Pauta Auxiliar 5: Análisis Funcional

Profesor: Manuel del Pino Auxiliares: Gonzalo Contador - Felipe Subiabre

P1. a) A es abierto para la topología fuerte de E^* pues lo es para la topología menos fina $\sigma(E^*, E)$, luego por Hahn-Banach aplicado a E^* existe $\xi \in E^{**}$ no nulo y $\alpha \in \mathbb{R}$ tal que

$$\langle \xi, f \rangle \le \alpha \le \langle \xi, g \rangle \ \forall f \in A, g \in B.$$

Notemos que esta desigualdad implica en particular que ξ es acotado en cualquier abierto para $\sigma(E^*, E)$ contenido en A, y luego es continuo para esta topología. Sabemos entonces que existe $x \in E, x \neq 0$ tal que ξ es el funcional de evaluación asociado a x, es decir $\langle \xi, f \rangle = \langle f, x \rangle \ \forall f \in E^*$, con lo que se concluye que

$$\langle f, x \rangle \le \alpha \le \langle g, x \rangle \ \forall f \in A, g \in B.$$

b) Sea $x \notin A + B$. Como para cada $b \in B$ A + b es cerrado y $x \notin A + b$, existe una vecindad convexa V(b) de 0 tal que

$$(x + V(b)) \cap (A + b) = \emptyset.$$

Por compacidad el recubrimiento $\bigcup_{b\in B}b-\frac{1}{2}V(b)$ de B se puede reducir a un cubrimiento

 $\bigcup_{i \in I} b_i - \frac{1}{2}V(b_i), b_i \in B, I \text{ finito. Consideremos la vecindad de 0 } V = \frac{1}{2}\bigcap_{i \in I}V(b_i) \text{ y veamos que } (x+V) \cap (A+B) = \emptyset. \text{ En efecto, si } \exists v \in V \text{ tal que } x+v \in A+B \text{ entonces existen } i \in I, v \in V(b_i), w \in V(b_i) \text{ tal que }$

$$x + \frac{1}{2}v = A + b_i - \frac{1}{2}w.$$

Luego por convexidad de $V(b_i)$, para $z = \frac{1}{2}(v+w) \in V(b_i)$ se tiene $x+z \in A+b_i$, lo que contradice $(x+V(b_i)) \cap (A+b_i) = \emptyset$.

Por lo tanto x+W es vecindad de x contenida en $(A+B)^c$, por lo que A+B es cerrado. Observar que sólo se utilizaron propiedades de espacios vectoriales topológicos localmente convexos y no el hecho particular de estar considerando la topología $\sigma(E^*, E)$.

c) Como $A \cap B \neq \emptyset$ se tiene que $0 \notin A - B$. Por la parte anterior y el hecho de que B es convexo compacto si y sólo si -B lo es, se tiene que A - B es cerrado. Luego existe una vecindad V de 0 para la topología $\sigma(E^*, E)$ que no intersecta a A - B, y se puede tomar convexa (recordar la base de vecindades de la topología débil-*). Separando V y A - B como en la parte a), existen $x \in E$, $\alpha \in \mathbb{R}$ tal que

$$\langle f, x \rangle \leq \alpha \leq \langle g - h, x \rangle \ \forall f \in V, g \in A, h \in B.$$

Además V es abierto para la topología fuerte de E^* , luego contiene una bola $B_{E^*}(0,r)$. De esto y el lado izquierdo de la igualdad anterior se obtiene (tomando f un funcional soporte debidamente amplificado):

$$0 < r ||x|| \le \alpha \le \langle g - h, x \rangle \ \forall g \in A, h \in B,$$

lo que implica

$$\langle h, x \rangle < \langle h, x \rangle + r ||x|| \le \langle g, x \rangle \ \forall g \in A, h \in B.$$

Pero $\langle h, x \rangle$ es continuo en h para la topología $\sigma(E^*, E)$ (pues es el funcional de evaluación en x) y B es compacto en esta topología, luego existe $h_0 \in B$ que alcanza el máximo:

$$\langle h, x \rangle \le \langle h_0, x \rangle < \langle h_0, x \rangle + r ||x|| \le \langle g, x \rangle \ \forall g \in A, h \in B$$

Con lo que tomando $\alpha' \in (\langle h_0, x \rangle, \langle h_0, x \rangle + r ||x||)$ se obtiene la separación estricta

$$\langle h, x \rangle < \alpha' < \langle g, x \rangle \ \forall g \in A, h \in B.$$

d) Sean $f,g \in \overline{A}^{\sigma(E^*,E)}$, debemos probar que para cualquier V vecindad abierta de 0 en la topología $\sigma(E^*,E)$ y $t \in [0,1]$, $(tf+(1-t)g+V) \cap A \neq \emptyset$. Análogamente a lo anterior se puede tomar sin pérdida de generalidad V convexa, con lo que tf+(1-t)g+V=t(f+V)+(1-t)(g+V). Notamos que f+V y g+V son abiertos que intersectan a A, luego existen $a \in (f+V) \cap A, b \in (g+V) \cap A$, y por convexidad de A y definición del conjunto suma se tiene $ta+(1-t)b \in t(f+V)+(1-t)(g+V) \cap A$.

P2. a) Notemos que

$$N^{\perp \perp} = \left\{ f \in E^* : \langle f, x \rangle = 0 \ \forall x \in N^{\perp} \right\} = \bigcap_{x \in N^{\perp}} \ker(J(x))$$

que es cerrado para la topología $\sigma(E^*,E)$. Además sabemos que $N\subseteq N^{\perp\perp}$, por lo que tomando adherencia $\sigma(E^*,E)$ obtenemos $\overline{N}^{\sigma(E^*,E)}\subseteq N^{\perp\perp}$.

Para la segunda inclusión, notemos que $\overline{N}^{\sigma(E^*,E)}$ es convexo cerrado para $\sigma(E^*,E)$ por la parte d) del problema 1. Si existe $f_0 \in N^{\perp \perp}$ que no pertenece a $\overline{N}^{\sigma(E^*,E)}$, podemos aplicar la parte c) del problema 1 para separar el convexo compacto $\{f_0\}$ de $\overline{N}^{\sigma(E^*,E)}$: existen $x \in E, \alpha \in \mathbb{R}$ tal que

$$\langle f, x \rangle < \alpha < \langle f_0, x \rangle \ \forall f \in \overline{N}^{\sigma(E^*, E)}$$

Si $N = \{0\}$ el resultado pedido es inmediato. En caso contrario, $\overline{N}^{\sigma(E^*,E)}$ es un espacio vectorial no trivial, y la cota superior α en $\langle f, x \rangle$ implica que $\langle f, x \rangle = 0 \ \forall f \in \overline{N}^{\sigma(E^*,E)} \supseteq N$ (si no, reescalando se obtiene una contradicción), es decir, $x \in N^{\perp}$. Pero entonces $\langle f_0, x \rangle = 0$ pues $f_0 \in N^{\perp \perp}$, con lo que se obtiene

$$0 < \alpha < 0$$
,

absurdo.

b) $\overline{J(B_E)}^{\sigma(E^{**},E^{*})}$ es convexo cerrado para $\sigma(E^{**},E^{*})$ por la parte d) del problema 1. Si existe $\xi \in B_{E^{**}}$ que no pertenece a $\overline{J(B_E)}^{\sigma(E^{**},E^{*})}$, nuevamente aplicamos la parte c) del problema 1 sobre E^{**} para separar $\{\xi\}$ de $\overline{J(B_E)}^{\sigma(E^{**},E^{*})}$, i.e., $\exists f \in E^{*}, \alpha \in \mathbb{R}$ tal que

$$\langle g, f \rangle < \alpha < \langle \xi, f \rangle \ \forall g \in \overline{J(B_E)}^{\sigma(E^{**}, E^{*})}.$$

En particular esto se cumple para los funcionales de evaluación $g = J(x) \in J(B_E)$:

$$\langle f, x \rangle < \alpha < \langle \xi, f \rangle \ \forall x \in B_E$$

lo que implica tomando supremo:

$$||f|| \le \alpha < \langle \xi, f \rangle \le ||f||$$

pues $\xi \in B_{E^{**}}$, una contradicción.

Observar que esto da una demostración alternativa del Lema de Goldstine a partir del Teorema de Hahn-Banach.

c) Suponiendo que existe $u_0 \in B_E$ tal que $Au_0 \notin \overline{\text{conv}A(S_E)}^{\sigma(E^*,E)}$. Análogamente a la parte anterior separamos $\{Au_0\}$ de $\overline{\text{conv}A(S_E)}^{\sigma(E^*,E)}$ (convexo cerrado para $\sigma(E^*,E)$): existen $x_0 \in E \setminus \{0\}$, $\alpha \in \mathbb{R}$ tal que

$$\langle g, x_0 \rangle < \alpha < \langle Au_0, x_0 \rangle \ \forall g \in \overline{\operatorname{conv} A(S_E)}^{\sigma(E^*, E)}.$$

En particular para $g = Au \in A(S_E)$:

$$\langle Au, x_0 \rangle < \alpha < \langle Au_0, x_0 \rangle \ \forall u \in S_E$$

de donde se deduce $\langle Au - Au_0, x_0 \rangle < 0 \ \forall u \in S_E$, pero por continuidad existe t > 0 tal que $||u_0 + tx_0|| = 1$, y por monotonía de $A \langle A(u + tx_0) - Au_0, x_0 \rangle \ge 0$, nuevamente una contradicción.

- **P3.** En el caso E^* separable sabemos que la bola unitaria cerrada B_E es metrizable para la topología débil y el origen pertenece a la adherencia débil de la esfera unitaria $S_E = \{x \in E; ||x|| = 1\} \subseteq B_E$ pues el espacio es de dimensión infinita, lo que nos da una sucesión de elementos de norma 1 que converge débilmente a 0.
 - Si E es reflexivo, generamos un subespacio cerrado separable de dimensión infinita tomando un conjunto linealmente independiente y numerable $\{b_n\}_{n\in\mathbb{N}}$. El espacio $E_0 = \overline{\langle \{b_n\}_{n\in\mathbb{N}}\rangle}$ es claramente de dimensión infinita y cerrado. Para ver que es separable se toma una aproximación de $x\in E_0$ por un elemento $y\in \langle \{b_n\}_{n\in\mathbb{N}}\rangle$ que esté a distancia menor que $\frac{\varepsilon}{2}$ de x_0 , y luego $y=\sum_{n\in\mathbb{N}}y_nb_n$, $y_n\in\mathbb{R}$ con sólo finitos y_n no nulos, con lo que cambiando los coeficientes por racionales suficientemente cercanos se obtiene $z\in \langle \{b_n\}_{n\in\mathbb{N}}\rangle_{\mathbb{Q}}$ (que es un conjunto numerable) tal que $\|z-y\|<\frac{\varepsilon}{2}$. Notando que E_0 es reflexivo y separable, tenemos que E_0^* es separable, por lo que podemos aplicar el caso anterior a E_0 y obtener una sucesión $(x_n)\subseteq E_0\subseteq E$ de norma 1 que converge débil a 0.