Auxiliar 5: Análisis Funcional

Profesor: Manuel del Pino Auxiliares: Gonzalo Contador - Felipe Subiabre 29 de abril de 2011

P1. Hahn-Banach para la topología débil-*

Sea E un espacio de Banach.

- a) Sean $A \subseteq E^*$ y $B \subseteq E^*$ conjuntos convexos no vacíos tal que $A \cap B = \emptyset$ y A es abierto en la topología $\sigma(E^*, E)$. Pruebe que existe $x \in E, x \neq 0$, y una constante α tal que el hiperplano $\{f \in E^* : \langle f, x \rangle = \alpha\}$ separa A y B.
- b) Suponga que $A \subseteq E^*$ es cerrado en $\sigma(E^*, E)$ y $B \subseteq E^*$ es compacto en $\sigma(E^*, E)$. Pruebe que A + B es cerrado en $\sigma(E^*, E)$.
- c) Sean $A \subseteq E^*$ y $B \subseteq E^*$ conjuntos convexos no vacíos tal que $A \cap B = \emptyset$, A es cerrado en la topología $\sigma(E^*, E)$ y B es compacto en $\sigma(E^*, E)$. Pruebe que existe $x \in E, x \neq 0$, y una constante α tal que el hiperplano $\{f \in E^* : \langle f, x \rangle = \alpha\}$ separa A y B estrictamente.
- d) Sea $A \subseteq E^*$ convexo. Pruebe que $\overline{A}^{\sigma(E^*,E)}$, la adherencia de A en $\sigma(E^*,E)$, es convexa.

P2. Aplicaciones de los resultados anteriores

a) Sea $N\subseteq E^*$ un subespacio vectorial. Pruebe que $N^{\perp\perp}=\overline{N}^{\sigma(E^*,E)}$. ¿Qué se puede decir si E es reflexivo?

Deduzca que c_0 es denso en ℓ^{∞} en la topología $\sigma(\ell^{\infty}, \ell^1)$.

- b) Pruebe que $J(B_E)$ es denso en $B_{E^{**}}$ en la topología $\sigma(E^{**}, E^*)$.
- c) Sea $A: B_E \to E^*$ un operador monótono, es decir

$$\langle Ax - Ay, x - y \rangle \ge 0 \quad \forall x, y \in B_E.$$

Sea $S_E = \{x \in E : ||x|| = 1\}$. Demuestre que $A(B_E) \subseteq \overline{\operatorname{conv}(A(S_E))}^{\sigma(E^*, E)}$.

- **P3.** Sea *E* un espacio de Banach de dimensión infinita que satisface alguna de las siguientes hipótesis:
 - a) E^* es separable
 - b) E es reflexivo

Pruebe que existe una sucesión (x_n) en E tal que

$$||x_n|| = 1 \quad \forall n \in \mathbb{N} \quad \mathbf{y} \quad x_n \rightharpoonup 0$$

1