Control de Teoría de la Medida (con Bosquejo de Solución)

- 1. Sea (X, d) un espacio métrico y (X, \mathcal{B}, μ) un Espacio de Medida sobre los Borelianos. Si μ no es finita, asuma que existen dos secuencias crecientes a X, $\{K_n\}_{n\in\mathbb{N}}$ y $\{X_n\}_{n\in\mathbb{N}}$ tales que:
 - $\forall n \in \mathbb{N}, K_n \text{ es compacto}, \mu(K_n) < \infty$
 - $\forall n \in \mathbb{N}, X_n \text{ es abierto, } \mu(X_n) < \infty$

Pruebe que dado $B \in \mathcal{B}$:

a) Si μ es finita entonces $\forall \epsilon > 0$ existe un cerrado V y un abierto U tal que $V \subseteq B \subseteq U$ y $\mu(U \setminus V) < \epsilon$.

HINT: Muestre que el conjunto de elementos en \mathcal{B} que cumplen lo anterior es una σ -álgebra.

b) Si $\mu(B)<\infty$ entonces $\forall \epsilon>0$ existe un compacto K y un abierto U tal que $K\subseteq B\subseteq U$ y $\mu(U\backslash K)<\epsilon$

HINT: Considere las medidas traza sobre X_n y K_n y considere $\mu(U \backslash B)$ y $\mu(B \backslash K)$ por separado.

c) Se dice que μ es regular si para cualquier $B \in \mathcal{B}$:

$$\mu(B) = \sup \{ \mu(K)/K \subseteq B, K \text{ compacto} \} = \inf \{ \mu(U)/B \subseteq U, U \text{ abierto} \}.$$

Pruebe que μ es regular

Solución:

a) Sean \mathcal{T} los abiertos de la topología inducida por d. Definamos:

$$\mathcal{A} = \{ B \in \mathcal{B} / \forall \epsilon > 0, \ \exists U, V \in \mathcal{T}, V^c \subseteq B \subseteq U, \ \mu(U \cap V) < \epsilon \}.$$

Como X y ϕ son abiertos y $\phi^c \subseteq X \subseteq X$ con $\mu(X \cap \phi) = 0$ se cumple que $X \in \mathcal{A}$.

Dado $B \in \mathcal{A}$ y $\epsilon > 0$ se tienen, $U, V \in \mathcal{T}, V^c \subseteq B \subseteq U$ y $\mu(U \cap V) < \epsilon$. Por definición se tiene que $U^c \subseteq B^c \subseteq V$. Es decir, $B^c \in \mathcal{A}$.

Sea $\{B_n\}_{n\in\mathbb{N}}\subseteq\mathcal{A}$. Entonces por definición, dado $\epsilon>0$ y $n\in\mathbb{N}$, tenemos $U_n,V_n\in\mathcal{T}$ tales que $V_n^c\subseteq B_n\subseteq U_n$ y $\mu(U_n\cap V_n)<\frac{\epsilon}{2^{n+1}}$.

Definamos $U=\bigcup_{n\in\mathbb{N}}U_n$ y $V^c=\bigcup_{n\in\mathbb{N}}V_n^c$. Tenemos que $U\in\mathcal{T}$ y $V^c\subseteq\bigcup_{n\in\mathbb{N}}B_n\subseteq U$.

El problema es que V no es necesariamente abierto. Dado $N \in \mathbb{N}$ definamos el conjunto $W_N^c = \bigcup_{n \leq N} V_n^c$, por construcción $W_N \in \mathcal{T}$ y

 $W_N^c \subseteq V^c$. Como $\{W_N^c\}_{N \in \mathbb{N}}$ es una familia creciente a V^c para N suficientemente grande $\mu(V^c \cap W_N) < \frac{\epsilon}{2}$. Entonces:

$$\mu(U \cap W_N) = \mu(U \cap V) + \mu(V^c \cap W_N) \le \mu\left(\bigcup_{n \in \mathbb{N}} U_n \cap V_n\right) + \frac{\epsilon}{2},$$

$$\le \sum_{n \in \mathbb{N}} \frac{\epsilon}{2^{n+1}} + \frac{\epsilon}{2} = \epsilon.$$

Por tanto $\bigcup_{n\in\mathbb{N}} B_n \in \mathcal{A}$.

Dado $B \in \mathcal{T}$ y $n \in \mathbb{N}$ definamos $V_n^c = \{x \in X/d(x, B^c) \ge \frac{1}{n}\}$ que es un cerrado. Como B^c es cerrado entonces para cualquier $n \in \mathbb{N}$, $V_n^c \subseteq B$ y $\{V_n^c\}_{n \in \mathbb{N}}$ es una familia que crece a B.

Entonces para cualquier $\epsilon > 0$ existe $n \in \mathbb{N}$ tal que $V_n^c \subseteq B \subseteq B$ y $\mu(B \cap V_n) < \epsilon$ y por tanto $B \in \mathcal{A}$.

Hemos probado que $\mathcal{T} \subseteq \mathcal{A} \subseteq \mathcal{B}$ y por tanto $\mathcal{B} = \sigma(\mathcal{T}) \subseteq \mathcal{A} \subseteq \mathcal{B}$.

b) Sea $\epsilon > 0$.

Construcción de K: Sabemos que $\{B \cap K_n\}_{n \in \mathbb{N}}$ es una familia creciente a B y por tanto existe $n \in \mathbb{N}$ tal que $\mu(B) - \mu(B \cap K_n) < \frac{\epsilon}{4}$.

Por el resultado anterior para μ_{K_n} (finita por definición) se tienen $V^c \subseteq B \subseteq U$ tales que $\mu_{K_n}(B \cap V) \leq \mu_{K_n}(U \cap V) < \frac{\epsilon}{4}$.

Siendo K_n compacto y V^c cerrado entonces $K=K_n\cap V^c$ es compacto. Por construcción:

$$\mu(B\backslash K) = \mu(B) - \mu(B\cap K_n) + \mu(B\cap K_n) - \mu(K),$$

$$\leq \frac{\epsilon}{4} + \mu_{K_n}(B\cap V) \leq \frac{\epsilon}{4} + \frac{\epsilon}{4} = \frac{\epsilon}{2}.$$

Construcción de U: Para cualquier $n \in \mathbb{N}$ existen $U_n, V_n \in \mathcal{T}$ tales que $V_n^c \subseteq B \subseteq U_n$ y $\mu_{X_n}(U_n \setminus B) \le \mu_{X_n}(U_n \cap V_n) < \frac{\epsilon}{2^{n+1}}$.

Entonces $B \subseteq \bigcup_{n \in \mathbb{N}} U_n := U$ y:

$$\mu(U \backslash B) \le \sum_{n \in \mathbb{N}} \mu(U_n \cap X_n \backslash B) = \sum_{n \in \mathbb{N}} \mu_{X_n}(U_n \backslash B) < \frac{\epsilon}{2}.$$

Entonces tenemos que $K \subseteq B \subseteq U$ con U abierto y K compacto y tales que $\mu(U \backslash K) = \mu(U \backslash B) + \mu(B \backslash K) = \epsilon$.

c) Por simple inclusión y monotonía de la medida siempre se tiene que:

$$\sup\{\mu(K)/K\subseteq B, K \text{ compacto}\} \le \mu(B) \le \inf\{\mu(U)/B\subseteq U, U \text{ abierto}\}.$$

Si $\mu(B) < \infty$ por lo anterior. Dado cualquier $\epsilon > 0$ se tiene que existen K compacto y U abierto tales que $K \subseteq B \subseteq U$ y $\mu(U \setminus K) < \epsilon$. En particular, $\mu(U \setminus B) < \epsilon$ y $\mu(B \setminus K) < \epsilon$.

Es decir, $\forall \epsilon > 0$, $\exists U \in \mathcal{T}$, $B \subseteq U$ tal que $\mu(U) - \epsilon < \mu(B)$.

Que se traduce como $\inf\{\mu(U)/B \subseteq U, U \text{ abierto}\} \le \mu(B)$.

Del mismo modo, $\forall \epsilon > 0$, $\exists K$ compacto, $K \subseteq B$ tal que $\mu(K) + \epsilon > \mu(B)$.

Que se traduce como $\sup\{\mu(K)/K\subseteq B, K \text{ compacto}\} \geq \mu(B)$.

Si $\mu(B) = \infty$ como $\mu(B) \le \inf\{\mu(U)/B \subseteq U, U \text{ abierto}\}\$ se concluye que $\inf\{\mu(U)/B \subseteq U, U \text{ abierto}\}\$ = ∞ .

Para cualquier $n \in \mathbb{N}$ se tiene que $\mu(B \cap X_n) < \infty$ y por tanto:

$$\mu(B \cap X_n) = \sup\{\mu(K)/K \subseteq B \cap X_n, K \text{ compacto}\},\$$

 $\leq \sup\{\mu(K)/K \subseteq B, K \text{ compacto}\}.$

Como $\{B \cap X_n\}_{n \in \mathbb{N}}$ es una familia creciente a B. $\lim_{n \to \infty} \mu(B \cap X_n) = \infty$.

- 2. Sea (X, A) un Espacio de Medida y $\{\mu_n\}_{n\in\mathbb{N}}$ una familia de medidas sobre A. Se define $\mu: A \to \mathbb{R} \cup \{\infty\}$ como $\mu(A) = \sum_{n\in\mathbb{N}} \mu_n(A)$.
 - a) Pruebe que μ es medida.

- b) Pruebe que dada $f \in L^1_\mu$, $f \ge 0$ implica que $\int f \, d\mu = \sum_{n \in \mathbb{N}} \int f \, d\mu_n$. Esto se puede extender al caso en que f no es positiva?.
- c) Si la familia $\{\mu_n\}_{n\in\mathbb{N}}$ es σ -finita es necesariamente μ σ -finita?

Solución:

a) Para cualquier $n \in \mathbb{N}$ y cualquier $A \in \mathcal{A}$ se tiene que $\mu_n(A) \geq 0$ y por tanto $\sum_{n \in \mathbb{N}} \mu_n(A) \geq 0$.

Sea $\{A_m\}_{m\in\mathbb{N}}$ una familia disjunta 2 a 2 en \mathcal{A} . Entonces dado que todos los sumandos son positivos o infinito:

$$\mu(\bigcup_{m\in\mathbb{N}}A_m)=\sum_{n\in\mathbb{N}}\sum_{m\in\mathbb{N}}\mu_n(A_m)=\sum_{m\in\mathbb{N}}\sum_{n\in\mathbb{N}}\mu_n(A_m)=\sum_{m\in\mathbb{N}}\mu(A_m).$$

b) Consideremos $f = \sum_{m=1}^{M} \alpha_m \cdot \mathbb{1}_{A_m}$ con $\{A_1, \dots, A_M\} \subseteq \mathcal{A}$ y $\alpha_m \geq 0$, $m = 1, \dots, M$. Entonces:

$$I_{\mu}(f) = \sum_{m=1}^{M} \alpha_m \cdot \mu(A_m) = \sum_{m=1}^{M} \alpha_m \cdot \sum_{n \in \mathbb{N}} \mu_n(A_m),$$
$$= \sum_{n \in \mathbb{N}} \sum_{m=1}^{M} \alpha_m \cdot \mu_n(A_m) = \sum_{n \in \mathbb{N}} I_{\mu_n}(f).$$

Entonces el resultado es cierto para las funciones simples positivas.

Sea $f \geq 0$ en L^1_{μ} . Sabemos que existe una familia creciente $\{f_m\}_{m \in \mathbb{N}}$ de funciones simples que aproximan a f. Por Fatou Beppo Levi para μ y μ_n y dado que todos los sumandos son finitos y positivos tenemos que:

$$I_{\mu}(f) = \sup_{m \in \mathbb{N}} I_{\mu}(f_m) = \sup_{m \in \mathbb{N}} \sum_{n \in \mathbb{N}} I_{\mu_n}(f_m) = \sup_{m \in \mathbb{N}} \sup_{N \in \mathbb{N}} \sum_{n=1}^{N} I_{\mu_n}(f_m),$$

$$= \sup_{N \in \mathbb{N}} \sup_{m \in \mathbb{N}} \sum_{n=1}^{N} I_{\mu_n}(f_m) = \sup_{N \in \mathbb{N}} \sum_{n=1}^{N} \sup_{m \in \mathbb{N}} I_{\mu_n}(f_m) = \sup_{N \in \mathbb{N}} \sum_{n=1}^{N} I_{\mu_n}(f).$$

Si f no es positiva, pero en L^1_μ , se tiene que $f=f^+-f^-$ con f^+ y f^- son positivas y en L^1_μ para las que se cumple el resultado. Por la linealidad y dado que todas las sumas son finitas y positivas se tiene que:

$$I_{\mu}(f) = I_{\mu}(f^{+}) - I_{\mu}(f^{-}) = \sum_{n \in \mathbb{N}} I_{\mu_{n}}(f^{+}) - \sum_{n \in \mathbb{N}} I_{\mu_{n}}(f^{-}) = \sum_{n \in \mathbb{N}} I_{\mu_{n}}(f^{+} - f^{-}).$$

- c) No es correcto. Por ejemplo sea $X = \{0\}$ y $\mathcal{A} = \{\phi, \{0\}\}$. Para cada $n \in \mathbb{N}$ se define $\mu_n(\phi) = 0$ y $\mu_n(\{0\}) = 1$. Entonces $\mu(\{0\}) = \infty$ y $\mu(\phi) = 0$ que obviamente no es σ -finita.
- 3. Una función $F: \mathbb{R} \to \mathbb{R}$ se dice Stieltjes si es no decreciente y continua por la derecha. Consideramos $(\mathbb{R}, \mathcal{B}_{\mathbb{R}})$ el Espacio de Medida de los Borelianos de \mathbb{R} .
 - a) Sea μ una medida finita sobre $(\mathbb{R}, \mathcal{B}_{\mathbb{R}})$ se define $F_{\mu} : \mathbb{R} \to \mathbb{R}$ como:

$$F_{\mu}(x) = \begin{cases} \mu(]0, x]) & \text{si } x > 0, \\ 0 & \text{si } x = 0, \\ -\mu(]x, 0]) & \text{si } x < 0. \end{cases}$$

Pruebe que F_{μ} es Stieltjes.

b) Se define $S = \{]a,b]/a,b \in \mathbb{R}\}$. Sea $\nu : S \to \mathbb{R}^+$ definida como $\nu_F(]a,b]) = F(b) - F(a)$. Considere \mathcal{E} el conjunto de uniones finitas disjuntas de $S \cup \{]-\infty,b]/b \in \mathbb{R}\} \cup \{]a,\infty[/a \in \mathbb{R}\}$. Pruebe que \mathcal{E} es un álgebra y que existe una única extensión de ν_F a \mathcal{E} que notaremos $\tilde{\nu}_F$.

HINT: Recuerde la construcción de la σ -álgebra producto. Dado $E = \bigcup_{i=1}^{n} [a_i, b_i]$ defina $\tilde{\nu}_F(E) = \sum_{i=1}^{n} \nu_F([a_i, b_i])$.

- c) Argumente que $\tilde{\nu}_F : \mathcal{E} \to \mathbb{R}^+$ tiene una extensión única a $\mathcal{B}_{\mathbb{R}}$. **HINT:** Recuerde el Teorema de la Clase Monótona
- d) Establezca la relación que existe entre las medidas de $\mathcal{B}_{\mathbb{R}}$ y las funciones Stieltjes.

Solución:

a) Si $x \leq 0 \leq y$ se tiene que $F_{\mu}(x) \leq 0 \leq F_{\mu}(y)$.

Si $0 < x \le y$ entonces $[0, x] \subseteq [0, y]$ y por tanto:

$$F_{\mu}(x) = \mu([0, x]) \le \mu([0, y]) = F_{\mu}(y).$$

Si $x \le y < 0$ entonces $[y, 0] \subseteq]x, 0]$ y por tanto:

$$F_{\mu}(x) = -\mu(|x,0|) \le -\mu(|y,0|) = F_{\mu}(y)$$

Esto prueba que F_{μ} es no decreciente.

Sea $x \ge 0$ y $\{x_n\}_{n \in \mathbb{N}}$ secuencia decreciente a x. Entonces $\{]0, x_n]\}_{n \in \mathbb{N}}$ es decreciente a $\{]0, x]\}$ si x > 0 y a ϕ si x = 0. Por lo tanto, $\lim_{n \to \infty} F_{\mu}(x_n) = \lim_{n \to \infty} \mu(]0, x_n]) = \mu(]0, x]) = F_{\mu}(x)$ puesto que $F_{\mu}(0) = 0$.

Sea x < 0 y $\{x_n\}_{n \in \mathbb{N}}$ secuencia decreciente a x. Entonces $\{]x_n, 0]\}_{n \in \mathbb{N}}$ es creciente a $\{]x, 0]\}$ y por lo tanto $\lim_{n \to \infty} F_{\mu}(x_n) = \lim_{n \to \infty} \mu(]x_n, 0]) = \mu(]x, 0]) = F_{\mu}(x)$.

b) Dado que $]-\infty,a]\cup]a,-\infty[=\mathbb{R}\ y\ \phi=]a,a]$ entonces $\{\mathbb{R},\phi\}\subseteq\mathcal{E}.$ Dados $]a,b]\ y\]c,d],\]a,b]\cap]c,d]=]\max\{a,c\},\min\{b,d\}]$ (que es vacío si $\max\{a,c\}>\min\{b,d\})$ por lo que \mathcal{E} es cerrada para intersecciones finitas (inductivamente).

Consideremos $\biguplus_{n=1}^{N}]a_n, b_n] \in \mathcal{E}$ en el caso en que $a_n < b_n$ con n=1,...,N. Al recordenar los intervalos, podemos asumir que $a_1 < a_2 < ... < a_n$ y que $b_n < a_{n+1}$ con n=1,...,N-1.

En este caso es simple observar que:

$$\left(\biguplus_{n=1}^{N}]a_n,b_n]\right)^c=]-\infty,a_1]\cup\bigcup_{n=1}^{N-1}]b_n,a_{n+1}]\cup]b_N,\infty[\in\mathcal{E}.$$

Al combinar la propiedad de cerradura por complemento e intersección finita se concluye que la familia es cerrada para uniones finitas.

Se define
$$\nu_F(]a,b]) = F(b) - F(a)$$
 con $a,b \in \mathbb{R}$ y $\tilde{\nu}_F\left(\biguplus_{n=1}^N]a_n,b_n]\right) = \sum_{n=1}^N \nu_F(]a_n,b_n]).$

Se define $\nu_F(]a,\infty[)=\lim_{b\to\infty}\nu_F(]a,b])$ y $\nu_F(]-\infty,b])=\lim_{a\to\infty}\nu_F(]a,b])$ que podrían ser infinito.

Consideremos una familia $\{]a_n, b_n]\}_{n=1}^N$ tal que $a = a_1 < b_1 < a_2 < b_2 < ... < a_N < b_N = b$. Es decir, $]a,b] = \bigcup_{n=1}^N]a_n, b_n]$. Entonces tendremos que por la propiedad telescópica de la suma:

$$\tilde{\nu}_{F} \left(\biguplus_{n=1}^{N}]a_{n}, b_{n} \right) = \sum_{n=1}^{N} \nu_{F}(]a_{n}, b_{n}]) = \sum_{n=1}^{N} (F(b_{n}) - F(a_{n})),$$

$$= F(b) - F(a) = \nu_{F}(]a, b]).$$

El caso $a = -\infty$ o $b = \infty$ es análogo.

Esto demuestra que $\tilde{\nu}_F$ esta bien definida de manera única y además es una extensión de ν .

c) Por Teorema de la Clase Monótona, siendo $\mathcal E$ un álgebra, la clase monótona generada coincide con la σ -álgebra generada. Como $\bigcup_{n\in\mathbb N}]a,b-\frac{1}{n}]=]a,b[$ y esta familia genera a los abiertos, se concluye que $\mathcal E$ genera $\mathcal B_{\mathbb R}$.

Al tener una fórmula para la unión finita de intervalos se pasa al límite para obtener la extensión al caso numerable.

d) Si consideramos una medida boreliana μ , σ -finita sobre \mathbb{R} , entonces como en la primera parte se puede asociar a una función Stieltjes F_{μ} tal que $F_{\mu}(0)=0$. Toda función de Stieltjes genera una medida σ -finita μ_F sobre los borelianos.