MA674 - Análisis Convexo y Dualidad. Semestre otoño 2011

Profesor: Hector Ramirez Auxiliares: Cristopher Hermosilla, David Sossa

Clase Auxiliar 4

18 de abril de 2011

P1. Sea $(X, \|.\|)$ un espacio de Banach y $f \in \Gamma_0(X)$. Denotemos por X^* al dual topológico de X y por $\|.\|_*$ a la norma (sobre X^*) dual de $\|.\|$. Para $x \in \text{dom } f$ y $\epsilon \ge 0$, definimos el ϵ -subdiferencial de f en x como:

$$\partial_{\epsilon} f(x) := \{ s \in X^* | f(y) \ge f(x) + \langle s, y - x \rangle - \epsilon \text{ para todo } y \in X \}.$$

- a) 1) Expresar $\partial_{\epsilon} f(x)$ usando la conjugada de Fenchel f^* de f.
 - 2) Sabiendo que $-f(x) = -f^{**}(x) = \inf_{s \in X^*} \{f^*(s) \langle s, x \rangle\}$, mostrar que $\partial_{\epsilon} f(x) \neq \emptyset$ para todo $\epsilon > 0$.
- b) (Teorema de Bronsted Rockafellar) Dados $x_0 \in \text{dom} f$, $\epsilon > 0$ y $s_0 \in \partial_{\epsilon} f(x_0)$, mostrar que existe $x_{\epsilon} \in \partial_{\epsilon} f(x_0)$ $\operatorname{dom} f, s_{\epsilon} \in \partial f(x_{\epsilon})$ tales que:

(i)
$$||x_{\epsilon} - x_0|| \le \sqrt{\epsilon};$$

(ii) $||s_{\epsilon} - s_0||_* \le \sqrt{\epsilon}.$

$$(ii)$$
 $||s_{\epsilon}-s_0||_* < \sqrt{\epsilon}$

- c) Del anterior punto, deducir que $dom(\partial f)$ es denso en dom f.
- **P2.** Sea $(X, Y, \langle ., . \rangle)$ una dualidad entre e.v.t.l.c. Dadas dos funciones convexas $f, g : \to \overline{\mathbb{R}}$, se define la inf-convolución de f y g mediante

$$(f * g)(x) := \inf\{f(x_1) + g(x_2) | x_1 + x_2 = x\}.$$

- a) Pruebe que f * g es convexa, con dom(f * g) = dom(f) + dom(g).
- b) Sea $y \in Y$, muestre que $(f * g)^*(y) = f^*(y) + g^*(y)$.
- c) Pruebe que si $\overline{x}_1 \in \text{dom}(f)$ y $\overline{x}_2 \in \text{dom}(g)$ son tales que $(f * g)(\overline{x}_1 + \overline{x}_2) = f(\overline{x}_1) + g(\overline{x}_2)$, entonces $\partial (f * g)(\overline{x}_1 + \overline{x}_2) = \partial f(\overline{x}_1) \cap \partial g(\overline{x}_2).$
- d) (Efecto Reguralizante) Suponga que \bar{x}_i son los considerados en la parte anterior. Asumiendo que f*g es subdiferenciable en $\overline{x} = \overline{x}_1 + \overline{x}_2$, muestre que f * g es Gâteaux-diferenciable en \overline{x} si g lo es en \overline{x}_2 con

$$\nabla (f * g)(\overline{x}) = \nabla g(\overline{x}_2).$$

Muestre que si además $(X, \|.\|)$ es un e.v.n. y g es Fréchet-diferenciable en \overline{x}_2 , entonces f * g es Fréchetdiferenciable en \overline{x} .