − b) < 0} ≤ ηi , i = 1,2.

Then,

1− ηi ≤ inf
Xi∼N (µi ,Σi )

Prob{yi (w>Xi − b) > 0} = Φ

(
yi (w>Xi − b)√

w>Σiw

)
,

where Φ(u) = 1√
2π

∫ u
−∞ exp(−s2/2)ds.

Since that Φ is monotone increasing:

yi (w>Xi − b) ≥ κi

√
w>Σiw , i = 1,2,

where κi = Φ−1(1− ηi )
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Case: Robust formulation

Assume that only know the mean and covariance matrix of Xi . In this
case, we want to able to classify correctly even for the worst
distribution.

Replacing the probability constraints with their robust counterparts:

(∗) sup
Xi∼(µi ,Σi )

Prob{yi (w>Xi − b) < 0} ≤ ηi , i = 1,2,

where Xi ∼ (µi ,Σi ) denotes a family of distributions which have a
common mean and covariance.

Multivariate Chebyshev-Cantelli inequality transform (∗) to:

yi (w>Xi − b) ≥ κi

√
w>Σiw , i = 1,2,

where κi =
√

1−ηi
ηi

.
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Formulation as a SOCP problem

Quadratic Chance-constrained programming:

min
(w,b)∈Rn+1

1
2‖w‖

2

Prob{w>X1 − b < 0} ≤ η1,
Prob{w>X2 − b > 0} ≤ η2.

As the constraints are positively homogenous, we consider
Prob{yi (w>Xi − b) ≤ 1} ≤ ηi . Hence:
Determinist optimization problem:

(Psvm)

min
(w,b)∈Rn+1

1
2
‖w‖2

w>µ1 − b ≥ 1 + κ1‖S>1 w‖,
b − w>µ2 ≥ 1 + κ2‖S>2 w‖,

where Σi = SiS>i and κi > 0.
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Formulation as a SOCP problem

Quadratic Chance-constrained programming:

min
(w,b)∈Rn+1

1
2‖w‖

2
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As the constraints are positively homogenous, we consider
Prob{yi (w>Xi − b) ≤ 1} ≤ ηi . Hence:
Determinist optimization problem:

(Psvm)

min
(w,b)∈Rn+1

1
2
‖w‖2

w>µ1 − b ≥ 1 + κ1‖S>1 w‖,
b − w>µ2 ≥ 1 + κ2‖S>2 w‖,

where Σi = SiS>i and κi > 0.
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Formulation as a SOCP problem

Quadratic Chance-constrained programming:

min
(w,b)∈Rn+1

1
2‖w‖

2

Prob{w>X1 − b < 0} ≤ η1,
Prob{w>X2 − b > 0} ≤ η2.

Second order cone programming:

min
z∈Rn+1

1
2
‖w‖2; gi (z) = Aiz + di ∈ Ln+1, i = 1,2.

where

A1 =

(
µ>1 −1
κ1S>1 0

)
, A2 =

(
−µ>2 1
κ2S>2 0

)
, d1 = d2 =

(
−1
0

)
.
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Formulation as a SOCP problem

Quadratic Chance-constrained programming:

min
(w,b)∈Rn+1

1
2‖w‖

2

Prob{w>X1 − b < 0} ≤ η1,
Prob{w>X2 − b > 0} ≤ η2.

Linear SOCP problem:

min
(w,b,t)∈Rn+2

t

t ≥ ‖w‖,
w>µ1 − b ≥ 1 + κ1‖S>1 w‖,
b − w>µ2 ≥ 1 + κ2‖S>2 w‖.

where Σi = SiS>i and κi > 0.
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Numerical experience

Dataset: Customers lost.
A portfolio of clients (m = 1248-training data) with n = 19 descriptions of
each one.

The descriptor were divided into four categories:

banking behavior variables: average monthly balances, number of
monthly transactions, ...

socio-demographic variables: age, salary, ...

variables perceptions of service quality: number of complaints, ...

environment variables: antiquity customer, ...

We use the linear classifier.
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Numerical experience (certainty)

Dataset: Customers lost.
A portfolio of clients (m = 1248) with n = 19 descriptions of each one.

Customers Num. training data Num. test data
closed 619 67

not closed 629 71

Customers closed not closed Total Classification
rate

closed 64 3 67 95.5%
not closed 18 53 71 74.7%
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Numerical experience (uncertainty)

Dataset: Customers lost.
A portfolio of clients (m = 1248) with n = 19 descriptions of each one.

Customers Num. training data Num. test data ηi

closed 619 67 0.9
not closed 629 71 0.7

Customers closed not closed Total Classification
rate

closed 44 23 67 65.67%
not closed 11 60 71 84.51%
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Numerical experience (uncertainty)

Dataset: Customers lost.
A portfolio of clients (m = 1248) with n = 19 descriptions of each one.

Customers Num. training data Num. test data ηi

closed 619 67 0.7
not closed 629 71 0.7

Customers closed not closed Total Classification
rate

closed 55 12 67 82.09%
not closed 13 58 71 81.69%
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Numerical experience (uncertainty)

Dataset: Customers lost.
A portfolio of clients (m = 1248) with n = 19 descriptions of each one.

Customers Num. training data Num. test data ηi

closed 619 67 0.5
not closed 629 71 0.7

Customers closed not closed Total Classification
rate

closed 26 41 67 38.81%
not closed 11 60 71 84.51%
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Nonsmooth case: Bundle Method

Let J` = {0,1, . . . , `} ⊂ N be a finite index set.

Bundle: B` = {(y j , f (y j ),g j ) : j ∈ J`} with g j ∈ ∂f (y j ).

Cutting-planes model ϕ`(y) = maxj∈J`{f (y j ) + 〈g j , y − y j〉}.

Replacing f by ϕ` in (prox)

min
y∈Rp
{ϕ`(y) +

1
2
γk‖y − xk‖2

Mk
: By = d}, (∗)

Equivalent problem:

min
(r ,y)∈Rp+1

{r + 1
2γk‖y − xk‖2

Mk
}

s.t . By = d
f (xk )− ej + 〈g j , y − xk 〉 ≤ r , ∀j ∈ J`,

with ej the linearization error at xk .
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Bundle Method

Let J` = {0,1, . . . , `} ⊂ N be a finite index set.

Bundle: B` = {(y j , f (y j ),g j ) : j ∈ J`} with g j ∈ ∂f (y j ).

Cutting-planes model ϕ`(y) = maxj∈J`{f (y j ) + 〈g j , y − y j〉}.
Replacing f by ϕ` in (prox)

min
y∈Rp
{ϕ`(y) +

1
2
γk‖y − xk‖2

Mk
: By = d}.

Dual problem (DP):

min
(α,w)∈R|J`|×Rr

{1
2

∥∥∥∥∥∥B>w −
∑
j∈J`

αjg j

∥∥∥∥∥∥
∗2

Mk

+ γk

∑
j∈J`

αjej}

s.t .
∑
j∈J`

αj = 1, αj ≥ 0, ∀j ∈ J`.
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Bundle PAVM Algorithm

Step 0: Choose parameters tol ≥ 0 and m ∈ (0, 1). Select x0 ∈ C, g0 ∈ ∂f (x0),
M0 ∈ Sq

++ and suitable parameter γ0 > 0. Set y0 = x0, J0 = {0},
e0 = 0, and set the counter ` = 0, k = 0.

Step 1: Find multipliers (αk
j ,w

k ) (j ∈ J`) that solve the dual problem (DP). Set
Ĵ` = {j ∈ J` : αk

j 6= 0}. Calculate

g̃` =
∑
j∈Ĵ`

αk
j g j ;

ε` =
∑
j∈Ĵ`

αk
j ej ; (aggregate error)

δ` = ε` +
1

2γn
‖g̃`‖∗2

Mk
, (predicted decrease).

Step 2: Set y`+1 = xk + γ−1
k (A>Mk A)−1(B>wk − g̃`).
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Bundle PAVM Algorithm

Step 3: IF (Descent test) f (y`+1) ≤ f (xk )−mδ`,
THEN (Serious step)

set xk+1 = y`+1. If xk+1 satisfies a given stopping rule, then stop.
Else, choose g`+1 ∈ ∂f (xk+1).
Linearization error update

ej = ej + f (xk+1)− f (xk )− 〈g j , xk+1 − xk 〉, ∀j ∈ J`,

e`+1 = 0.

Update γk+1 > 0 and Mk+1. Replace k by k + 1.
ELSE (Null step)

choose g`+1 ∈ ∂f (y`+1).
Linearization error update

ej = ej , ∀j ∈ J`,

e`+1 = f (xk )− f (y`+1) + 〈g`+1, y`+1 − xk 〉,

Step 4: J`+1 := Ĵ` ∪ {`+ 1}, increase ` by 1 and go to step 1.
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THE END

THANKS FOR YOUR ATTENTION
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Classification under uncertainty

Theorem (Multivariate Chebyshev Inequality)

Let x be a n-dimensional random variable with mean and covariance
(µ, σ), where σ is a positive semidefinite symmetric matrix. Given
a ∈ Rn, b ∈ R and η ∈ [0,1), the condition

sup
x∼(µ,σ)

Prob{a>x − b ≥ 0} ≤ η

holds if and only if
b − a>µ ≥ κ(η)

√
a>σa,

where κ(η) =
√

1−η
η .
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